Properties

Label 117.2.h.a.22.3
Level $117$
Weight $2$
Character 117.22
Analytic conductor $0.934$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,2,Mod(16,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.16"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.h (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.3
Character \(\chi\) \(=\) 117.22
Dual form 117.2.h.a.16.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00790 q^{2} +(-1.42488 - 0.984744i) q^{3} +2.03168 q^{4} +(-1.37329 + 2.37860i) q^{5} +(2.86102 + 1.97727i) q^{6} +(1.11905 - 1.93825i) q^{7} -0.0636126 q^{8} +(1.06056 + 2.80628i) q^{9} +(2.75743 - 4.77600i) q^{10} +4.63458 q^{11} +(-2.89490 - 2.00069i) q^{12} +(2.17756 + 2.87372i) q^{13} +(-2.24694 + 3.89182i) q^{14} +(4.29908 - 2.03688i) q^{15} -3.93563 q^{16} +(-0.925543 - 1.60309i) q^{17} +(-2.12950 - 5.63475i) q^{18} +(3.74647 + 6.48908i) q^{19} +(-2.79008 + 4.83256i) q^{20} +(-3.50319 + 1.65979i) q^{21} -9.30580 q^{22} +(-0.948030 - 1.64204i) q^{23} +(0.0906403 + 0.0626421i) q^{24} +(-1.27182 - 2.20287i) q^{25} +(-4.37233 - 5.77015i) q^{26} +(1.25230 - 5.04299i) q^{27} +(2.27355 - 3.93791i) q^{28} -1.71833 q^{29} +(-8.63214 + 4.08986i) q^{30} +(-0.375036 + 0.649582i) q^{31} +8.02960 q^{32} +(-6.60372 - 4.56388i) q^{33} +(1.85840 + 3.21885i) q^{34} +(3.07355 + 5.32354i) q^{35} +(2.15472 + 5.70147i) q^{36} +(1.82852 - 3.16709i) q^{37} +(-7.52256 - 13.0295i) q^{38} +(-0.272883 - 6.23903i) q^{39} +(0.0873583 - 0.151309i) q^{40} +(1.84248 + 3.19128i) q^{41} +(7.03407 - 3.33271i) q^{42} +(-2.05024 + 3.55113i) q^{43} +9.41599 q^{44} +(-8.13147 - 1.33118i) q^{45} +(1.90355 + 3.29705i) q^{46} +(3.36320 + 5.82524i) q^{47} +(5.60780 + 3.87559i) q^{48} +(0.995457 + 1.72418i) q^{49} +(2.55370 + 4.42314i) q^{50} +(-0.259845 + 3.19563i) q^{51} +(4.42410 + 5.83847i) q^{52} +2.52368 q^{53} +(-2.51450 + 10.1258i) q^{54} +(-6.36460 + 11.0238i) q^{55} +(-0.0711856 + 0.123297i) q^{56} +(1.05182 - 12.9355i) q^{57} +3.45024 q^{58} +9.85150 q^{59} +(8.73435 - 4.13829i) q^{60} +(4.78708 - 8.29147i) q^{61} +(0.753037 - 1.30430i) q^{62} +(6.62609 + 1.08474i) q^{63} -8.25141 q^{64} +(-9.82583 + 1.23311i) q^{65} +(13.2596 + 9.16383i) q^{66} +(-6.12861 - 10.6151i) q^{67} +(-1.88041 - 3.25696i) q^{68} +(-0.266158 + 3.27327i) q^{69} +(-6.17139 - 10.6892i) q^{70} +(-7.04017 - 12.1939i) q^{71} +(-0.0674649 - 0.178515i) q^{72} -11.2098 q^{73} +(-3.67149 + 6.35922i) q^{74} +(-0.357062 + 4.39124i) q^{75} +(7.61164 + 13.1837i) q^{76} +(5.18632 - 8.98298i) q^{77} +(0.547923 + 12.5274i) q^{78} +(-0.753706 - 1.30546i) q^{79} +(5.40475 - 9.36130i) q^{80} +(-6.75043 + 5.95245i) q^{81} +(-3.69953 - 6.40778i) q^{82} +(6.58818 + 11.4111i) q^{83} +(-7.11736 + 3.37217i) q^{84} +5.08414 q^{85} +(4.11669 - 7.13032i) q^{86} +(2.44841 + 1.69211i) q^{87} -0.294818 q^{88} +(-2.97704 + 5.15639i) q^{89} +(16.3272 + 2.67289i) q^{90} +(8.00677 - 1.00482i) q^{91} +(-1.92609 - 3.33609i) q^{92} +(1.17405 - 0.556260i) q^{93} +(-6.75299 - 11.6965i) q^{94} -20.5799 q^{95} +(-11.4412 - 7.90710i) q^{96} +(-3.06884 + 5.31539i) q^{97} +(-1.99878 - 3.46199i) q^{98} +(4.91524 + 13.0059i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 2 q^{2} - q^{3} + 18 q^{4} - 2 q^{5} - 12 q^{6} + 3 q^{7} - 18 q^{8} - 3 q^{9} + 6 q^{11} - 3 q^{12} + 2 q^{14} + 11 q^{15} + 6 q^{16} + 6 q^{17} - 8 q^{18} - 3 q^{19} - 11 q^{20} - 25 q^{21} - 18 q^{22}+ \cdots + 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00790 −1.41980 −0.709901 0.704301i \(-0.751261\pi\)
−0.709901 + 0.704301i \(0.751261\pi\)
\(3\) −1.42488 0.984744i −0.822654 0.568542i
\(4\) 2.03168 1.01584
\(5\) −1.37329 + 2.37860i −0.614152 + 1.06374i 0.376381 + 0.926465i \(0.377168\pi\)
−0.990533 + 0.137277i \(0.956165\pi\)
\(6\) 2.86102 + 1.97727i 1.16801 + 0.807218i
\(7\) 1.11905 1.93825i 0.422961 0.732590i −0.573267 0.819369i \(-0.694324\pi\)
0.996228 + 0.0867791i \(0.0276574\pi\)
\(8\) −0.0636126 −0.0224905
\(9\) 1.06056 + 2.80628i 0.353519 + 0.935427i
\(10\) 2.75743 4.77600i 0.871975 1.51030i
\(11\) 4.63458 1.39738 0.698689 0.715425i \(-0.253767\pi\)
0.698689 + 0.715425i \(0.253767\pi\)
\(12\) −2.89490 2.00069i −0.835685 0.577548i
\(13\) 2.17756 + 2.87372i 0.603946 + 0.797025i
\(14\) −2.24694 + 3.89182i −0.600521 + 1.04013i
\(15\) 4.29908 2.03688i 1.11002 0.525921i
\(16\) −3.93563 −0.983909
\(17\) −0.925543 1.60309i −0.224477 0.388806i 0.731685 0.681643i \(-0.238734\pi\)
−0.956162 + 0.292837i \(0.905401\pi\)
\(18\) −2.12950 5.63475i −0.501928 1.32812i
\(19\) 3.74647 + 6.48908i 0.859500 + 1.48870i 0.872407 + 0.488781i \(0.162558\pi\)
−0.0129070 + 0.999917i \(0.504109\pi\)
\(20\) −2.79008 + 4.83256i −0.623880 + 1.08059i
\(21\) −3.50319 + 1.65979i −0.764459 + 0.362197i
\(22\) −9.30580 −1.98400
\(23\) −0.948030 1.64204i −0.197678 0.342388i 0.750097 0.661328i \(-0.230007\pi\)
−0.947775 + 0.318939i \(0.896673\pi\)
\(24\) 0.0906403 + 0.0626421i 0.0185019 + 0.0127868i
\(25\) −1.27182 2.20287i −0.254365 0.440573i
\(26\) −4.37233 5.77015i −0.857484 1.13162i
\(27\) 1.25230 5.04299i 0.241006 0.970524i
\(28\) 2.27355 3.93791i 0.429661 0.744194i
\(29\) −1.71833 −0.319086 −0.159543 0.987191i \(-0.551002\pi\)
−0.159543 + 0.987191i \(0.551002\pi\)
\(30\) −8.63214 + 4.08986i −1.57601 + 0.746704i
\(31\) −0.375036 + 0.649582i −0.0673585 + 0.116668i −0.897738 0.440530i \(-0.854790\pi\)
0.830379 + 0.557199i \(0.188124\pi\)
\(32\) 8.02960 1.41945
\(33\) −6.60372 4.56388i −1.14956 0.794469i
\(34\) 1.85840 + 3.21885i 0.318713 + 0.552028i
\(35\) 3.07355 + 5.32354i 0.519524 + 0.899843i
\(36\) 2.15472 + 5.70147i 0.359119 + 0.950245i
\(37\) 1.82852 3.16709i 0.300607 0.520666i −0.675667 0.737207i \(-0.736144\pi\)
0.976274 + 0.216541i \(0.0694774\pi\)
\(38\) −7.52256 13.0295i −1.22032 2.11366i
\(39\) −0.272883 6.23903i −0.0436962 0.999045i
\(40\) 0.0873583 0.151309i 0.0138126 0.0239240i
\(41\) 1.84248 + 3.19128i 0.287748 + 0.498393i 0.973272 0.229656i \(-0.0737602\pi\)
−0.685524 + 0.728050i \(0.740427\pi\)
\(42\) 7.03407 3.33271i 1.08538 0.514248i
\(43\) −2.05024 + 3.55113i −0.312659 + 0.541542i −0.978937 0.204162i \(-0.934553\pi\)
0.666278 + 0.745703i \(0.267886\pi\)
\(44\) 9.41599 1.41951
\(45\) −8.13147 1.33118i −1.21217 0.198441i
\(46\) 1.90355 + 3.29705i 0.280664 + 0.486124i
\(47\) 3.36320 + 5.82524i 0.490573 + 0.849698i 0.999941 0.0108509i \(-0.00345403\pi\)
−0.509368 + 0.860549i \(0.670121\pi\)
\(48\) 5.60780 + 3.87559i 0.809416 + 0.559394i
\(49\) 0.995457 + 1.72418i 0.142208 + 0.246312i
\(50\) 2.55370 + 4.42314i 0.361148 + 0.625527i
\(51\) −0.259845 + 3.19563i −0.0363855 + 0.447478i
\(52\) 4.42410 + 5.83847i 0.613513 + 0.809650i
\(53\) 2.52368 0.346654 0.173327 0.984864i \(-0.444548\pi\)
0.173327 + 0.984864i \(0.444548\pi\)
\(54\) −2.51450 + 10.1258i −0.342181 + 1.37795i
\(55\) −6.36460 + 11.0238i −0.858203 + 1.48645i
\(56\) −0.0711856 + 0.123297i −0.00951258 + 0.0164763i
\(57\) 1.05182 12.9355i 0.139316 1.71334i
\(58\) 3.45024 0.453039
\(59\) 9.85150 1.28256 0.641278 0.767309i \(-0.278405\pi\)
0.641278 + 0.767309i \(0.278405\pi\)
\(60\) 8.73435 4.13829i 1.12760 0.534251i
\(61\) 4.78708 8.29147i 0.612923 1.06161i −0.377822 0.925878i \(-0.623327\pi\)
0.990745 0.135736i \(-0.0433397\pi\)
\(62\) 0.753037 1.30430i 0.0956358 0.165646i
\(63\) 6.62609 + 1.08474i 0.834809 + 0.136664i
\(64\) −8.25141 −1.03143
\(65\) −9.82583 + 1.23311i −1.21874 + 0.152948i
\(66\) 13.2596 + 9.16383i 1.63215 + 1.12799i
\(67\) −6.12861 10.6151i −0.748728 1.29684i −0.948432 0.316979i \(-0.897331\pi\)
