Properties

Label 117.2.e
Level $117$
Weight $2$
Character orbit 117.e
Rep. character $\chi_{117}(40,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $3$
Sturm bound $28$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(28\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(117, [\chi])\).

Total New Old
Modular forms 32 24 8
Cusp forms 24 24 0
Eisenstein series 8 0 8

Trace form

\( 24 q - 2 q^{2} - 4 q^{3} - 12 q^{4} - 2 q^{5} + 6 q^{6} + 12 q^{8} - 12 q^{9} - 6 q^{11} - 6 q^{12} + 14 q^{14} - 10 q^{15} - 12 q^{16} - 24 q^{17} + 22 q^{18} - 12 q^{19} + 10 q^{20} - 10 q^{21} + 6 q^{22}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.2.e.a 117.e 9.c $2$ $0.934$ \(\Q(\sqrt{-3}) \) None 117.2.e.a \(-2\) \(-3\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-2+2\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\)
117.2.e.b 117.e 9.c $10$ $0.934$ 10.0.\(\cdots\).1 None 117.2.e.b \(-2\) \(1\) \(-1\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{9}q^{2}+(\beta _{1}-\beta _{5}+\beta _{9})q^{3}+(\beta _{1}-\beta _{6}+\cdots)q^{4}+\cdots\)
117.2.e.c 117.e 9.c $12$ $0.934$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 117.2.e.c \(2\) \(-2\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{3}-\beta _{7}-\beta _{8}+\beta _{10}-\beta _{11})q^{2}+\cdots\)