Properties

Label 117.2.ba.a.80.2
Level $117$
Weight $2$
Character 117.80
Analytic conductor $0.934$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,2,Mod(71,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.71");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 117.ba (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.934249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 80.2
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 117.80
Dual form 117.2.ba.a.98.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.517638 - 1.93185i) q^{2} +(-1.73205 - 1.00000i) q^{4} +(-1.93185 - 1.93185i) q^{5} +(-0.500000 + 0.133975i) q^{7} +(-4.73205 + 2.73205i) q^{10} +(4.05317 + 1.08604i) q^{11} +(3.59808 - 0.232051i) q^{13} +1.03528i q^{14} +(-2.00000 - 3.46410i) q^{16} +(-3.34607 + 5.79555i) q^{17} +(1.63397 + 6.09808i) q^{19} +(1.41421 + 5.27792i) q^{20} +(4.19615 - 7.26795i) q^{22} +(-1.22474 - 2.12132i) q^{23} +2.46410i q^{25} +(1.41421 - 7.07107i) q^{26} +(1.00000 + 0.267949i) q^{28} +(-1.22474 + 0.707107i) q^{29} +(4.63397 - 4.63397i) q^{31} +(-7.72741 + 2.07055i) q^{32} +(9.46410 + 9.46410i) q^{34} +(1.22474 + 0.707107i) q^{35} +(0.830127 - 3.09808i) q^{37} +12.6264 q^{38} +(-0.378937 + 1.41421i) q^{41} +(-6.69615 - 3.86603i) q^{43} +(-5.93426 - 5.93426i) q^{44} +(-4.73205 + 1.26795i) q^{46} +(-2.31079 + 2.31079i) q^{47} +(-5.83013 + 3.36603i) q^{49} +(4.76028 + 1.27551i) q^{50} +(-6.46410 - 3.19615i) q^{52} +5.93426i q^{53} +(-5.73205 - 9.92820i) q^{55} +(0.732051 + 2.73205i) q^{58} +(0.0507680 + 0.189469i) q^{59} +(-6.59808 + 11.4282i) q^{61} +(-6.55343 - 11.3509i) q^{62} +8.00000i q^{64} +(-7.39924 - 6.50266i) q^{65} +(-7.59808 - 2.03590i) q^{67} +(11.5911 - 6.69213i) q^{68} +(2.00000 - 2.00000i) q^{70} +(15.1266 - 4.05317i) q^{71} +(2.90192 + 2.90192i) q^{73} +(-5.55532 - 3.20736i) q^{74} +(3.26795 - 12.1962i) q^{76} -2.17209 q^{77} +7.19615 q^{79} +(-2.82843 + 10.5558i) q^{80} +(2.53590 + 1.46410i) q^{82} +(-5.27792 - 5.27792i) q^{83} +(17.6603 - 4.73205i) q^{85} +(-10.9348 + 10.9348i) q^{86} +(4.38134 + 1.17398i) q^{89} +(-1.76795 + 0.598076i) q^{91} +4.89898i q^{92} +(3.26795 + 5.66025i) q^{94} +(8.62398 - 14.9372i) q^{95} +(-1.30385 - 4.86603i) q^{97} +(3.48477 + 13.0053i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} - 24 q^{10} + 8 q^{13} - 16 q^{16} + 20 q^{19} - 8 q^{22} + 8 q^{28} + 44 q^{31} + 48 q^{34} - 28 q^{37} - 12 q^{43} - 24 q^{46} - 12 q^{49} - 24 q^{52} - 32 q^{55} - 8 q^{58} - 32 q^{61}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{12}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.517638 1.93185i 0.366025 1.36603i −0.500000 0.866025i \(-0.666667\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(3\) 0 0
\(4\) −1.73205 1.00000i −0.866025 0.500000i
\(5\) −1.93185 1.93185i −0.863950 0.863950i 0.127844 0.991794i \(-0.459194\pi\)
−0.991794 + 0.127844i \(0.959194\pi\)
\(6\) 0 0
\(7\) −0.500000 + 0.133975i −0.188982 + 0.0506376i −0.352069 0.935974i \(-0.614522\pi\)
0.163087 + 0.986612i \(0.447855\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) −4.73205 + 2.73205i −1.49641 + 0.863950i
\(11\) 4.05317 + 1.08604i 1.22208 + 0.327455i 0.811490 0.584367i \(-0.198657\pi\)
0.410588 + 0.911821i \(0.365324\pi\)
\(12\) 0 0