0.199704 0.979856i \(-0.436002\pi\)
\(68\) −1.88041 3.25696i −0.228033 0.394965i
\(69\) −0.266158 + 3.27327i −0.0320416 + 0.394055i
\(70\) −6.17139 10.6892i −0.737622 1.27760i
\(71\) −7.04017 12.1939i −0.835514 1.44715i −0.893611 0.448842i \(-0.851837\pi\)
0.0580970 0.998311i \(-0.481497\pi\)
\(72\) −0.0674649 0.178515i −0.00795081 0.0210382i
\(73\) −11.2098 −1.31200 −0.656001 0.754760i \(-0.727753\pi\)
−0.656001 + 0.754760i \(0.727753\pi\)
\(74\) −3.67149 + 6.35922i −0.426803 + 0.739244i
\(75\) −0.357062 + 4.39124i −0.0412300 + 0.507056i
\(76\) 7.61164 + 13.1837i 0.873115 + 1.51228i
\(77\) 5.18632 8.98298i 0.591037 1.02371i
\(78\) 0.547923 + 12.5274i 0.0620400 + 1.41845i
\(79\) −0.753706 1.30546i −0.0847985 0.146875i 0.820507 0.571637i \(-0.193691\pi\)
−0.905305 + 0.424761i \(0.860358\pi\)
\(80\) 5.40475 9.36130i 0.604269 1.04663i
\(81\) −6.75043 + 5.95245i −0.750048 + 0.661383i
\(82\) −3.69953 6.40778i −0.408545 0.707621i
\(83\) 6.58818 + 11.4111i 0.723146 + 1.25253i 0.959732 + 0.280916i \(0.0906382\pi\)
−0.236586 + 0.971611i \(0.576028\pi\)
\(84\) −7.11736 + 3.37217i −0.776568 + 0.367934i
\(85\) 5.08414 0.551452
\(86\) 4.11669 7.13032i 0.443914 0.768882i
\(87\) 2.44841 + 1.69211i 0.262497 + 0.181414i
\(88\) −0.294818 −0.0314277
\(89\) −2.97704 + 5.15639i −0.315566 + 0.546576i −0.979558 0.201164i \(-0.935528\pi\)
0.663992 + 0.747740i \(0.268861\pi\)
\(90\) 16.3272 + 2.67289i 1.72104 + 0.281747i
\(91\) 8.00677 1.00482i 0.839338 0.105334i
\(92\) −1.92609 3.33609i −0.200809 0.347812i
\(93\) 1.17405 0.556260i 0.121744 0.0576815i
\(94\) −6.75299 11.6965i −0.696518 1.20640i
\(95\) −20.5799 −2.11145
\(96\) −11.4412 7.90710i −1.16771 0.807015i
\(97\) −3.06884 + 5.31539i −0.311594 + 0.539697i −0.978708 0.205259i \(-0.934196\pi\)
0.667114 + 0.744956i \(0.267530\pi\)
\(98\) −1.99878 3.46199i −0.201908 0.349714i
\(99\) 4.91524 + 13.0059i 0.494001 + 1.30715i
\(100\) −2.58394 4.47552i −0.258394 0.447552i
\(101\) −9.43261 −0.938579 −0.469290 0.883044i \(-0.655490\pi\)
−0.469290 + 0.883044i \(0.655490\pi\)
\(102\) 0.521743 6.41652i 0.0516603 0.635330i
\(103\) 1.32937 2.30254i 0.130987 0.226876i −0.793070 0.609130i \(-0.791519\pi\)
0.924057 + 0.382254i \(0.124852\pi\)
\(104\) −0.138520 0.182805i −0.0135830 0.0179255i
\(105\) 0.862893 10.6121i 0.0842097 1.03563i
\(106\) −5.06730 −0.492180
\(107\) −0.149595 + 0.259106i −0.0144619 + 0.0250487i −0.873166 0.487423i \(-0.837937\pi\)
0.858704 + 0.512472i \(0.171270\pi\)
\(108\) 2.54428 10.2457i 0.244823 0.985897i
\(109\) 0.708224 0.0678356 0.0339178 0.999425i \(-0.489202\pi\)
0.0339178 + 0.999425i \(0.489202\pi\)
\(110\) 12.7795 22.1348i 1.21848 2.11047i
\(111\) −5.72419 + 2.71209i −0.543316 + 0.257421i
\(112\) −4.40417 + 7.62824i −0.416155 + 0.720801i
\(113\) −8.74797 −0.822940 −0.411470 0.911423i \(-0.634985\pi\)
−0.411470 + 0.911423i \(0.634985\pi\)
\(114\) −2.11194 + 25.9732i −0.197802 + 2.43261i
\(115\) 5.20766 0.485617
\(116\) −3.49110 −0.324140
\(117\) −5.75503 + 9.15858i −0.532052 + 0.846711i
\(118\) −19.7809 −1.82098
\(119\) −4.14291 −0.379780
\(120\) −0.273476 + 0.129571i −0.0249648 + 0.0118282i
\(121\) 10.4793 0.952668
\(122\) −9.61200 + 16.6485i −0.870230 + 1.50728i
\(123\) 0.517274 6.36155i 0.0466410 0.573602i
\(124\) −0.761954 + 1.31974i −0.0684255 + 0.118516i
\(125\) −6.74654 −0.603429
\(126\) −13.3046 2.17805i −1.18526 0.194037i
\(127\) 9.01640 15.6169i 0.800076 1.38577i −0.119489 0.992836i \(-0.538126\pi\)
0.919565 0.392938i \(-0.128541\pi\)
\(128\) 0.508837 0.0449753
\(129\) 6.41830 3.04096i 0.565100 0.267741i
\(130\) 19.7293 2.47597i 1.73038 0.217157i
\(131\) 5.30430 9.18731i 0.463438 0.802699i −0.535691 0.844414i \(-0.679949\pi\)
0.999130 + 0.0417151i \(0.0132822\pi\)
\(132\) −13.4166 9.27234i −1.16777 0.807054i
\(133\) 16.7700 1.45414
\(134\) 12.3057 + 21.3140i 1.06305 + 1.84125i
\(135\) 10.2755 + 9.90419i 0.884373 + 0.852417i
\(136\) 0.0588762 + 0.101977i 0.00504859 + 0.00874442i
\(137\) −2.97372 + 5.15063i −0.254062 + 0.440048i −0.964640 0.263570i \(-0.915100\pi\)
0.710578 + 0.703618i \(0.248433\pi\)
\(138\) 0.534419 6.57241i 0.0454928 0.559481i
\(139\) −13.7776 −1.16860 −0.584300 0.811538i \(-0.698631\pi\)
−0.584300 + 0.811538i \(0.698631\pi\)
\(140\) 6.24447 + 10.8157i 0.527754 + 0.914097i
\(141\) 0.944213 11.6121i 0.0795170 0.977919i
\(142\) 14.1360 + 24.4842i 1.18627 + 2.05467i
\(143\) 10.0921 + 13.3185i 0.843941 + 1.11375i
\(144\) −4.17397 11.0445i −0.347831 0.920375i
\(145\) 2.35976 4.08722i 0.195967 0.339425i
\(146\) 22.5081 1.86278
\(147\) 0.279473 3.43702i 0.0230505 0.283481i
\(148\) 3.71497 6.43452i 0.305369 0.528914i
\(149\) 10.8144 0.885948 0.442974 0.896535i \(-0.353923\pi\)
0.442974 + 0.896535i \(0.353923\pi\)
\(150\) 0.716947 8.81719i 0.0585385 0.719920i
\(151\) −6.45173 11.1747i −0.525035 0.909387i −0.999575 0.0291528i \(-0.990719\pi\)
0.474540 0.880234i \(-0.342614\pi\)
\(152\) −0.238323 0.412787i −0.0193305 0.0334815i
\(153\) 3.51712 4.29750i 0.284343 0.347432i
\(154\) −10.4136 + 18.0370i −0.839156 + 1.45346i
\(155\) −1.03006 1.78412i −0.0827367 0.143304i
\(156\) −0.554411 12.6757i −0.0443884 1.01487i
\(157\) −4.22692 + 7.32124i −0.337345 + 0.584298i −0.983932 0.178541i \(-0.942862\pi\)
0.646588 + 0.762840i \(0.276195\pi\)
\(158\) 1.51337 + 2.62123i 0.120397 + 0.208534i
\(159\) −3.59593 2.48518i −0.285176 0.197087i
\(160\) −11.0269 + 19.0992i −0.871756 + 1.50993i
\(161\) −4.24357 −0.334440
\(162\) 13.5542 11.9520i 1.06492 0.939034i
\(163\) 12.0242 + 20.8266i 0.941810 + 1.63126i 0.762016 + 0.647558i \(0.224210\pi\)
0.179794 + 0.983704i \(0.442457\pi\)
\(164\) 3.74334 + 6.48365i 0.292306 + 0.506288i
\(165\) 19.9244 9.44009i 1.55111 0.734910i
\(166\) −13.2284 22.9123i −1.02673 1.77834i
\(167\) −4.75638 8.23829i −0.368060 0.637498i 0.621202 0.783650i \(-0.286644\pi\)
−0.989262 + 0.146152i \(0.953311\pi\)
\(168\) 0.222847 0.105584i 0.0171930 0.00814597i
\(169\) −3.51648 + 12.5154i −0.270498 + 0.962720i
\(170\) −10.2085 −0.782954
\(171\) −14.2368 + 17.3957i −1.08872 + 1.33028i
\(172\) −4.16544 + 7.21475i −0.317612 + 0.550120i
\(173\) 5.73435 9.93218i 0.435975 0.755130i −0.561400 0.827545i \(-0.689737\pi\)
0.997375 + 0.0724145i \(0.0230704\pi\)
\(174\) −4.91618 3.39761i −0.372694 0.257572i
\(175\) −5.69294 −0.430346
\(176\) −18.2400 −1.37489
\(177\) −14.0372 9.70120i −1.05510 0.729187i
\(178\) 5.97762 10.3535i 0.448041 0.776031i
\(179\) 5.26198 9.11402i 0.393299 0.681214i −0.599583 0.800312i \(-0.704667\pi\)
0.992882 + 0.119098i \(0.0380004\pi\)
\(180\) −16.5206 2.70454i −1.23137 0.201584i
\(181\) 11.0530 0.821566 0.410783 0.911733i \(-0.365255\pi\)
0.410783 + 0.911733i \(0.365255\pi\)
\(182\) −16.0768 + 2.01759i −1.19169 + 0.149554i
\(183\) −14.9860 + 7.10029i −1.10780 + 0.524868i
\(184\) 0.0603067 + 0.104454i 0.00444587 + 0.00770047i
\(185\) 5.02216 + 8.69864i 0.369237 + 0.639537i
\(186\) −2.35739 + 1.11692i −0.172852 + 0.0818964i
\(187\) −4.28950 7.42964i −0.313680 0.543309i
\(188\) 6.83295 + 11.8350i 0.498344 + 0.863158i
\(189\) −8.37319 8.07063i −0.609060 0.587052i
\(190\) 41.3225 2.99785
\(191\) 9.86785 17.0916i 0.714012 1.23671i −0.249327 0.968419i \(-0.580209\pi\)
0.963339 0.268286i \(-0.0864573\pi\)
\(192\) 11.7573 + 8.12553i 0.848507 + 0.586409i
\(193\) −5.36757 9.29691i −0.386366 0.669206i 0.605591 0.795776i \(-0.292937\pi\)
−0.991958 + 0.126570i \(0.959603\pi\)
\(194\) 6.16195 10.6728i 0.442402 0.766263i
\(195\) 15.2149 + 7.91889i 1.08956 + 0.567084i
