Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.g (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 36 | 12 | 24 |
Cusp forms | 20 | 8 | 12 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.2.g.a | $2$ | $0.934$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(1\) | \(q+2\zeta_{6}q^{4}+\zeta_{6}q^{7}+(4-3\zeta_{6})q^{13}+\cdots\) |
117.2.g.b | $2$ | $0.934$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(2\) | \(-2\) | \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}+q^{5}-2\zeta_{6}q^{7}+\cdots\) |
117.2.g.c | $4$ | $0.934$ | \(\Q(\sqrt{-3}, \sqrt{17})\) | None | \(1\) | \(0\) | \(6\) | \(3\) | \(q+\beta _{1}q^{2}+(-2+\beta _{1}+2\beta _{2}+\beta _{3})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)