\(13\) 3.59808 0.232051i 0.997927 0.0643593i
\(14\) 1.03528i 0.276689i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) −3.34607 + 5.79555i −0.811540 + 1.40563i 0.100246 + 0.994963i \(0.468037\pi\)
−0.911786 + 0.410666i \(0.865296\pi\)
\(18\) 0 0
\(19\) 1.63397 + 6.09808i 0.374859 + 1.39899i 0.853550 + 0.521011i \(0.174445\pi\)
−0.478691 + 0.877984i \(0.658888\pi\)
\(20\) 1.41421 + 5.27792i 0.316228 + 1.18018i
\(21\) 0 0
\(22\) 4.19615 7.26795i 0.894623 1.54953i
\(23\) −1.22474 2.12132i −0.255377 0.442326i 0.709621 0.704584i \(-0.248866\pi\)
−0.964998 + 0.262258i \(0.915533\pi\)
\(24\) 0 0
\(25\) 2.46410i 0.492820i
\(26\) 1.41421 7.07107i 0.277350 1.38675i
\(27\) 0 0
\(28\) 1.00000 + 0.267949i 0.188982 + 0.0506376i
\(29\) −1.22474 + 0.707107i −0.227429 + 0.131306i −0.609386 0.792874i \(-0.708584\pi\)
0.381956 + 0.924180i \(0.375251\pi\)
\(30\) 0 0
\(31\) 4.63397 4.63397i 0.832286 0.832286i −0.155543 0.987829i \(-0.549713\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) −7.72741 + 2.07055i −1.36603 + 0.366025i
\(33\) 0 0
\(34\) 9.46410 + 9.46410i 1.62308 + 1.62308i
\(35\) 1.22474 + 0.707107i 0.207020 + 0.119523i
\(36\) 0 0
\(37\) 0.830127 3.09808i 0.136472 0.509321i −0.863515 0.504322i \(-0.831742\pi\)
0.999988 0.00499824i \(-0.00159099\pi\)
\(38\) 12.6264 2.04827
\(39\) 0 0
\(40\) 0 0
\(41\) −0.378937 + 1.41421i −0.0591801 + 0.220863i −0.989182 0.146690i \(-0.953138\pi\)
0.930002 + 0.367554i \(0.119805\pi\)
\(42\) 0 0
\(43\) −6.69615 3.86603i −1.02115 0.589563i −0.106716 0.994290i \(-0.534033\pi\)
−0.914438 + 0.404726i \(0.867367\pi\)
\(44\) −5.93426 5.93426i −0.894623 0.894623i
\(45\) 0 0
\(46\) −4.73205 + 1.26795i −0.697703 + 0.186949i
\(47\) −2.31079 + 2.31079i −0.337063 + 0.337063i −0.855261 0.518198i \(-0.826603\pi\)
0.518198 + 0.855261i \(0.326603\pi\)
\(48\) 0 0
\(49\) −5.83013 + 3.36603i −0.832875 + 0.480861i
\(50\) 4.76028 + 1.27551i 0.673205 + 0.180385i
\(51\) 0 0
\(52\) −6.46410 3.19615i −0.896410 0.443227i
\(53\) 5.93426i 0.815133i 0.913176 + 0.407566i \(0.133622\pi\)
−0.913176 + 0.407566i \(0.866378\pi\)
\(54\) 0 0
\(55\) −5.73205 9.92820i −0.772910 1.33872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0.732051 + 2.73205i 0.0961230 + 0.358736i
\(59\) 0.0507680 + 0.189469i 0.00660943 + 0.0246667i 0.969152 0.246465i \(-0.0792689\pi\)
−0.962542 + 0.271131i \(0.912602\pi\)
\(60\) 0 0
\(61\) −6.59808 + 11.4282i −0.844797 + 1.46323i 0.0410002 + 0.999159i \(0.486946\pi\)
−0.885797 + 0.464072i \(0.846388\pi\)
\(62\) −6.55343 11.3509i −0.832286 1.44156i
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) −7.39924 6.50266i −0.917762 0.806556i
\(66\) 0 0
\(67\) −7.59808 2.03590i −0.928253 0.248725i −0.237143 0.971475i \(-0.576211\pi\)
−0.691109 + 0.722750i \(0.742878\pi\)
\(68\) 11.5911 6.69213i 1.40563 0.811540i
\(69\) 0 0
\(70\) 2.00000 2.00000i 0.239046 0.239046i
\(71\) 15.1266 4.05317i 1.79520 0.481023i 0.801990 0.597338i \(-0.203775\pi\)
0.993212 + 0.116315i \(0.0371081\pi\)
\(72\) 0 0
\(73\) 2.90192 + 2.90192i 0.339644 + 0.339644i 0.856233 0.516589i \(-0.172798\pi\)
−0.516589 + 0.856233i \(0.672798\pi\)
\(74\) −5.55532 3.20736i −0.645793 0.372849i
\(75\) 0 0
\(76\) 3.26795 12.1962i 0.374859 1.39899i
\(77\) −2.17209 −0.247532
\(78\) 0 0