\(196\) 2.02245 + 3.50299i 0.144461 + 0.250213i
\(197\) −9.88808 + 17.1267i −0.704497 + 1.22022i 0.262376 + 0.964966i \(0.415494\pi\)
−0.966873 + 0.255258i \(0.917839\pi\)
\(198\) −9.86934 26.1147i −0.701383 1.85589i
\(199\) −4.56054 7.89908i −0.323288 0.559951i 0.657876 0.753126i \(-0.271455\pi\)
−0.981164 + 0.193175i \(0.938122\pi\)
\(200\) 0.0809041 + 0.140130i 0.00572078 + 0.00990869i
\(201\) −1.72059 + 21.1603i −0.121361 + 1.49253i
\(202\) 18.9398 1.33260
\(203\) −1.92290 + 3.33055i −0.134961 + 0.233759i
\(204\) −0.527921 + 6.49250i −0.0369619 + 0.454566i
\(205\) −10.1210 −0.706883
\(206\) −2.66925 + 4.62327i −0.185975 + 0.322119i
\(207\) 3.60257 4.40191i 0.250396 0.305954i
\(208\) −8.57007 11.3099i −0.594228 0.784200i
\(209\) 17.3633 + 30.0742i 1.20105 + 2.08027i
\(210\) −1.73261 + 21.3080i −0.119561 + 1.47039i
\(211\) −0.664016 1.15011i −0.0457127 0.0791768i 0.842264 0.539066i \(-0.181223\pi\)
−0.887976 + 0.459889i \(0.847889\pi\)
\(212\) 5.12731 0.352145
\(213\) −1.97651 + 24.3076i −0.135428 + 1.66553i
\(214\) 0.300372 0.520260i 0.0205330 0.0355642i
\(215\) −5.63114 9.75342i −0.384040 0.665178i
\(216\) −0.0796622 + 0.320798i −0.00542033 + 0.0218275i
\(217\) 0.839368 + 1.45383i 0.0569800 + 0.0986923i
\(218\) −1.42205 −0.0963131
\(219\) 15.9725 + 11.0387i 1.07932 + 0.745929i
\(220\) −12.9308 + 22.3969i −0.871797 + 1.51000i
\(221\) 2.59139 6.15056i 0.174316 0.413732i
\(222\) 11.4936 5.44563i 0.771402 0.365487i
\(223\) 7.10340 0.475679 0.237839 0.971304i \(-0.423561\pi\)
0.237839 + 0.971304i \(0.423561\pi\)
\(224\) 8.98552 15.5634i 0.600370 1.03987i
\(225\) 4.83302 5.90537i 0.322201 0.393691i
\(226\) 17.5651 1.16841
\(227\) 4.90104 8.48884i 0.325293 0.563424i −0.656278 0.754519i \(-0.727870\pi\)
0.981572 + 0.191094i \(0.0612037\pi\)
\(228\) 2.13695 26.2807i 0.141523 1.74049i
\(229\) 0.141350 0.244825i 0.00934064 0.0161785i −0.861317 0.508067i \(-0.830360\pi\)
0.870658 + 0.491889i \(0.163693\pi\)
\(230\) −10.4565 −0.689481
\(231\) −16.2358 + 7.69245i −1.06824 + 0.506126i
\(232\) 0.109307 0.00717638
\(233\) −24.9871 −1.63696 −0.818478 0.574537i \(-0.805182\pi\)
−0.818478 + 0.574537i \(0.805182\pi\)
\(234\) 11.5555 18.3896i 0.755410 1.20216i
\(235\) −18.4745 −1.20515
\(236\) 20.0151 1.30287
\(237\) −0.211601 + 2.60232i −0.0137450 + 0.169039i
\(238\) 8.31858 0.539213
\(239\) 3.85548 6.67788i 0.249390 0.431956i −0.713967 0.700180i \(-0.753103\pi\)
0.963357 + 0.268223i \(0.0864365\pi\)
\(240\) −16.9196 + 8.01642i −1.09216 + 0.517458i
\(241\) 15.0878 26.1328i 0.971891 1.68336i 0.282056 0.959398i \(-0.408983\pi\)
0.689835 0.723967i \(-0.257683\pi\)
\(242\) −21.0415 −1.35260
\(243\) 15.4802 1.83407i 0.993054 0.117656i
\(244\) 9.72582 16.8456i 0.622632 1.07843i
\(245\) −5.46819 −0.349350
\(246\) −1.03864 + 12.7734i −0.0662210 + 0.814402i
\(247\) −10.4896 + 24.8966i −0.667438 + 1.58414i
\(248\) 0.0238570 0.0413216i 0.00151492 0.00262392i
\(249\) 1.84962 22.7470i 0.117215 1.44154i
\(250\) 13.5464 0.856750
\(251\) −1.94008 3.36031i −0.122456 0.212101i 0.798279 0.602287i \(-0.205744\pi\)
−0.920736 + 0.390187i \(0.872411\pi\)
\(252\) 13.4621 + 2.20385i 0.848033 + 0.138829i
\(253\) −4.39372 7.61015i −0.276231 0.478446i
\(254\) −18.1041 + 31.3572i −1.13595 + 1.96752i
\(255\) −7.24428 5.00658i −0.453654 0.313524i
\(256\) 15.4811 0.967570
\(257\) 3.83954 + 6.65028i 0.239504 + 0.414833i 0.960572 0.278031i \(-0.0896819\pi\)
−0.721068 + 0.692864i \(0.756349\pi\)
\(258\) −12.8873 + 6.10595i −0.802330 + 0.380140i
\(259\) −4.09241 7.08826i −0.254290 0.440443i
\(260\) −19.9629 + 2.50529i −1.23805 + 0.155371i
\(261\) −1.82239 4.82212i −0.112803 0.298482i
\(262\) −10.6505 + 18.4472i −0.657991 + 1.13967i
\(263\) −9.96367 −0.614386 −0.307193 0.951647i \(-0.599390\pi\)
−0.307193 + 0.951647i \(0.599390\pi\)
\(264\) 0.420080 + 0.290320i 0.0258541 + 0.0178680i
\(265\) −3.46573 + 6.00282i −0.212898 + 0.368750i
\(266\) −33.6725 −2.06459
\(267\) 9.31965 4.41560i 0.570353 0.270231i
\(268\) −12.4514 21.5664i −0.760589 1.31738i
\(269\) −2.44660 4.23764i −0.149172 0.258373i 0.781750 0.623592i \(-0.214327\pi\)
−0.930922 + 0.365219i \(0.880994\pi\)
\(270\) −20.6322 19.8867i −1.25564 1.21026i
\(271\) 2.64931 4.58874i 0.160934 0.278746i −0.774270 0.632856i \(-0.781883\pi\)
0.935204 + 0.354109i \(0.115216\pi\)
\(272\) 3.64260 + 6.30917i 0.220865 + 0.382549i
\(273\) −12.3982 6.45287i −0.750372 0.390546i
\(274\) 5.97094 10.3420i 0.360718 0.624782i
\(275\) −5.89438 10.2094i −0.355444 0.615647i
\(276\) −0.540747 + 6.65024i −0.0325492 + 0.400297i
\(277\) −1.33857 + 2.31847i −0.0804268 + 0.139303i −0.903433 0.428729i \(-0.858962\pi\)
0.823007 + 0.568032i \(0.192295\pi\)
\(278\) 27.6641 1.65918
\(279\) −2.22066 0.363538i −0.132947 0.0217644i
\(280\) −0.195516 0.338644i −0.0116843 0.0202379i
\(281\) −1.11317 1.92806i −0.0664059 0.115018i 0.830911 0.556406i \(-0.187820\pi\)
−0.897317 + 0.441387i \(0.854487\pi\)
\(282\) −1.89589 + 23.3161i −0.112899 + 1.38845i
\(283\) 1.28374 + 2.22350i 0.0763102 + 0.132173i 0.901655 0.432455i \(-0.142353\pi\)
−0.825345 + 0.564629i \(0.809019\pi\)
\(284\) −14.3034 24.7742i −0.848749 1.47008i
\(285\) 29.3239 + 20.2659i 1.73700 + 1.20045i
\(286\) −20.2639 26.7422i −1.19823 1.58130i
\(287\) 8.24732 0.486824
\(288\) 8.51586 + 22.5333i 0.501802 + 1.32779i
\(289\) 6.78674 11.7550i 0.399220 0.691469i
\(290\) −4.73817 + 8.20674i −0.278235 + 0.481917i
\(291\) 9.60703 4.55177i 0.563174 0.266829i
\(292\) −22.7746 −1.33278
\(293\) −1.40062 −0.0818251 −0.0409125 0.999163i \(-0.513027\pi\)
−0.0409125 + 0.999163i \(0.513027\pi\)
\(294\) −0.561155 + 6.90121i −0.0327272 + 0.402487i
\(295\) −13.5289 + 23.4328i −0.787684 + 1.36431i
\(296\) −0.116317 + 0.201467i −0.00676079 + 0.0117100i
\(297\) 5.80390 23.3721i 0.336776 1.35619i
\(298\) −21.7142 −1.25787
\(299\) 2.65435 6.30000i 0.153505 0.364338i
\(300\) −0.725437 + 8.92160i −0.0418831 + 0.515089i
\(301\) 4.58865 + 7.94777i 0.264485 + 0.458102i
\(302\) 12.9545 + 22.4378i 0.745446 + 1.29115i
\(303\) 13.4403 + 9.28870i 0.772126 + 0.533622i
\(304\) −14.7447 25.5386i −0.845669 1.46474i
\(305\) 13.1481 + 22.7731i 0.752856 + 1.30398i
\(306\) −7.06205 + 8.62898i −0.403710 + 0.493286i
\(307\) −18.2734 −1.04292 −0.521460 0.853276i \(-0.674612\pi\)
−0.521460 + 0.853276i \(0.674612\pi\)
\(308\) 10.5370 18.2505i 0.600399 1.03992i
\(309\) −4.16160 + 1.97175i −0.236745 + 0.112169i
\(310\) 2.06827 + 3.58235i 0.117470 + 0.203464i
\(311\) −3.14615 + 5.44929i −0.178402 + 0.309001i −0.941333 0.337478i \(-0.890426\pi\)
0.762931 + 0.646479i \(0.223759\pi\)
\(312\) 0.0173588 + 0.396881i 0.000982748 + 0.0224690i
\(313\) 10.5551 + 18.2820i 0.596612 + 1.03336i 0.993317 + 0.115416i \(0.0368202\pi\)
−0.396705 + 0.917946i \(0.629846\pi\)
\(314\) 8.48725 14.7003i 0.478963 0.829588i
\(315\) −11.6797 + 14.2712i −0.658075 + 0.804089i
\(316\) −1.53129 2.65227i −0.0861418 0.149202i
\(317\) −4.75705 8.23946i −0.267183 0.462774i 0.700950 0.713210i \(-0.252759\pi\)
−0.968133 + 0.250436i \(0.919426\pi\)
\(318\) 7.22029 + 4.99000i 0.404894 + 0.279825i
\(319\) −7.96374 −0.445884
\(320\) 11.3315 19.6268i 0.633452 1.09717i
\(321\) 0.468307 0.221882i 0.0261384 0.0123842i
\(322\) 8.52068 0.474839
\(323\) 6.93504 12.0118i 0.385876 0.668357i
\(324\) −13.7147 + 12.0935i −0.761929 + 0.671860i
\(325\) 3.56093 8.45173i 0.197525 0.468818i
\(326\) −24.1435 41.8178i −1.33718 2.31607i
\(327\) −1.00913 0.697419i −0.0558052 0.0385674i
\(328\) −0.117205 0.203005i −0.00647157 0.0112091i
