Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(28\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 32 | 24 | 8 |
Cusp forms | 24 | 24 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.2.e.a | $2$ | $0.934$ | \(\Q(\sqrt{-3}) \) | None | \(-2\) | \(-3\) | \(-4\) | \(-2\) | \(q+(-2+2\zeta_{6})q^{2}+(-2+\zeta_{6})q^{3}-2\zeta_{6}q^{4}+\cdots\) |
117.2.e.b | $10$ | $0.934$ | 10.0.\(\cdots\).1 | None | \(-2\) | \(1\) | \(-1\) | \(2\) | \(q-\beta _{9}q^{2}+(\beta _{1}-\beta _{5}+\beta _{9})q^{3}+(\beta _{1}-\beta _{6}+\cdots)q^{4}+\cdots\) |
117.2.e.c | $12$ | $0.934$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(2\) | \(-2\) | \(3\) | \(0\) | \(q+(\beta _{3}-\beta _{7}-\beta _{8}+\beta _{10}-\beta _{11})q^{2}+\cdots\) |