\(79\) 7.19615 0.809630 0.404815 0.914399i \(-0.367336\pi\)
0.404815 + 0.914399i \(0.367336\pi\)
\(80\) −2.82843 + 10.5558i −0.316228 + 1.18018i
\(81\) 0 0
\(82\) 2.53590 + 1.46410i 0.280043 + 0.161683i
\(83\) −5.27792 5.27792i −0.579327 0.579327i 0.355391 0.934718i \(-0.384348\pi\)
−0.934718 + 0.355391i \(0.884348\pi\)
\(84\) 0 0
\(85\) 17.6603 4.73205i 1.91552 0.513263i
\(86\) −10.9348 + 10.9348i −1.17913 + 1.17913i
\(87\) 0 0
\(88\) 0 0
\(89\) 4.38134 + 1.17398i 0.464421 + 0.124441i 0.483439 0.875378i \(-0.339387\pi\)
−0.0190181 + 0.999819i \(0.506054\pi\)
\(90\) 0 0
\(91\) −1.76795 + 0.598076i −0.185331 + 0.0626954i
\(92\) 4.89898i 0.510754i
\(93\) 0 0
\(94\) 3.26795 + 5.66025i 0.337063 + 0.583811i
\(95\) 8.62398 14.9372i 0.884802 1.53252i
\(96\) 0 0
\(97\) −1.30385 4.86603i −0.132386 0.494070i 0.867609 0.497247i \(-0.165656\pi\)
−0.999995 + 0.00317651i \(0.998989\pi\)
\(98\) 3.48477 + 13.0053i 0.352015 + 1.31374i
\(99\) 0 0
\(100\) 2.46410 4.26795i 0.246410 0.426795i
\(101\) 0.568406 + 0.984508i 0.0565585 + 0.0979622i 0.892918 0.450219i \(-0.148654\pi\)
−0.836360 + 0.548181i \(0.815321\pi\)
\(102\) 0 0
\(103\) 8.66025i 0.853320i −0.904412 0.426660i \(-0.859690\pi\)
0.904412 0.426660i \(-0.140310\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 11.4641 + 3.07180i 1.11349 + 0.298359i
\(107\) 1.46498 0.845807i 0.141625 0.0817673i −0.427513 0.904009i \(-0.640610\pi\)
0.569138 + 0.822242i \(0.307277\pi\)
\(108\) 0 0
\(109\) −11.2942 + 11.2942i −1.08179 + 1.08179i −0.0854483 + 0.996343i \(0.527232\pi\)
−0.996343 + 0.0854483i \(0.972768\pi\)
\(110\) −22.1469 + 5.93426i −2.11163 + 0.565809i
\(111\) 0 0
\(112\) 1.46410 + 1.46410i 0.138345 + 0.138345i
\(113\) 3.91447 + 2.26002i 0.368242 + 0.212605i 0.672690 0.739924i \(-0.265139\pi\)
−0.304448 + 0.952529i \(0.598472\pi\)
\(114\) 0 0
\(115\) −1.73205 + 6.46410i −0.161515 + 0.602781i
\(116\) 2.82843 0.262613
\(117\) 0 0
\(118\) 0.392305 0.0361146
\(119\) 0.896575 3.34607i 0.0821889 0.306733i
\(120\) 0 0
\(121\) 5.72243 + 3.30385i 0.520221 + 0.300350i
\(122\) 18.6622 + 18.6622i 1.68959 + 1.68959i
\(123\) 0 0
\(124\) −12.6603 + 3.39230i −1.13692 + 0.304638i
\(125\) −4.89898 + 4.89898i −0.438178 + 0.438178i
\(126\) 0 0
\(127\) 8.59808 4.96410i 0.762956 0.440493i −0.0674001 0.997726i \(-0.521470\pi\)
0.830356 + 0.557233i \(0.188137\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) −16.3923 + 10.9282i −1.43770 + 0.958467i
\(131\) 7.07107i 0.617802i 0.951094 + 0.308901i \(0.0999612\pi\)
−0.951094 + 0.308901i \(0.900039\pi\)
\(132\) 0 0
\(133\) −1.63397 2.83013i −0.141684 0.245403i
\(134\) −7.86611 + 13.6245i −0.679528 + 1.17698i
\(135\) 0 0
\(136\) 0 0
\(137\) −3.86370 14.4195i −0.330098 1.23194i −0.909086 0.416608i \(-0.863219\pi\)
0.578988 0.815336i \(-0.303448\pi\)
\(138\) 0 0
\(139\) −1.69615 + 2.93782i −0.143866 + 0.249183i −0.928949 0.370207i \(-0.879287\pi\)
0.785083 + 0.619390i \(0.212620\pi\)
\(140\) −1.41421 2.44949i −0.119523 0.207020i
\(141\) 0 0
\(142\) 31.3205i 2.62836i
\(143\) 14.8356 + 2.96713i 1.24062 + 0.248124i
\(144\) 0 0
\(145\) 3.73205 + 1.00000i 0.309930 + 0.0830455i
\(146\) 7.10823 4.10394i 0.588282 0.339644i
\(147\) 0 0
\(148\) −4.53590 + 4.53590i −0.372849 + 0.372849i
\(149\) −6.17449 + 1.65445i −0.505834 + 0.135538i −0.502706 0.864457i \(-0.667662\pi\)