\(329\) 15.0544 0.829973
\(330\) −40.0063 + 18.9548i −2.20228 + 1.04343i
\(331\) −3.12981 + 5.42098i −0.172030 + 0.297964i −0.939129 0.343564i \(-0.888366\pi\)
0.767100 + 0.641528i \(0.221699\pi\)
\(332\) 13.3851 + 23.1836i 0.734601 + 1.27237i
\(333\) 10.8270 + 1.77246i 0.593316 + 0.0971302i
\(334\) 9.55036 + 16.5417i 0.522572 + 0.905122i
\(335\) 33.6653 1.83933
\(336\) 13.7873 6.53234i 0.752157 0.356369i
\(337\) 3.09213 5.35572i 0.168439 0.291745i −0.769432 0.638728i \(-0.779461\pi\)
0.937871 + 0.346984i \(0.112794\pi\)
\(338\) 7.06075 25.1297i 0.384054 1.36687i
\(339\) 12.4648 + 8.61451i 0.676995 + 0.467876i
\(340\) 10.3293 0.560188
\(341\) −1.73814 + 3.01054i −0.0941253 + 0.163030i
\(342\) 28.5862 34.9289i 1.54577 1.88874i
\(343\) 20.1226 1.08652
\(344\) 0.130421 0.225896i 0.00703185 0.0121795i
\(345\) −7.42029 5.12821i −0.399495 0.276094i
\(346\) −11.5140 + 19.9429i −0.618998 + 1.07214i
\(347\) 7.38405 0.396397 0.198198 0.980162i \(-0.436491\pi\)
0.198198 + 0.980162i \(0.436491\pi\)
\(348\) 4.97439 + 3.43784i 0.266655 + 0.184287i
\(349\) −30.1213 −1.61236 −0.806179 0.591671i \(-0.798468\pi\)
−0.806179 + 0.591671i \(0.798468\pi\)
\(350\) 11.4309 0.611006
\(351\) 17.2191 7.38264i 0.919086 0.394056i
\(352\) 37.2138 1.98350
\(353\) 31.4385 1.67330 0.836651 0.547736i \(-0.184510\pi\)
0.836651 + 0.547736i \(0.184510\pi\)
\(354\) 28.1853 + 19.4791i 1.49803 + 1.03530i
\(355\) 38.6726 2.05253
\(356\) −6.04840 + 10.4761i −0.320565 + 0.555234i
\(357\) 5.90315 + 4.07971i 0.312428 + 0.215921i
\(358\) −10.5656 + 18.3001i −0.558407 + 0.967190i
\(359\) 0.224911 0.0118703 0.00593516 0.999982i \(-0.498111\pi\)
0.00593516 + 0.999982i \(0.498111\pi\)
\(360\) 0.517264 + 0.0846799i 0.0272622 + 0.00446302i
\(361\) −18.5721 + 32.1678i −0.977480 + 1.69304i
\(362\) −22.1935 −1.16646
\(363\) −14.9318 10.3195i −0.783716 0.541632i
\(364\) 16.2672 2.04148i 0.852634 0.107003i
\(365\) 15.3942 26.6635i 0.805768 1.39563i
\(366\) 30.0904 14.2567i 1.57285 0.745209i
\(367\) −21.0971 −1.10126 −0.550629 0.834750i \(-0.685612\pi\)
−0.550629 + 0.834750i \(0.685612\pi\)
\(368\) 3.73110 + 6.46245i 0.194497 + 0.336879i
\(369\) −7.00156 + 8.55506i −0.364486 + 0.445359i
\(370\) −10.0840 17.4660i −0.524243 0.908016i
\(371\) 2.82412 4.89152i 0.146621 0.253955i
\(372\) 2.38530 1.13014i 0.123672 0.0585952i
\(373\) −13.1160 −0.679121 −0.339561 0.940584i \(-0.610278\pi\)
−0.339561 + 0.940584i \(0.610278\pi\)
\(374\) 8.61292 + 14.9180i 0.445363 + 0.771392i
\(375\) 9.61300 + 6.64361i 0.496413 + 0.343075i
\(376\) −0.213942 0.370558i −0.0110332 0.0191101i
\(377\) −3.74176 4.93799i −0.192711 0.254319i
\(378\) 16.8126 + 16.2051i 0.864745 + 0.833498i
\(379\) 1.12198 1.94333i 0.0576322 0.0998219i −0.835770 0.549080i \(-0.814978\pi\)
0.893402 + 0.449258i \(0.148312\pi\)
\(380\) −41.8118 −2.14490
\(381\) −28.2259 + 13.3733i −1.44606 + 0.685135i
\(382\) −19.8137 + 34.3183i −1.01376 + 1.75588i
\(383\) −13.2616 −0.677638 −0.338819 0.940852i \(-0.610027\pi\)
−0.338819 + 0.940852i \(0.610027\pi\)
\(384\) −0.725031 0.501074i −0.0369991 0.0255703i
\(385\) 14.2446 + 24.6724i 0.725972 + 1.25742i
\(386\) 10.7776 + 18.6673i 0.548564 + 0.950141i
\(387\) −12.1399 1.98738i −0.617104 0.101024i
\(388\) −6.23491 + 10.7992i −0.316530 + 0.548246i
\(389\) −1.38426 2.39760i −0.0701845 0.121563i 0.828798 0.559549i \(-0.189025\pi\)
−0.898982 + 0.437985i \(0.855692\pi\)
\(390\) −30.5501 15.9004i −1.54696 0.805147i
\(391\) −1.75489 + 3.03955i −0.0887484 + 0.153717i
\(392\) −0.0633236 0.109680i −0.00319833 0.00553966i
\(393\) −16.6051 + 7.86743i −0.837618 + 0.396859i
\(394\) 19.8543 34.3887i 1.00025 1.73248i
\(395\) 4.14021 0.208317
\(396\) 9.98621 + 26.4239i 0.501826 + 1.32785i
\(397\) 1.66609 + 2.88575i 0.0836185 + 0.144832i 0.904802 0.425833i \(-0.140019\pi\)
−0.821183 + 0.570665i \(0.806686\pi\)
\(398\) 9.15712 + 15.8606i 0.459005 + 0.795020i
\(399\) −23.8951 16.5141i −1.19625 0.826740i
\(400\) 5.00544 + 8.66967i 0.250272 + 0.433484i
\(401\) 6.27405 + 10.8670i 0.313311 + 0.542671i 0.979077 0.203490i \(-0.0652284\pi\)
−0.665766 + 0.746161i \(0.731895\pi\)
\(402\) 3.45479 42.4878i 0.172309 2.11910i
\(403\) −2.68338 + 0.336755i −0.133668 + 0.0167750i
\(404\) −19.1640 −0.953447
\(405\) −4.88823 24.2310i −0.242898 1.20405i
\(406\) 3.86099 6.68743i 0.191618 0.331892i
\(407\) 8.47443 14.6781i 0.420062 0.727568i
\(408\) 0.0165294 0.203282i 0.000818327 0.0100640i
\(409\) 3.24471 0.160441 0.0802204 0.996777i \(-0.474438\pi\)
0.0802204 + 0.996777i \(0.474438\pi\)
\(410\) 20.3220 1.00363
\(411\) 9.30924 4.41067i 0.459191 0.217562i
\(412\) 2.70086 4.67802i 0.133062 0.230470i
\(413\) 11.0243 19.0947i 0.542471 0.939587i
\(414\) −7.23363 + 8.83862i −0.355513 + 0.434395i
\(415\) −36.1898 −1.77649
\(416\) 17.4849 + 23.0748i 0.857269 + 1.13133i
\(417\) 19.6314 + 13.5674i 0.961353 + 0.664398i
\(418\) −34.8639 60.3861i −1.70525 2.95358i
\(419\) −0.112885 0.195522i −0.00551477 0.00955187i 0.863255 0.504768i \(-0.168422\pi\)
−0.868770 + 0.495216i \(0.835089\pi\)
\(420\) 1.75312 21.5603i 0.0855436 1.05204i
\(421\) 9.27429 + 16.0635i 0.452001 + 0.782889i 0.998510 0.0545639i \(-0.0173769\pi\)
−0.546509 + 0.837453i \(0.684044\pi\)
\(422\) 1.33328 + 2.30931i 0.0649031 + 0.112415i
\(423\) −12.7804 + 15.6161i −0.621403 + 0.759280i
\(424\) −0.160538 −0.00779640
\(425\) −2.35426 + 4.07769i −0.114198 + 0.197797i
\(426\) 3.96865 48.8074i 0.192282 2.36473i
\(427\) −10.7140 18.5571i −0.518485 0.898042i
\(428\) −0.303929 + 0.526420i −0.0146910 + 0.0254455i
\(429\) −1.26470 28.9153i −0.0610602 1.39604i
\(430\) 11.3068 + 19.5839i 0.545262 + 0.944421i
\(431\) −9.27867 + 16.0711i −0.446938 + 0.774119i −0.998185 0.0602229i \(-0.980819\pi\)
0.551247 + 0.834342i \(0.314152\pi\)
\(432\) −4.92860 + 19.8474i −0.237128 + 0.954907i
\(433\) −11.2967 19.5665i −0.542886 0.940305i −0.998737 0.0502494i \(-0.983998\pi\)
0.455851 0.890056i \(-0.349335\pi\)
\(434\) −1.68537 2.91915i −0.0809004 0.140124i
\(435\) −7.38723 + 3.50003i −0.354191 + 0.167814i
\(436\) 1.43889 0.0689101
\(437\) 7.10354 12.3037i 0.339808 0.588565i
\(438\) −32.0713 22.1647i −1.53243 1.05907i
\(439\) −31.8232 −1.51884 −0.759419 0.650602i \(-0.774516\pi\)
−0.759419 + 0.650602i \(0.774516\pi\)
\(440\) 0.404869 0.701254i 0.0193014 0.0334310i
\(441\) −3.78280 + 4.62213i −0.180133 + 0.220101i
\(442\) −5.20327 + 12.3497i −0.247494 + 0.587418i
\(443\) −5.66525 9.81251i −0.269164 0.466206i 0.699482 0.714650i \(-0.253414\pi\)
−0.968646 + 0.248444i \(0.920081\pi\)
\(444\) −11.6297 + 5.51011i −0.551923 + 0.261498i
\(445\) −8.17666 14.1624i −0.387611 0.671362i
\(446\) −14.2630 −0.675370
\(447\) −15.4092 10.6494i −0.728828 0.503699i
\(448\) −9.23373 + 15.9933i −0.436253 + 0.755612i
\(449\) −11.0274 19.1000i −0.520416 0.901387i −0.999718 0.0237368i \(-0.992444\pi\)
0.479302 0.877650i \(-0.340890\pi\)
\(450\) −9.70424 + 11.8574i −0.457462 + 0.558964i
\(451\) 8.53914 + 14.7902i 0.402092 + 0.696444i
\(452\) −17.7731 −0.835976
\(453\) −1.81131 + 22.2759i −0.0851029 + 1.04661i
\(454\) −9.84081 + 17.0448i −0.461852 + 0.799952i
\(455\) −8.60551 + 20.4248i −0.403433 + 0.957531i
\(456\) −0.0669087 + 0.822859i −0.00313329 + 0.0385339i
\(457\) 35.5514 1.66302 0.831511 0.555508i \(-0.187476\pi\)
0.831511 + 0.555508i \(0.187476\pi\)
\(458\) −0.283816 + 0.491585i −0.0132619 + 0.0229702i
\(459\) −9.24341 + 2.65995i −0.431446 + 0.124156i
\(460\) 10.5803 0.493309
\(461\) −15.8589 + 27.4684i −0.738623 + 1.27933i 0.214493 + 0.976726i \(0.431190\pi\)