−0.00312781 + 0.999995i \(0.500996\pi\)
\(150\) 0 0
\(151\) −8.46410 8.46410i −0.688799 0.688799i 0.273168 0.961966i \(-0.411929\pi\)
−0.961966 + 0.273168i \(0.911929\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −1.12436 + 4.19615i −0.0906032 + 0.338136i
\(155\) −17.9043 −1.43811
\(156\) 0 0
\(157\) −11.3923 −0.909205 −0.454602 0.890694i \(-0.650219\pi\)
−0.454602 + 0.890694i \(0.650219\pi\)
\(158\) 3.72500 13.9019i 0.296345 1.10598i
\(159\) 0 0
\(160\) 18.9282 + 10.9282i 1.49641 + 0.863950i
\(161\) 0.896575 + 0.896575i 0.0706600 + 0.0706600i
\(162\) 0 0
\(163\) 16.0622 4.30385i 1.25809 0.337103i 0.432632 0.901571i \(-0.357585\pi\)
0.825455 + 0.564467i \(0.190918\pi\)
\(164\) 2.07055 2.07055i 0.161683 0.161683i
\(165\) 0 0
\(166\) −12.9282 + 7.46410i −1.00342 + 0.579327i
\(167\) 5.27792 + 1.41421i 0.408417 + 0.109435i 0.457178 0.889375i \(-0.348860\pi\)
−0.0487602 + 0.998811i \(0.515527\pi\)
\(168\) 0 0
\(169\) 12.8923 1.66987i 0.991716 0.128452i
\(170\) 36.5665i 2.80452i
\(171\) 0 0
\(172\) 7.73205 + 13.3923i 0.589563 + 1.02115i
\(173\) 7.02030 12.1595i 0.533744 0.924471i −0.465480 0.885059i \(-0.654118\pi\)
0.999223 0.0394122i \(-0.0125486\pi\)
\(174\) 0 0
\(175\) −0.330127 1.23205i −0.0249553 0.0931343i
\(176\) −4.34418 16.2127i −0.327455 1.22208i
\(177\) 0 0
\(178\) 4.53590 7.85641i 0.339980 0.588863i
\(179\) −8.24504 14.2808i −0.616264 1.06740i −0.990161 0.139930i \(-0.955312\pi\)
0.373898 0.927470i \(-0.378021\pi\)
\(180\) 0 0
\(181\) 6.00000i 0.445976i −0.974821 0.222988i \(-0.928419\pi\)
0.974821 0.222988i \(-0.0715812\pi\)
\(182\) 0.240237 + 3.72500i 0.0178075 + 0.276116i
\(183\) 0 0
\(184\) 0 0
\(185\) −7.58871 + 4.38134i −0.557933 + 0.322123i
\(186\) 0 0
\(187\) −19.8564 + 19.8564i −1.45204 + 1.45204i
\(188\) 6.31319 1.69161i 0.460437 0.123374i
\(189\) 0 0
\(190\) −24.3923 24.3923i −1.76960 1.76960i
\(191\) 11.2629 + 6.50266i 0.814958 + 0.470516i 0.848675 0.528915i \(-0.177401\pi\)
−0.0337168 + 0.999431i \(0.510734\pi\)
\(192\) 0 0
\(193\) 0.303848 1.13397i 0.0218714 0.0816253i −0.954128 0.299401i \(-0.903213\pi\)
0.975999 + 0.217775i \(0.0698800\pi\)
\(194\) −10.0754 −0.723369
\(195\) 0 0
\(196\) 13.4641 0.961722
\(197\) 1.83032 6.83083i 0.130405 0.486677i −0.869570 0.493810i \(-0.835604\pi\)
0.999975 + 0.00713319i \(0.00227058\pi\)
\(198\) 0 0
\(199\) −0.401924 0.232051i −0.0284916 0.0164496i 0.485687 0.874133i \(-0.338570\pi\)
−0.514178 + 0.857683i \(0.671903\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2.19615 0.588457i 0.154521 0.0414037i
\(203\) 0.517638 0.517638i 0.0363311 0.0363311i
\(204\) 0 0
\(205\) 3.46410 2.00000i 0.241943 0.139686i
\(206\) −16.7303 4.48288i −1.16566 0.312337i
\(207\) 0 0
\(208\) −8.00000 12.0000i −0.554700 0.832050i
\(209\) 26.4911i 1.83243i
\(210\) 0 0
\(211\) 7.59808 + 13.1603i 0.523073 + 0.905989i 0.999639 + 0.0268507i \(0.00854788\pi\)
−0.476566 + 0.879139i \(0.658119\pi\)
\(212\) 5.93426 10.2784i 0.407566 0.705926i
\(213\) 0 0
\(214\) −0.875644 3.26795i −0.0598578 0.223392i
\(215\) 5.46739 + 20.4046i 0.372873 + 1.39158i
\(216\) 0 0
\(217\) −1.69615 + 2.93782i −0.115142 + 0.199432i
\(218\) 15.9725 + 27.6651i 1.08179 + 1.87372i
\(219\) 0 0
\(220\) 22.9282i 1.54582i
\(221\) −10.6945 + 21.6293i −0.719392 + 1.45494i
\(222\) 0 0
\(223\) −23.7583 6.36603i −1.59098 0.426301i −0.648674 0.761066i \(-0.724676\pi\)
−0.942301 + 0.334766i \(0.891343\pi\)
\(224\) 3.58630 2.07055i 0.239620 0.138345i
\(225\) 0 0
\(226\) 6.39230 6.39230i 0.425210 0.425210i
\(227\) 6.31319 1.69161i 0.419021 0.112276i −0.0431468 0.999069i \(-0.513738\pi\)
0.462168 + 0.886792i \(0.347072\pi\)
\(228\) 0 0
\(229\) −3.73205 3.73205i −0.246621 0.246621i 0.572961 0.819582i \(-0.305794\pi\)
−0.819582 + 0.572961i \(0.805794\pi\)
\(230\) 11.5911 + 6.69213i 0.764295 + 0.441266i
\(231\) 0 0
\(232\) 0 0
\(233\) −18.9396 −1.24077 −0.620387 0.784296i \(-0.713024\pi\)
−0.620387 + 0.784296i \(0.713024\pi\)
\(234\) 0 0
\(235\) 8.92820 0.582412
\(236\) 0.101536 0.378937i 0.00660943 0.0246667i
\(237\) 0 0
\(238\) −6.00000 3.46410i −0.388922 0.224544i
\(239\) −4.62158 4.62158i −0.298945 0.298945i 0.541656 0.840601i \(-0.317798\pi\)
−0.840601 + 0.541656i \(0.817798\pi\)
\(240\) 0 0
\(241\) −11.2942 + 3.02628i −0.727525 + 0.194940i −0.603527 0.797343i \(-0.706238\pi\)
−0.123998 + 0.992282i \(0.539572\pi\)
\(242\) 9.34469 9.34469i 0.600700 0.600700i
\(243\) 0 0
\(244\) 22.8564 13.1962i 1.46323 0.844797i
\(245\) 17.7656 + 4.76028i 1.13500 + 0.304123i
\(246\) 0 0
\(247\) 7.29423 + 21.5622i 0.464121 + 1.37197i
\(248\) 0 0
\(249\) 0 0
\(250\) 6.92820 + 12.0000i 0.438178 + 0.758947i
\(251\) −10.6945 + 18.5235i −0.675033 + 1.16919i 0.301426 + 0.953490i \(0.402537\pi\)
−0.976459 + 0.215702i \(0.930796\pi\)
\(252\) 0 0
\(253\) −2.66025 9.92820i −0.167249 0.624181i
\(254\) −5.13922 19.1798i −0.322463 1.20345i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −0.656339 1.13681i −0.0409413 0.0709124i 0.844829 0.535037i \(-0.179702\pi\)
−0.885770 + 0.464125i \(0.846369\pi\)
\(258\) 0 0
\(259\) 1.66025i 0.103163i
\(260\) 6.31319 + 18.6622i 0.391528 + 1.15738i
\(261\) 0 0
\(262\) 13.6603 + 3.66025i 0.843933 + 0.226131i
\(263\) −20.3166 + 11.7298i −1.25278 + 0.723291i −0.971660 0.236382i \(-0.924038\pi\)
−0.281117 + 0.959674i \(0.590705\pi\)
\(264\) 0 0
\(265\) 11.4641 11.4641i 0.704234 0.704234i
\(266\) −6.31319 + 1.69161i −0.387087 + 0.103720i
\(267\) 0 0
\(268\) 11.1244 + 11.1244i 0.679528 + 0.679528i
\(269\) −17.8671 10.3156i −1.08938 0.628953i −0.155968 0.987762i \(-0.549850\pi\)
−0.933411 + 0.358809i \(0.883183\pi\)
\(270\) 0 0
\(271\) 2.62436 9.79423i 0.159418 0.594957i −0.839268 0.543718i \(-0.817016\pi\)
0.998686 0.0512393i \(-0.0163171\pi\)
\(272\) 26.7685 1.62308
\(273\) 0 0
\(274\) −29.8564 −1.80369
\(275\) −2.67612 + 9.98743i −0.161376 + 0.602265i
\(276\) 0 0
\(277\) 17.1962 + 9.92820i 1.03322 + 0.596528i 0.917904 0.396801i \(-0.129880\pi\)
0.115312 + 0.993329i \(0.463213\pi\)
\(278\) 4.79744 + 4.79744i 0.287732 + 0.287732i
\(279\) 0 0
\(280\) 0 0
\(281\) 16.6288 16.6288i 0.991990 0.991990i −0.00797773 0.999968i \(-0.502539\pi\)
0.999968 + 0.00797773i \(0.00253942\pi\)
\(282\) 0 0
\(283\) 19.7942 11.4282i 1.17664 0.679336i 0.221409 0.975181i \(-0.428934\pi\)
0.955236 + 0.295845i \(0.0956012\pi\)
\(284\) −30.2533 8.10634i −1.79520 0.481023i
\(285\) 0 0
\(286\) 13.4115 27.1244i 0.793041 1.60390i
\(287\) 0.757875i 0.0447359i
\(288\) 0 0
\(289\) −13.8923 24.0622i −0.817194 1.41542i
\(290\) 3.86370 6.69213i 0.226884 0.392975i