−0.953116 + 0.302607i \(0.902143\pi\)
\(462\) 32.6000 15.4457i 1.51669 0.718599i
\(463\) 16.2472 28.1409i 0.755070 1.30782i −0.190270 0.981732i \(-0.560936\pi\)
0.945340 0.326087i \(-0.105730\pi\)
\(464\) 6.76272 0.313951
\(465\) −0.289188 + 3.55651i −0.0134108 + 0.164929i
\(466\) 50.1716 2.32416
\(467\) −12.2005 −0.564570 −0.282285 0.959331i \(-0.591092\pi\)
−0.282285 + 0.959331i \(0.591092\pi\)
\(468\) −11.6924 + 18.6073i −0.540480 + 0.860124i
\(469\) −27.4328 −1.26673
\(470\) 37.0951 1.71107
\(471\) 13.2324 6.26944i 0.609716 0.288881i
\(472\) −0.626680 −0.0288453
\(473\) −9.50202 + 16.4580i −0.436903 + 0.756739i
\(474\) 0.424876 5.22522i 0.0195152 0.240002i
\(475\) 9.52971 16.5060i 0.437253 0.757345i
\(476\) −8.41708 −0.385796
\(477\) 2.67651 + 7.08215i 0.122549 + 0.324269i
\(478\) −7.74143 + 13.4086i −0.354085 + 0.613293i
\(479\) −29.8958 −1.36597 −0.682987 0.730431i \(-0.739319\pi\)
−0.682987 + 0.730431i \(0.739319\pi\)
\(480\) 34.5199 16.3554i 1.57561 0.746516i
\(481\) 13.0830 1.64188i 0.596535 0.0748632i
\(482\) −30.2949 + 52.4723i −1.37989 + 2.39005i
\(483\) 6.04657 + 4.17883i 0.275129 + 0.190143i
\(484\) 21.2907 0.967758
\(485\) −8.42880 14.5991i −0.382732 0.662911i
\(486\) −31.0827 + 3.68264i −1.40994 + 0.167048i
\(487\) −4.97497 8.61690i −0.225437 0.390469i 0.731013 0.682363i \(-0.239048\pi\)
−0.956451 + 0.291894i \(0.905714\pi\)
\(488\) −0.304519 + 0.527442i −0.0137849 + 0.0238762i
\(489\) 3.37578 41.5161i 0.152658 1.87742i
\(490\) 10.9796 0.496008
\(491\) −1.87632 3.24988i −0.0846771 0.146665i 0.820576 0.571537i \(-0.193653\pi\)
−0.905254 + 0.424872i \(0.860319\pi\)
\(492\) 1.05094 12.9247i 0.0473798 0.582688i
\(493\) 1.59039 + 2.75463i 0.0716275 + 0.124062i
\(494\) 21.0621 49.9901i 0.947630 2.24916i
\(495\) −37.6860 6.16947i −1.69386 0.277297i
\(496\) 1.47601 2.55652i 0.0662746 0.114791i
\(497\) −31.5132 −1.41356
\(498\) −3.71386 + 45.6739i −0.166422 + 2.04670i
\(499\) 14.0065 24.2599i 0.627015 1.08602i −0.361132 0.932515i \(-0.617610\pi\)
0.988147 0.153507i \(-0.0490569\pi\)
\(500\) −13.7068 −0.612987
\(501\) −1.33534 + 16.4224i −0.0596588 + 0.733698i
\(502\) 3.89549 + 6.74718i 0.173864 + 0.301141i
\(503\) −7.62622 13.2090i −0.340037 0.588961i 0.644403 0.764686i \(-0.277106\pi\)
−0.984439 + 0.175726i \(0.943773\pi\)
\(504\) −0.421503 0.0690032i −0.0187752 0.00307364i
\(505\) 12.9537 22.4364i 0.576430 0.998406i
\(506\) 8.82218 + 15.2805i 0.392194 + 0.679299i
\(507\) 17.3350 14.3700i 0.769874 0.638196i
\(508\) 18.3185 31.7285i 0.812750 1.40772i
\(509\) 6.90107 + 11.9530i 0.305885 + 0.529808i 0.977458 0.211130i \(-0.0677145\pi\)
−0.671573 + 0.740938i \(0.734381\pi\)
\(510\) 14.5458 + 10.0527i 0.644100 + 0.445142i
\(511\) −12.5443 + 21.7273i −0.554926 + 0.961159i
\(512\) −32.1023 −1.41873
\(513\) 37.4161 10.7671i 1.65196 0.475380i
\(514\) −7.70943 13.3531i −0.340048 0.588981i
\(515\) 3.65121 + 6.32408i 0.160891 + 0.278672i
\(516\) 13.0399 6.17826i 0.574051 0.271983i
\(517\) 15.5870 + 26.9975i 0.685517 + 1.18735i
\(518\) 8.21717 + 14.2326i 0.361042 + 0.625342i
\(519\) −17.9514 + 8.50529i −0.787980 + 0.373341i
\(520\) 0.625047 0.0784413i 0.0274101 0.00343988i
\(521\) 19.0802 0.835917 0.417959 0.908466i \(-0.362746\pi\)
0.417959 + 0.908466i \(0.362746\pi\)
\(522\) 3.65918 + 9.68235i 0.160158 + 0.423785i
\(523\) −4.58164 + 7.93564i −0.200341 + 0.347001i −0.948638 0.316362i \(-0.897538\pi\)
0.748297 + 0.663364i \(0.230872\pi\)
\(524\) 10.7766 18.6657i 0.470780 0.815414i
\(525\) 8.11175 + 5.60609i 0.354026 + 0.244670i
\(526\) 20.0061 0.872307
\(527\) 1.38845 0.0604818
\(528\) 25.9898 + 17.9617i 1.13106 + 0.781685i
\(529\) 9.70248 16.8052i 0.421847 0.730660i
\(530\) 6.95885 12.0531i 0.302273 0.523553i
\(531\) 10.4481 + 27.6461i 0.453408 + 1.19974i
\(532\) 34.0712 1.47717
\(533\) −5.15870 + 12.2440i −0.223448 + 0.530345i
\(534\) −18.7130 + 8.86611i −0.809789 + 0.383674i
\(535\) −0.410873 0.711653i −0.0177636 0.0307674i
\(536\) 0.389857 + 0.675251i 0.0168392 + 0.0291664i
\(537\) −16.4727 + 7.80467i −0.710848 + 0.336796i
\(538\) 4.91254 + 8.50877i 0.211795 + 0.366839i
\(539\) 4.61353 + 7.99086i 0.198719 + 0.344191i
\(540\) 20.8765 + 20.1222i 0.898382 + 0.865920i
\(541\) 3.43119 0.147518 0.0737592 0.997276i \(-0.476500\pi\)
0.0737592 + 0.997276i \(0.476500\pi\)
\(542\) −5.31957 + 9.21376i −0.228495 + 0.395765i
\(543\) −15.7492 10.8844i −0.675865 0.467095i
\(544\) −7.43174 12.8722i −0.318633 0.551889i
\(545\) −0.972594 + 1.68458i −0.0416613 + 0.0721595i
\(546\) 24.8944 + 12.9567i 1.06538 + 0.554498i
\(547\) 3.91240 + 6.77648i 0.167282 + 0.289741i 0.937463 0.348084i \(-0.113168\pi\)
−0.770181 + 0.637825i \(0.779834\pi\)
\(548\) −6.04165 + 10.4644i −0.258086 + 0.447019i
\(549\) 28.3452 + 4.64031i 1.20974 + 0.198044i
\(550\) 11.8353 + 20.4994i 0.504661 + 0.874098i
\(551\) −6.43767 11.1504i −0.274254 0.475022i
\(552\) 0.0169310 0.208221i 0.000720631 0.00886248i
\(553\) −3.37374 −0.143466
\(554\) 2.68772 4.65526i 0.114190 0.197783i
\(555\) 1.40996 17.3400i 0.0598496 0.736044i
\(556\) −27.9917 −1.18711
\(557\) 2.92973 5.07443i 0.124136 0.215011i −0.797259 0.603638i \(-0.793717\pi\)
0.921395 + 0.388627i \(0.127051\pi\)
\(558\) 4.45887 + 0.729949i 0.188759 + 0.0309012i
\(559\) −14.6694 + 1.84097i −0.620452 + 0.0778647i
\(560\) −12.0964 20.9515i −0.511165 0.885363i
\(561\) −1.20427 + 14.8104i −0.0508443 + 0.625296i
\(562\) 2.23513 + 3.87136i 0.0942833 + 0.163304i
\(563\) −31.7218 −1.33692 −0.668458 0.743750i \(-0.733045\pi\)
−0.668458 + 0.743750i \(0.733045\pi\)
\(564\) 1.91834 23.5922i 0.0807766 0.993410i
\(565\) 12.0135 20.8079i 0.505410 0.875396i
\(566\) −2.57762 4.46457i −0.108345 0.187660i
\(567\) 3.98327 + 19.7451i 0.167282 + 0.829217i
\(568\) 0.447843 + 0.775688i 0.0187911 + 0.0325471i
\(569\) 7.47156 0.313224 0.156612 0.987660i \(-0.449943\pi\)
0.156612 + 0.987660i \(0.449943\pi\)
\(570\) −58.8795 40.6921i −2.46619 1.70440i
\(571\) −7.92734 + 13.7306i −0.331749 + 0.574606i −0.982855 0.184381i \(-0.940972\pi\)
0.651106 + 0.758987i \(0.274305\pi\)
\(572\) 20.5039 + 27.0589i 0.857310 + 1.13139i
\(573\) −30.8914 + 14.6362i −1.29050 + 0.611435i
\(574\) −16.5598 −0.691194
\(575\) −2.41146 + 4.17677i −0.100565 + 0.174183i
\(576\) −8.75110 23.1558i −0.364629 0.964824i
\(577\) 41.9148 1.74494 0.872468 0.488671i \(-0.162518\pi\)
0.872468 + 0.488671i \(0.162518\pi\)
\(578\) −13.6271 + 23.6029i −0.566814 + 0.981750i
\(579\) −1.50694 + 18.5326i −0.0626261 + 0.770191i
\(580\) 4.79427 8.30392i 0.199071 0.344802i
\(581\) 29.4900 1.22345
\(582\) −19.2900 + 9.13951i −0.799597 + 0.378845i
\(583\) 11.6962 0.484407
\(584\) 0.713081 0.0295075
\(585\) −13.8813 26.2663i −0.573922 1.08598i
\(586\) 2.81231 0.116175
\(587\) −30.2480 −1.24847 −0.624234 0.781238i \(-0.714589\pi\)
−0.624234 + 0.781238i \(0.714589\pi\)
\(588\) 0.567800 6.98293i 0.0234157 0.287971i
\(589\) −5.62025 −0.231578
\(590\) 27.1648 47.0508i 1.11836 1.93705i
\(591\) 30.9547 14.6662i 1.27331 0.603286i
\(592\) −7.19639 + 12.4645i −0.295770 + 0.512288i
\(593\) 24.2910 0.997513 0.498757 0.866742i \(-0.333790\pi\)
0.498757 + 0.866742i \(0.333790\pi\)
\(594\) −11.6537 + 46.9290i −0.478156 + 1.92552i
\(595\) 5.68940 9.85433i 0.233243 0.403988i
\(596\) 21.9713 0.899981
\(597\) −1.28036 + 15.7462i −0.0524017 + 0.644449i
\(598\) −5.32969 + 12.6498i −0.217947 + 0.517289i
\(599\) −7.73002 + 13.3888i −0.315840 + 0.547051i −0.979616 0.200881i \(-0.935620\pi\)
0.663776 + 0.747932i \(0.268953\pi\)
\(600\) 0.0227137 0.279338i 0.000927282 0.0114039i