\(291\) 0 0
\(292\) −2.12436 7.92820i −0.124319 0.463963i
\(293\) −3.05506 11.4016i −0.178479 0.666091i −0.995933 0.0900977i \(-0.971282\pi\)
0.817454 0.575993i \(-0.195385\pi\)
\(294\) 0 0
\(295\) 0.267949 0.464102i 0.0156006 0.0270210i
\(296\) 0 0
\(297\) 0 0
\(298\) 12.7846i 0.740593i
\(299\) −4.89898 7.34847i −0.283315 0.424973i
\(300\) 0 0
\(301\) 3.86603 + 1.03590i 0.222834 + 0.0597082i
\(302\) −20.7327 + 11.9700i −1.19303 + 0.688799i
\(303\) 0 0
\(304\) 17.8564 17.8564i 1.02414 1.02414i
\(305\) 34.8241 9.33109i 1.99402 0.534297i
\(306\) 0 0
\(307\) 19.2942 + 19.2942i 1.10118 + 1.10118i 0.994269 + 0.106911i \(0.0340961\pi\)
0.106911 + 0.994269i \(0.465904\pi\)
\(308\) 3.76217 + 2.17209i 0.214369 + 0.123766i
\(309\) 0 0
\(310\) −9.26795 + 34.5885i −0.526384 + 1.96449i
\(311\) 11.1106 0.630026 0.315013 0.949087i \(-0.397991\pi\)
0.315013 + 0.949087i \(0.397991\pi\)
\(312\) 0 0
\(313\) −3.19615 −0.180657 −0.0903286 0.995912i \(-0.528792\pi\)
−0.0903286 + 0.995912i \(0.528792\pi\)
\(314\) −5.89709 + 22.0082i −0.332792 + 1.24200i
\(315\) 0 0
\(316\) −12.4641 7.19615i −0.701160 0.404815i
\(317\) 10.5558 + 10.5558i 0.592875 + 0.592875i 0.938407 0.345532i \(-0.112302\pi\)
−0.345532 + 0.938407i \(0.612302\pi\)
\(318\) 0 0
\(319\) −5.73205 + 1.53590i −0.320933 + 0.0859938i
\(320\) 15.4548 15.4548i 0.863950 0.863950i
\(321\) 0 0
\(322\) 2.19615 1.26795i 0.122387 0.0706600i
\(323\) −40.8091 10.9348i −2.27068 0.608427i
\(324\) 0 0
\(325\) 0.571797 + 8.86603i 0.0317176 + 0.491799i
\(326\) 33.2576i 1.84197i
\(327\) 0 0
\(328\) 0 0
\(329\) 0.845807 1.46498i 0.0466309 0.0807670i
\(330\) 0 0
\(331\) 1.40192 + 5.23205i 0.0770567 + 0.287580i 0.993692 0.112146i \(-0.0357723\pi\)
−0.916635 + 0.399725i \(0.869106\pi\)
\(332\) 3.86370 + 14.4195i 0.212048 + 0.791375i
\(333\) 0 0
\(334\) 5.46410 9.46410i 0.298982 0.517853i
\(335\) 10.7453 + 18.6114i 0.587079 + 1.01685i
\(336\) 0 0
\(337\) 27.9282i 1.52135i 0.649135 + 0.760673i \(0.275131\pi\)
−0.649135 + 0.760673i \(0.724869\pi\)
\(338\) 3.44760 25.7704i 0.187525 1.40173i
\(339\) 0 0
\(340\) −35.3205 9.46410i −1.91552 0.513263i
\(341\) 23.8150 13.7496i 1.28965 0.744582i
\(342\) 0 0
\(343\) 5.02628 5.02628i 0.271394 0.271394i
\(344\) 0 0
\(345\) 0 0
\(346\) −19.8564 19.8564i −1.06749 1.06749i
\(347\) −25.2156 14.5582i −1.35364 0.781527i −0.364887 0.931052i \(-0.618892\pi\)
−0.988758 + 0.149525i \(0.952226\pi\)
\(348\) 0 0
\(349\) −0.545517 + 2.03590i −0.0292009 + 0.108979i −0.978988 0.203917i \(-0.934633\pi\)
0.949787 + 0.312896i \(0.101299\pi\)
\(350\) −2.55103 −0.136358
\(351\) 0 0
\(352\) −33.5692 −1.78925
\(353\) −0.466870 + 1.74238i −0.0248490 + 0.0927377i −0.977237 0.212152i \(-0.931953\pi\)
0.952388 + 0.304890i \(0.0986195\pi\)
\(354\) 0 0
\(355\) −37.0526 21.3923i −1.96655 1.13539i
\(356\) −6.41473 6.41473i −0.339980 0.339980i
\(357\) 0 0
\(358\) −31.8564 + 8.53590i −1.68366 + 0.451136i
\(359\) 7.07107 7.07107i 0.373197 0.373197i −0.495443 0.868640i \(-0.664994\pi\)
0.868640 + 0.495443i \(0.164994\pi\)
\(360\) 0 0
\(361\) −18.0622 + 10.4282i −0.950641 + 0.548853i
\(362\) −11.5911 3.10583i −0.609215 0.163239i
\(363\) 0 0
\(364\) 3.66025 + 0.732051i 0.191849 + 0.0383699i
\(365\) 11.2122i 0.586872i
\(366\) 0 0