\(601\) −17.6849 −0.721381 −0.360690 0.932686i \(-0.617459\pi\)
−0.360690 + 0.932686i \(0.617459\pi\)
\(602\) −9.21357 15.9584i −0.375517 0.650414i
\(603\) 23.2891 28.4565i 0.948405 1.15884i
\(604\) −13.1079 22.7035i −0.533351 0.923792i
\(605\) −14.3911 + 24.9262i −0.585083 + 1.01339i
\(606\) −26.9869 18.6508i −1.09627 0.757638i
\(607\) −14.6193 −0.593378 −0.296689 0.954974i \(-0.595882\pi\)
−0.296689 + 0.954974i \(0.595882\pi\)
\(608\) 30.0827 + 52.1047i 1.22001 + 2.11313i
\(609\) 6.01963 2.85207i 0.243928 0.115572i
\(610\) −26.4000 45.7262i −1.06891 1.85140i
\(611\) −9.41650 + 22.3497i −0.380951 + 0.904171i
\(612\) 7.14567 8.73115i 0.288847 0.352936i
\(613\) −18.1516 + 31.4395i −0.733135 + 1.26983i 0.222401 + 0.974955i \(0.428610\pi\)
−0.955537 + 0.294872i \(0.904723\pi\)
\(614\) 36.6913 1.48074
\(615\) 14.4212 + 9.96662i 0.581520 + 0.401893i
\(616\) −0.329916 + 0.571431i −0.0132927 + 0.0230236i
\(617\) −21.9483 −0.883606 −0.441803 0.897112i \(-0.645661\pi\)
−0.441803 + 0.897112i \(0.645661\pi\)
\(618\) 8.35610 3.95908i 0.336132 0.159257i
\(619\) 6.99888 + 12.1224i 0.281309 + 0.487241i 0.971707 0.236188i \(-0.0758982\pi\)
−0.690399 + 0.723429i \(0.742565\pi\)
\(620\) −2.09276 3.62477i −0.0840473 0.145574i
\(621\) −9.46799 + 2.72458i −0.379937 + 0.109334i
\(622\) 6.31717 10.9417i 0.253296 0.438721i
\(623\) 6.66292 + 11.5405i 0.266944 + 0.462361i
\(624\) 1.07397 + 24.5546i 0.0429931 + 0.982969i
\(625\) 15.6240 27.0616i 0.624962 1.08247i
\(626\) −21.1937 36.7086i −0.847071 1.46717i
\(627\) 4.87472 59.9505i 0.194678 2.39419i
\(628\) −8.58775 + 14.8744i −0.342688 + 0.593554i
\(629\) −6.76950 −0.269918
\(630\) 23.4517 28.6551i 0.934337 1.14165i
\(631\) −16.6485 28.8360i −0.662765 1.14794i −0.979886 0.199557i \(-0.936050\pi\)
0.317121 0.948385i \(-0.397284\pi\)
\(632\) 0.0479452 + 0.0830435i 0.00190716 + 0.00330329i
\(633\) −0.186421 + 2.29265i −0.00740958 + 0.0911247i
\(634\) 9.55171 + 16.5440i 0.379347 + 0.657048i
\(635\) 24.7642 + 42.8928i 0.982737 + 1.70215i
\(636\) −7.30579 5.04909i −0.289693 0.200209i
\(637\) −2.78714 + 6.61517i −0.110431 + 0.262103i
\(638\) 15.9904 0.633067
\(639\) 26.7531 32.6891i 1.05834 1.29316i
\(640\) −0.698778 + 1.21032i −0.0276216 + 0.0478421i
\(641\) −0.998924 + 1.73019i −0.0394551 + 0.0683383i −0.885079 0.465442i \(-0.845896\pi\)
0.845624 + 0.533780i \(0.179229\pi\)
\(642\) −0.940317 + 0.445517i −0.0371113 + 0.0175832i
\(643\) 18.4129 0.726135 0.363067 0.931763i \(-0.381729\pi\)
0.363067 + 0.931763i \(0.381729\pi\)
\(644\) −8.62158 −0.339738
\(645\) −1.58093 + 19.4427i −0.0622491 + 0.765554i
\(646\) −13.9249 + 24.1186i −0.547868 + 0.948935i
\(647\) 20.0900 34.7969i 0.789820 1.36801i −0.136257 0.990674i \(-0.543507\pi\)
0.926077 0.377335i \(-0.123159\pi\)
\(648\) 0.429413 0.378651i 0.0168689 0.0148748i
\(649\) 45.6576 1.79222
\(650\) −7.15002 + 16.9703i −0.280447 + 0.665629i
\(651\) 0.235651 2.89809i 0.00923589 0.113585i
\(652\) 24.4294 + 42.3129i 0.956729 + 1.65710i
\(653\) −16.0654 27.8261i −0.628689 1.08892i −0.987815 0.155632i \(-0.950259\pi\)
0.359127 0.933289i \(-0.383075\pi\)
\(654\) 2.02624 + 1.40035i 0.0792324 + 0.0547581i
\(655\) 14.5686 + 25.2336i 0.569243 + 0.985958i
\(656\) −7.25134 12.5597i −0.283117 0.490374i
\(657\) −11.8886 31.4577i −0.463818 1.22728i
\(658\) −30.2277 −1.17840
\(659\) 7.67662 13.2963i 0.299039 0.517950i −0.676878 0.736096i \(-0.736667\pi\)
0.975916 + 0.218145i \(0.0700007\pi\)
\(660\) 40.4801 19.1793i 1.57568 0.746552i
\(661\) 9.62715 + 16.6747i 0.374453 + 0.648571i 0.990245 0.139337i \(-0.0444972\pi\)
−0.615792 + 0.787909i \(0.711164\pi\)
\(662\) 6.28435 10.8848i 0.244248 0.423050i
\(663\) −9.74915 + 6.21195i −0.378626 + 0.241252i
\(664\) −0.419091 0.725887i −0.0162639 0.0281699i
\(665\) −23.0299 + 39.8890i −0.893062 + 1.54683i
\(666\) −21.7396 3.55893i −0.842392 0.137906i
\(667\) 1.62903 + 2.82156i 0.0630762 + 0.109251i
\(668\) −9.66345 16.7376i −0.373890 0.647596i
\(669\) −10.1215 6.99503i −0.391319 0.270444i
\(670\) −67.5967 −2.61149
\(671\) 22.1861 38.4275i 0.856486 1.48348i
\(672\) −28.1292 + 13.3275i −1.08511 + 0.514119i
\(673\) 17.6532 0.680483 0.340241 0.940338i \(-0.389491\pi\)
0.340241 + 0.940338i \(0.389491\pi\)
\(674\) −6.20870 + 10.7538i −0.239150 + 0.414220i
\(675\) −12.7017 + 3.65515i −0.488890 + 0.140687i
\(676\) −7.14436 + 25.4272i −0.274783 + 0.977970i
\(677\) −0.157510 0.272815i −0.00605359 0.0104851i 0.862983 0.505233i \(-0.168594\pi\)
−0.869036 + 0.494748i \(0.835260\pi\)
\(678\) −25.0281 17.2971i −0.961199 0.664292i
\(679\) 6.86838 + 11.8964i 0.263584 + 0.456541i
\(680\) −0.323415 −0.0124024
\(681\) −15.3427 + 7.26931i −0.587934 + 0.278560i
\(682\) 3.49001 6.04488i 0.133639 0.231470i
\(683\) 22.2504 + 38.5388i 0.851388 + 1.47465i 0.879956 + 0.475056i \(0.157572\pi\)
−0.0285673 + 0.999592i \(0.509094\pi\)
\(684\) −28.9247 + 35.3425i −1.10596 + 1.35136i
\(685\) −8.16753 14.1466i −0.312065 0.540513i
\(686\) −40.4042 −1.54264
\(687\) −0.442496 + 0.209652i −0.0168823 + 0.00799873i
\(688\) 8.06901 13.9759i 0.307628 0.532827i
\(689\) 5.49545 + 7.25233i 0.209360 + 0.276292i
\(690\) 14.8992 + 10.2970i 0.567204 + 0.391999i
\(691\) −1.68374 −0.0640526 −0.0320263 0.999487i \(-0.510196\pi\)
−0.0320263 + 0.999487i \(0.510196\pi\)
\(692\) 11.6504 20.1790i 0.442881 0.767092i
\(693\) 30.7092 + 5.02732i 1.16654 + 0.190972i
\(694\) −14.8265 −0.562805
\(695\) 18.9206 32.7714i 0.717698 1.24309i
\(696\) −0.155750 0.107640i −0.00590368 0.00408008i
\(697\) 3.41060 5.90733i 0.129186 0.223756i
\(698\) 60.4808 2.28923
\(699\) 35.6035 + 24.6059i 1.34665 + 0.930679i
\(700\) −11.5662 −0.437163
\(701\) 42.4593 1.60367 0.801833 0.597548i \(-0.203858\pi\)
0.801833 + 0.597548i \(0.203858\pi\)
\(702\) −34.5743 + 14.8236i −1.30492 + 0.559482i
\(703\) 27.4020 1.03349
\(704\) −38.2418 −1.44129
\(705\) 26.3240 + 18.1927i 0.991418 + 0.685177i
\(706\) −63.1255 −2.37576
\(707\) −10.5556 + 18.2828i −0.396982 + 0.687594i
\(708\) −28.5191 19.7098i −1.07181 0.740738i
\(709\) 11.2892 19.5535i 0.423975 0.734346i −0.572349 0.820010i \(-0.693968\pi\)
0.996324 + 0.0856638i \(0.0273011\pi\)
\(710\) −77.6510 −2.91419
\(711\) 2.86413 3.49962i 0.107413 0.131246i
\(712\) 0.189377 0.328011i 0.00709722 0.0122927i
\(713\) 1.42218 0.0532611
\(714\) −11.8530 8.19167i −0.443586 0.306565i
\(715\) −45.5386 + 5.71495i −1.70305 + 0.213727i
\(716\) 10.6907 18.5168i 0.399529 0.692005i
\(717\) −12.0696 + 5.71852i −0.450747 + 0.213562i
\(718\) −0.451599 −0.0168535
\(719\) 26.4085 + 45.7408i 0.984870 + 1.70584i 0.642514 + 0.766274i \(0.277891\pi\)
0.342355 + 0.939571i \(0.388775\pi\)
\(720\) 32.0025 + 5.23904i 1.19266 + 0.195248i
\(721\) −2.97526 5.15330i −0.110805 0.191919i
\(722\) 37.2910 64.5900i 1.38783 2.40379i
\(723\) −47.2325 + 22.3785i −1.75659 + 0.832266i
\(724\) 22.4563 0.834580
\(725\) 2.18541 + 3.78525i 0.0811642 + 0.140581i
\(726\) 29.9816 + 20.7205i 1.11272 + 0.769010i
\(727\) −11.2248 19.4420i −0.416306 0.721063i 0.579258 0.815144i \(-0.303342\pi\)
−0.995565 + 0.0940806i \(0.970009\pi\)
\(728\) −0.509332 + 0.0639195i −0.0188771 + 0.00236901i
\(729\) −23.8635 12.6307i −0.883832 0.467804i
\(730\) −30.9101 + 53.5378i −1.14403 + 1.98152i
\(731\) 7.59035 0.280739
\(732\) −30.4467 + 14.4255i −1.12534 + 0.533182i
\(733\) −13.3860 + 23.1852i −0.494423 + 0.856366i −0.999979 0.00642752i \(-0.997954\pi\)
0.505556 + 0.862794i \(0.331287\pi\)
\(734\) 42.3609 1.56357
\(735\) 7.79150 + 5.38476i 0.287394 + 0.198620i