\(367\) 2.69615 + 4.66987i 0.140738 + 0.243765i 0.927775 0.373141i \(-0.121719\pi\)
−0.787037 + 0.616906i \(0.788386\pi\)
\(368\) −4.89898 + 8.48528i −0.255377 + 0.442326i
\(369\) 0 0
\(370\) 4.53590 + 16.9282i 0.235810 + 0.880055i
\(371\) −0.795040 2.96713i −0.0412764 0.154046i
\(372\) 0 0
\(373\) 3.79423 6.57180i 0.196458 0.340275i −0.750920 0.660394i \(-0.770389\pi\)
0.947377 + 0.320119i \(0.103723\pi\)
\(374\) 28.0812 + 48.6381i 1.45204 + 2.51501i
\(375\) 0 0
\(376\) 0 0
\(377\) −4.24264 + 2.82843i −0.218507 + 0.145671i
\(378\) 0 0
\(379\) 22.3564 + 5.99038i 1.14837 + 0.307705i 0.782312 0.622886i \(-0.214040\pi\)
0.366059 + 0.930592i \(0.380707\pi\)
\(380\) −29.8744 + 17.2480i −1.53252 + 0.884802i
\(381\) 0 0
\(382\) 18.3923 18.3923i 0.941032 0.941032i
\(383\) 9.65926 2.58819i 0.493565 0.132250i −0.00344689 0.999994i \(-0.501097\pi\)
0.497012 + 0.867744i \(0.334431\pi\)
\(384\) 0 0
\(385\) 4.19615 + 4.19615i 0.213856 + 0.213856i
\(386\) −2.03339 1.17398i −0.103497 0.0597539i
\(387\) 0 0
\(388\) −2.60770 + 9.73205i −0.132386 + 0.494070i
\(389\) 6.69213 0.339304 0.169652 0.985504i \(-0.445736\pi\)
0.169652 + 0.985504i \(0.445736\pi\)
\(390\) 0 0
\(391\) 16.3923 0.828994
\(392\) 0 0
\(393\) 0 0
\(394\) −12.2487 7.07180i −0.617081 0.356272i
\(395\) −13.9019 13.9019i −0.699480 0.699480i
\(396\) 0 0
\(397\) −15.3301 + 4.10770i −0.769397 + 0.206159i −0.622105 0.782934i \(-0.713722\pi\)
−0.147292 + 0.989093i \(0.547056\pi\)
\(398\) −0.656339 + 0.656339i −0.0328993 + 0.0328993i
\(399\) 0 0
\(400\) 8.53590 4.92820i 0.426795 0.246410i
\(401\) 38.4983 + 10.3156i 1.92251 + 0.515136i 0.986673 + 0.162717i \(0.0520258\pi\)
0.935842 + 0.352419i \(0.114641\pi\)
\(402\) 0 0
\(403\) 15.5981 17.7487i 0.776996 0.884126i
\(404\) 2.27362i 0.113117i
\(405\) 0 0
\(406\) −0.732051 1.26795i −0.0363311 0.0629273i
\(407\) 6.72930 11.6555i 0.333559 0.577741i
\(408\) 0 0
\(409\) −4.42820 16.5263i −0.218961 0.817172i −0.984735 0.174062i \(-0.944311\pi\)
0.765774 0.643110i \(-0.222356\pi\)
\(410\) −2.07055 7.72741i −0.102257 0.381629i
\(411\) 0 0
\(412\) −8.66025 + 15.0000i −0.426660 + 0.738997i
\(413\) −0.0507680 0.0879327i −0.00249813 0.00432689i
\(414\) 0 0
\(415\) 20.3923i 1.00102i
\(416\) −27.3233 + 9.24316i −1.33964 + 0.453183i
\(417\) 0 0
\(418\) 51.1769 + 13.7128i 2.50314 + 0.670716i
\(419\) −2.92996 + 1.69161i −0.143138 + 0.0826408i −0.569859 0.821743i \(-0.693002\pi\)
0.426721 + 0.904383i \(0.359669\pi\)
\(420\) 0 0
\(421\) 15.3660 15.3660i 0.748894 0.748894i −0.225377 0.974272i \(-0.572361\pi\)
0.974272 + 0.225377i \(0.0723615\pi\)
\(422\) 29.3567 7.86611i 1.42906 0.382916i
\(423\) 0 0
\(424\) 0 0
\(425\) −14.2808 8.24504i −0.692722 0.399943i
\(426\) 0 0
\(427\) 1.76795 6.59808i 0.0855571 0.319303i
\(428\) −3.38323 −0.163535
\(429\) 0 0
\(430\) 42.2487 2.03741
\(431\) 4.10394 15.3161i 0.197680 0.737751i −0.793877 0.608078i \(-0.791941\pi\)
0.991557 0.129673i \(-0.0413927\pi\)
\(432\) 0 0
\(433\) −15.9904 9.23205i −0.768449 0.443664i 0.0638723 0.997958i \(-0.479655\pi\)
−0.832321 + 0.554294i \(0.812988\pi\)
\(434\) 4.79744 + 4.79744i 0.230285 + 0.230285i
\(435\) 0 0
\(436\) 30.8564 8.26795i 1.47775 0.395963i
\(437\) 10.9348 10.9348i 0.523081 0.523081i
\(438\) 0 0
\(439\) −8.30385 + 4.79423i −0.396321 + 0.228816i −0.684895 0.728641i \(-0.740152\pi\)