\(736\) −7.61230 13.1849i −0.280593 0.486002i
\(737\) −28.4035 49.1963i −1.04626 1.81217i
\(738\) 14.0585 17.1777i 0.517499 0.632322i
\(739\) 2.79957 4.84900i 0.102984 0.178373i −0.809929 0.586528i \(-0.800494\pi\)
0.912913 + 0.408155i \(0.133828\pi\)
\(740\) 10.2034 + 17.6729i 0.375086 + 0.649667i
\(741\) 39.4632 25.1451i 1.44972 0.923729i
\(742\) −5.67056 + 9.82170i −0.208173 + 0.360566i
\(743\) −15.4393 26.7416i −0.566412 0.981054i −0.996917 0.0784655i \(-0.974998\pi\)
0.430505 0.902588i \(-0.358335\pi\)
\(744\) −0.0746846 + 0.0353852i −0.00273807 + 0.00129728i
\(745\) −14.8512 + 25.7231i −0.544106 + 0.942420i
\(746\) 26.3357 0.964218
\(747\) −25.0355 + 30.5904i −0.916001 + 1.11924i
\(748\) −8.71491 15.0947i −0.318649 0.551915i
\(749\) 0.334808 + 0.579904i 0.0122336 + 0.0211892i
\(750\) −19.3020 13.3397i −0.704809 0.487099i
\(751\) 5.47437 + 9.48189i 0.199763 + 0.345999i 0.948451 0.316923i \(-0.102650\pi\)
−0.748689 + 0.662922i \(0.769316\pi\)
\(752\) −13.2363 22.9260i −0.482679 0.836025i
\(753\) −0.544673 + 6.69851i −0.0198490 + 0.244107i
\(754\) 7.51310 + 9.91501i 0.273611 + 0.361083i
\(755\) 35.4403 1.28980
\(756\) −17.0116 16.3969i −0.618708 0.596351i
\(757\) 5.98592 10.3679i 0.217562 0.376828i −0.736500 0.676437i \(-0.763523\pi\)
0.954062 + 0.299609i \(0.0968563\pi\)
\(758\) −2.25283 + 3.90201i −0.0818264 + 0.141727i
\(759\) −1.23353 + 15.1702i −0.0447743 + 0.550645i
\(760\) 1.30914 0.0474875
\(761\) −40.3848 −1.46395 −0.731973 0.681334i \(-0.761400\pi\)
−0.731973 + 0.681334i \(0.761400\pi\)
\(762\) 56.6749 26.8523i 2.05312 0.972756i
\(763\) 0.792538 1.37272i 0.0286918 0.0496956i
\(764\) 20.0483 34.7247i 0.725323 1.25630i
\(765\) 5.39203 + 14.2675i 0.194949 + 0.515843i
\(766\) 26.6281 0.962113
\(767\) 21.4522 + 28.3104i 0.774595 + 1.02223i
\(768\) −22.0587 15.2449i −0.795976 0.550105i
\(769\) −0.835182 1.44658i −0.0301174 0.0521649i 0.850574 0.525856i \(-0.176255\pi\)
−0.880691 + 0.473691i \(0.842921\pi\)
\(770\) −28.6018 49.5398i −1.03074 1.78529i
\(771\) 1.07794 13.2568i 0.0388212 0.477432i
\(772\) −10.9052 18.8883i −0.392486 0.679807i
\(773\) −7.19915 12.4693i −0.258935 0.448489i 0.707022 0.707192i \(-0.250038\pi\)
−0.965957 + 0.258703i \(0.916705\pi\)
\(774\) 24.3757 + 3.99048i 0.876166 + 0.143435i
\(775\) 1.90792 0.0685346
\(776\) 0.195217 0.338126i 0.00700789 0.0121380i
\(777\) −1.14894 + 14.1299i −0.0412179 + 0.506907i
\(778\) 2.77945 + 4.81415i 0.0996482 + 0.172596i
\(779\) −13.8056 + 23.9121i −0.494638 + 0.856738i
\(780\) 30.9118 + 16.0887i 1.10682 + 0.576067i
\(781\) −32.6282 56.5137i −1.16753 2.02222i
\(782\) 3.52364 6.10313i 0.126005 0.218247i
\(783\) −2.15187 + 8.66552i −0.0769015 + 0.309680i
\(784\) −3.91776 6.78575i −0.139920 0.242348i
\(785\) −11.6095 20.1083i −0.414362 0.717696i
\(786\) 33.3415 15.7970i 1.18925 0.563462i
\(787\) 44.2561 1.57756 0.788780 0.614676i \(-0.210713\pi\)
0.788780 + 0.614676i \(0.210713\pi\)
\(788\) −20.0894 + 34.7959i −0.715656 + 1.23955i
\(789\) 14.1970 + 9.81166i 0.505427 + 0.349304i
\(790\) −8.31315 −0.295769
\(791\) −9.78941 + 16.9558i −0.348071 + 0.602877i
\(792\) −0.312671 0.827342i −0.0111103 0.0293983i
\(793\) 34.2515 4.29845i 1.21631 0.152642i
\(794\) −3.34534 5.79431i −0.118722 0.205632i
\(795\) 10.8495 5.14043i 0.384791 0.182312i
\(796\) −9.26556 16.0484i −0.328409 0.568821i
\(797\) 36.1661 1.28107 0.640534 0.767930i \(-0.278713\pi\)
0.640534 + 0.767930i \(0.278713\pi\)
\(798\) 47.9792 + 33.1588i 1.69844 + 1.17381i
\(799\) 6.22558 10.7830i 0.220245 0.381476i
\(800\) −10.2122 17.6881i −0.361058 0.625370i
\(801\) −17.6276 2.88577i −0.622841 0.101964i
\(802\) −12.5977 21.8198i −0.444840 0.770485i
\(803\) −51.9525 −1.83336
\(804\) −3.49570 + 42.9909i −0.123284 + 1.51617i
\(805\) 5.82763 10.0938i 0.205397 0.355758i
\(806\) 5.38796 0.676172i 0.189783 0.0238171i
\(807\) −0.686879 + 8.44739i −0.0241793 + 0.297362i
\(808\) 0.600033 0.0211091
\(809\) 3.76809 6.52653i 0.132479 0.229460i −0.792153 0.610323i \(-0.791040\pi\)
0.924632 + 0.380863i \(0.124373\pi\)
\(810\) 9.81509 + 48.6535i 0.344867 + 1.70951i
\(811\) −13.1953 −0.463350 −0.231675 0.972793i \(-0.574421\pi\)
−0.231675 + 0.972793i \(0.574421\pi\)
\(812\) −3.90671 + 6.76662i −0.137099 + 0.237462i
\(813\) −8.29369 + 3.92951i −0.290872 + 0.137814i
\(814\) −17.0158 + 29.4723i −0.596405 + 1.03300i
\(815\) −66.0508 −2.31366
\(816\) 1.02265 12.5768i 0.0358000 0.440277i
\(817\) −30.7247 −1.07492
\(818\) −6.51508 −0.227794
\(819\) 11.3115 + 21.4036i 0.395255 + 0.747902i
\(820\) −20.5627 −0.718080
\(821\) −5.52953 −0.192982 −0.0964910 0.995334i \(-0.530762\pi\)
−0.0964910 + 0.995334i \(0.530762\pi\)
\(822\) −18.6921 + 8.85621i −0.651961 + 0.308896i
\(823\) 19.4612 0.678374 0.339187 0.940719i \(-0.389848\pi\)
0.339187 + 0.940719i \(0.389848\pi\)
\(824\) −0.0845647 + 0.146470i −0.00294595 + 0.00510254i
\(825\) −1.65484 + 20.3515i −0.0576140 + 0.708550i
\(826\) −22.1358 + 38.3403i −0.770202 + 1.33403i
\(827\) 34.5038 1.19981 0.599907 0.800070i \(-0.295204\pi\)
0.599907 + 0.800070i \(0.295204\pi\)
\(828\) 7.31928 8.94329i 0.254363 0.310801i
\(829\) −23.1955 + 40.1757i −0.805612 + 1.39536i 0.110265 + 0.993902i \(0.464830\pi\)
−0.915877 + 0.401459i \(0.868503\pi\)
\(830\) 72.6656 2.52226
\(831\) 4.19040 1.98539i 0.145363 0.0688724i
\(832\) −17.9679 23.7122i −0.622926 0.822073i
\(833\) 1.84268 3.19161i 0.0638450 0.110583i
\(834\) −39.4180 27.2420i −1.36493 0.943315i
\(835\) 26.1275 0.904178
\(836\) 35.2768 + 61.1011i 1.22007 + 2.11323i
\(837\) 2.80617 + 2.70478i 0.0969956 + 0.0934907i
\(838\) 0.226661 + 0.392589i 0.00782989 + 0.0135618i
\(839\) 17.2455 29.8700i 0.595380 1.03123i −0.398113 0.917336i \(-0.630335\pi\)
0.993493 0.113892i \(-0.0363317\pi\)
\(840\) −0.0548909 + 0.675061i −0.00189391 + 0.0232918i
\(841\) −26.0473 −0.898184
\(842\) −18.6219 32.2541i −0.641753 1.11155i
\(843\) −0.312519 + 3.84344i −0.0107637 + 0.132375i
\(844\) −1.34907 2.33666i −0.0464369 0.0804310i
\(845\) −24.9399 25.5515i −0.857959 0.878997i
\(846\) 25.6618 31.3556i 0.882270 1.07803i
\(847\) 11.7269 20.3116i 0.402941 0.697914i
\(848\) −9.93227 −0.341076
\(849\) 0.360407 4.43236i 0.0123691 0.152118i
\(850\) 4.72712 8.18762i 0.162139 0.280833i
\(851\) −6.93397 −0.237693
\(852\) −4.01565 + 49.3854i −0.137574 + 1.69191i
\(853\) −17.5778 30.4457i −0.601854 1.04244i −0.992540 0.121918i \(-0.961096\pi\)
0.390686 0.920524i \(-0.372238\pi\)
\(854\) 21.5126 + 37.2609i 0.736146 + 1.27504i
\(855\) −21.8262 57.7530i −0.746440 1.97511i
\(856\) 0.00951612 0.0164824i 0.000325254 0.000563357i
\(857\) −9.80605 16.9846i −0.334968 0.580182i 0.648510 0.761206i \(-0.275392\pi\)
−0.983479 + 0.181024i \(0.942059\pi\)
\(858\) 2.53939 + 58.0592i 0.0866934 + 1.98211i
\(859\) −9.49035 + 16.4378i −0.323807 + 0.560849i −0.981270 0.192637i \(-0.938296\pi\)
0.657464 + 0.753486i \(0.271629\pi\)
\(860\) −11.4407 19.8158i −0.390124 0.675714i
\(861\) −11.7514 8.12150i −0.400488 0.276780i
\(862\) 18.6307 32.2693i 0.634564 1.09910i
\(863\) −27.8697 −0.948694 −0.474347 0.880338i \(-0.657316\pi\)
−0.474347 + 0.880338i \(0.657316\pi\)
\(864\) 10.0555 40.4932i 0.342095 1.37761i
\(865\) 15.7498 + 27.2794i 0.535509 + 0.927529i
\(866\) 22.6827 + 39.2876i 0.770791 + 1.33505i
\(867\) −21.2459 + 10.0662i −0.721549 + 0.341867i
\(868\) 1.70533 + 2.95371i 0.0578826 + 0.100256i
\(869\) −3.49311 6.05025i −0.118496 0.205241i
\(870\) 14.8329 7.02773i 0.502881 0.238262i
\(871\) 17.1592 40.7268i 0.581419 1.37997i
\(872\) −0.0450520 −0.00152565
\(873\) −18.1712 2.97476i −0.615001 0.100680i
\(874\) −14.2632 + 24.7046i −0.482461 + 0.835647i
\(875\) −7.54971 + 13.0765i −0.255227 + 0.442066i
\(876\) 32.4511 + 22.4272i 1.09642 + 0.757745i
\(877\) 11.8206 0.399154 0.199577 0.979882i \(-0.436043\pi\)
0.199577 + 0.979882i \(0.436043\pi\)
\(878\) 63.8979 2.15645
\(879\) 1.99571 + 1.37925i 0.0673137 + 0.0465210i
\(880\) 25.0487 43.3857i 0.844393 1.46253i
\(881\) −26.5198 + 45.9336i −0.893475 + 1.54754i −0.0577934 + 0.998329i \(0.518406\pi\)
−0.835681 + 0.549215i \(0.814927\pi\)
\(882\) 7.59550 9.28079i 0.255754 0.312501i
\(883\) −16.5611 −0.557327 −0.278663 0.960389i \(-0.589891\pi\)
−0.278663 + 0.960389i \(0.589891\pi\)
\(884\) 5.26488 12.4960i 0.177077 0.420285i
\(885\) 42.3524 20.0663i 1.42366 0.674523i
\(886\) 11.3753 + 19.7026i 0.382160 + 0.661921i
\(887\) 24.3148 + 42.1145i 0.816412 + 1.41407i 0.908310 + 0.418299i \(0.137373\pi\)
−0.0918974 + 0.995768i \(0.529293\pi\)
\(888\) 0.364131 0.172523i 0.0122194 0.00578951i
\(889\) −20.1796 34.9521i −0.676802 1.17226i
\(890\) 16.4180 + 28.4367i 0.550331 + 0.953201i
\(891\) −31.2854 + 27.5871i −1.04810 + 0.924203i
\(892\) 14.4318 0.483214
\(893\) −25.2003 + 43.6482i −0.843295 + 1.46063i
\(894\) 30.9401 + 21.3830i 1.03479 + 0.715153i
\(895\) 14.4524 + 25.0323i 0.483091 + 0.836738i
\(896\) 0.569414 0.986254i 0.0190228 0.0329484i
\(897\) −9.98602 + 6.36287i −0.333423 + 0.212450i
\(898\) 22.1420 + 38.3511i 0.738888 + 1.27979i
\(899\) 0.644436 1.11620i 0.0214931 0.0372272i
\(900\) 9.81915 11.9978i 0.327305 0.399927i
\(901\) −2.33577 4.04568i −0.0778158 0.134781i
\(902\) −17.1458 29.6974i −0.570892 0.988814i
\(903\) 1.28825 15.8432i 0.0428704 0.527230i
\(904\) 0.556481 0.0185083
\(905\) −15.1790 + 26.2908i −0.504566 + 0.873934i
\(906\) 3.63694 44.7280i 0.120829 1.48599i
\(907\) 57.4045 1.90609 0.953043 0.302836i \(-0.0979333\pi\)
0.953043 + 0.302836i \(0.0979333\pi\)
\(908\) 9.95734 17.2466i 0.330446 0.572349i
\(909\) −10.0038 26.4705i −0.331806 0.877973i
\(910\) 17.2790 41.0111i 0.572795 1.35950i
\(911\) 8.77800 + 15.2039i 0.290828 + 0.503729i 0.974006 0.226523i \(-0.0727359\pi\)
−0.683178 + 0.730252i \(0.739403\pi\)
\(912\) −4.13956 + 50.9093i −0.137075 + 1.68577i
\(913\) 30.5334 + 52.8855i 1.01051 + 1.75025i
\(914\) −71.3838 −2.36116
\(915\) 3.69129 45.3964i 0.122030 1.50076i
\(916\) 0.287177 0.497406i 0.00948860 0.0164347i
\(917\) −11.8715 20.5621i −0.392033 0.679020i
\(918\) 18.5599 5.34093i 0.612568 0.176277i
\(919\) 19.6019 + 33.9515i 0.646608 + 1.11996i 0.983928 + 0.178567i \(0.0571462\pi\)
−0.337320 + 0.941390i \(0.609520\pi\)
\(920\) −0.331273 −0.0109217
\(921\) 26.0374 + 17.9946i 0.857962 + 0.592944i
\(922\) 31.8432 55.1540i 1.04870 1.81640i
\(923\) 19.7115 46.7844i 0.648812 1.53993i
\(924\) −32.9860 + 15.6286i −1.08516 + 0.514143i
\(925\) −9.30223 −0.305856
\(926\) −32.6227 + 56.5043i −1.07205 + 1.85685i
\(927\) 7.87144 + 1.28861i 0.258532 + 0.0423236i
\(928\) −13.7975 −0.452925
\(929\) 5.61374 9.72329i 0.184181 0.319011i −0.759119 0.650952i \(-0.774370\pi\)
0.943300 + 0.331941i \(0.107703\pi\)
\(930\) 0.580663 7.14112i 0.0190407 0.234167i
\(931\) −7.45891 + 12.9192i −0.244456 + 0.423410i
\(932\) −50.7657 −1.66289
\(933\) 9.84904 4.66643i 0.322443 0.152772i
\(934\) 24.4973 0.801577
\(935\) 23.5629 0.770588
\(936\) 0.366092 0.582601i 0.0119661 0.0190429i
\(937\) 4.40837 0.144015 0.0720076 0.997404i \(-0.477059\pi\)
0.0720076 + 0.997404i \(0.477059\pi\)
\(938\) 55.0825 1.79851
\(939\) 2.96334 36.4438i 0.0967048 1.18930i
\(940\) −37.5344 −1.22424
\(941\) 11.3279 19.6205i 0.369278 0.639609i −0.620175 0.784464i \(-0.712938\pi\)
0.989453 + 0.144855i \(0.0462715\pi\)
\(942\) −26.5694 + 12.5884i −0.865677 + 0.410154i
\(943\) 3.49346 6.05085i 0.113763 0.197043i
\(944\) −38.7719 −1.26192
\(945\) 30.6956 8.83319i 0.998527 0.287344i
\(946\) 19.0791 33.0461i 0.620317 1.07442i
\(947\) −3.30435 −0.107377 −0.0536884 0.998558i \(-0.517098\pi\)
−0.0536884 + 0.998558i \(0.517098\pi\)
\(948\) −0.429907 + 5.28709i −0.0139627 + 0.171717i
\(949\) −24.4099 32.2136i −0.792378 1.04570i
\(950\) −19.1348 + 33.1424i −0.620814 + 1.07528i
\(951\) −1.33553 + 16.4247i −0.0433077 + 0.532608i
\(952\) 0.263542 0.00854143
\(953\) −26.9889 46.7462i −0.874257 1.51426i −0.857552 0.514397i \(-0.828016\pi\)
−0.0167043 0.999860i \(-0.505317\pi\)
\(954\) −5.37417 14.2203i −0.173995 0.460399i
\(955\) 27.1027 + 46.9433i 0.877024 + 1.51905i
\(956\) 7.83310 13.5673i 0.253341 0.438799i
\(957\) 11.3474 + 7.84224i 0.366808 + 0.253504i
\(958\) 60.0279 1.93941
\(959\) 6.65548 + 11.5276i 0.214917 + 0.372246i
\(960\) −35.4734 + 16.8071i −1.14490 + 0.542448i
\(961\) 15.2187 + 26.3596i 0.490926 + 0.850308i
\(962\) −26.2695 + 3.29673i −0.846962 + 0.106291i
\(963\) −0.885778 0.145008i −0.0285438 0.00467283i
\(964\) 30.6536 53.0936i 0.987286 1.71003i
\(965\) 29.4848 0.949150
\(966\) −12.1409 8.39069i −0.390628 0.269966i
\(967\) 14.3777 24.9029i 0.462356 0.800824i −0.536722 0.843759i \(-0.680338\pi\)
0.999078 + 0.0429352i \(0.0136709\pi\)
\(968\) −0.666618 −0.0214259
\(969\) −21.7102 + 10.2862i −0.697432 + 0.330440i
\(970\) 16.9242 + 29.3136i 0.543404 + 0.941203i
\(971\) −10.3651 17.9530i −0.332633 0.576138i 0.650394 0.759597i \(-0.274604\pi\)
−0.983027 + 0.183459i \(0.941270\pi\)
\(972\) 31.4508 3.72625i 1.00878 0.119519i
\(973\) −15.4178 + 26.7044i −0.494272 + 0.856104i
\(974\) 9.98926 + 17.3019i 0.320077 + 0.554389i
\(975\) −13.3967 + 8.53608i −0.429037 + 0.273373i
\(976\) −18.8402 + 32.6322i −0.603060 + 1.04453i
\(977\) 5.32859 + 9.22938i 0.170477 + 0.295274i 0.938587 0.345044i \(-0.112136\pi\)
−0.768110 + 0.640318i \(0.778803\pi\)
\(978\) −6.77824 + 83.3604i −0.216744 + 2.66557i
\(979\) −13.7973 + 23.8977i −0.440965 + 0.763774i
\(980\) −11.1096 −0.354884
\(981\) 0.751113 + 1.98748i 0.0239812 + 0.0634552i
\(982\) 3.76747 + 6.52545i 0.120225 + 0.208236i
\(983\) −2.52918 4.38067i −0.0806684 0.139722i 0.822869 0.568231i \(-0.192372\pi\)
−0.903537 + 0.428510i \(0.859039\pi\)
\(984\) −0.0329051 + 0.404675i −0.00104898 + 0.0129006i
\(985\) −27.1583 47.0396i −0.865336 1.49881i
\(986\) −3.19335 5.53104i −0.101697 0.176144i
\(987\) −21.4506 14.8247i −0.682781 0.471875i
\(988\) −21.3115 + 50.5821i −0.678010 + 1.60923i
\(989\) 7.77477 0.247223
\(990\) 75.6698 + 12.3877i 2.40494 + 0.393707i
\(991\) 25.3039 43.8276i 0.803804 1.39223i −0.113292 0.993562i \(-0.536140\pi\)
0.917096 0.398667i \(-0.130527\pi\)
\(992\) −3.01139 + 5.21588i −0.0956118 + 0.165604i
\(993\) 9.79788 4.64219i 0.310926 0.147315i
\(994\) 63.2755 2.00698
\(995\) 25.0517 0.794191
\(996\) 3.75784 46.2147i 0.119072 1.46437i
\(997\) −23.5181 + 40.7345i −0.744824 + 1.29007i 0.205453 + 0.978667i \(0.434133\pi\)
−0.950277 + 0.311406i \(0.899200\pi\)
\(998\) −28.1236 + 48.7116i −0.890238 + 1.54194i
\(999\) −13.6817 13.1874i −0.432871 0.417230i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.2.h.a.22.3 yes 24
3.2 odd 2 351.2.h.a.334.10 24
9.2 odd 6 351.2.f.a.100.3 24
9.7 even 3 117.2.f.a.61.10 24
13.3 even 3 117.2.f.a.94.10 yes 24
39.29 odd 6 351.2.f.a.172.3 24
117.16 even 3 inner 117.2.h.a.16.3 yes 24
117.29 odd 6 351.2.h.a.289.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.f.a.61.10 24 9.7 even 3
117.2.f.a.94.10 yes 24 13.3 even 3
117.2.h.a.16.3 yes 24 117.16 even 3 inner
117.2.h.a.22.3 yes 24 1.1 even 1 trivial
351.2.f.a.100.3 24 9.2 odd 6
351.2.f.a.172.3 24 39.29 odd 6
351.2.h.a.289.10 24 117.29 odd 6
351.2.h.a.334.10 24 3.2 odd 2