0.288574 + 0.957457i \(0.406819\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 36.2487 + 31.8564i 1.72418 + 1.51525i
\(443\) 23.7370i 1.12778i 0.825850 + 0.563890i \(0.190696\pi\)
−0.825850 + 0.563890i \(0.809304\pi\)
\(444\) 0 0
\(445\) −6.19615 10.7321i −0.293726 0.508748i
\(446\) −24.5964 + 42.6023i −1.16467 + 2.01728i
\(447\) 0 0
\(448\) −1.07180 4.00000i −0.0506376 0.188982i
\(449\) 2.26002 + 8.43451i 0.106657 + 0.398049i 0.998528 0.0542408i \(-0.0172738\pi\)
−0.891871 + 0.452290i \(0.850607\pi\)
\(450\) 0 0
\(451\) −3.07180 + 5.32051i −0.144645 + 0.250533i
\(452\) −4.52004 7.82894i −0.212605 0.368242i
\(453\) 0 0
\(454\) 13.0718i 0.613490i
\(455\) 4.57081 + 2.26002i 0.214283 + 0.105951i
\(456\) 0 0
\(457\) −11.0622 2.96410i −0.517467 0.138655i −0.00937223 0.999956i \(-0.502983\pi\)
−0.508095 + 0.861301i \(0.669650\pi\)
\(458\) −9.14162 + 5.27792i −0.427160 + 0.246621i
\(459\) 0 0
\(460\) 9.46410 9.46410i 0.441266 0.441266i
\(461\) −2.58819 + 0.693504i −0.120544 + 0.0322997i −0.318587 0.947894i \(-0.603208\pi\)
0.198043 + 0.980193i \(0.436542\pi\)
\(462\) 0 0
\(463\) −4.83013 4.83013i −0.224475 0.224475i 0.585905 0.810380i \(-0.300739\pi\)
−0.810380 + 0.585905i \(0.800739\pi\)
\(464\) 4.89898 + 2.82843i 0.227429 + 0.131306i
\(465\) 0 0
\(466\) −9.80385 + 36.5885i −0.454154 + 1.69493i
\(467\) −22.0454 −1.02014 −0.510070 0.860133i \(-0.670380\pi\)
−0.510070 + 0.860133i \(0.670380\pi\)
\(468\) 0 0
\(469\) 4.07180 0.188018
\(470\) 4.62158 17.2480i 0.213177 0.795589i
\(471\) 0 0
\(472\) 0 0
\(473\) −22.9420 22.9420i −1.05487 1.05487i
\(474\) 0 0
\(475\) −15.0263 + 4.02628i −0.689453 + 0.184738i
\(476\) −4.89898 + 4.89898i −0.224544 + 0.224544i
\(477\) 0 0
\(478\) −11.3205 + 6.53590i −0.517788 + 0.298945i
\(479\) −3.86370 1.03528i −0.176537 0.0473030i 0.169468 0.985536i \(-0.445795\pi\)
−0.346005 + 0.938233i \(0.612462\pi\)
\(480\) 0 0
\(481\) 2.26795 11.3397i 0.103410 0.517048i
\(482\) 23.3853i 1.06517i
\(483\) 0 0
\(484\) −6.60770 11.4449i −0.300350 0.520221i
\(485\) −6.88160 + 11.9193i −0.312477 + 0.541227i
\(486\) 0 0
\(487\) −5.16987 19.2942i −0.234269 0.874305i −0.978477 0.206357i \(-0.933839\pi\)
0.744208 0.667948i \(-0.232827\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 18.3923 31.8564i 0.830880 1.43913i
\(491\) 13.0561 + 22.6138i 0.589213 + 1.02055i 0.994336 + 0.106285i \(0.0338955\pi\)
−0.405123 + 0.914262i \(0.632771\pi\)
\(492\) 0 0
\(493\) 9.46410i 0.426242i
\(494\) 45.4307 2.92996i 2.04402 0.131825i
\(495\) 0 0
\(496\) −25.3205 6.78461i −1.13692 0.304638i
\(497\) −7.02030 + 4.05317i −0.314903 + 0.181810i
\(498\) 0 0
\(499\) −24.2679 + 24.2679i −1.08638 + 1.08638i −0.0904848 + 0.995898i \(0.528842\pi\)
−0.995898 + 0.0904848i \(0.971158\pi\)
\(500\) 13.3843 3.58630i 0.598562 0.160384i
\(501\) 0 0
\(502\) 30.2487 + 30.2487i 1.35007 + 1.35007i
\(503\) 23.2702 + 13.4350i 1.03756 + 0.599038i 0.919143 0.393925i \(-0.128883\pi\)
0.118422 + 0.992963i \(0.462216\pi\)
\(504\) 0 0
\(505\) 0.803848 3.00000i 0.0357707 0.133498i
\(506\) −20.5569 −0.913864
\(507\) 0 0
\(508\) −19.8564 −0.880986
\(509\) 2.15849 8.05558i 0.0956732 0.357057i −0.901447 0.432888i \(-0.857494\pi\)
0.997121 + 0.0758313i \(0.0241611\pi\)
\(510\) 0 0
\(511\) −1.83975 1.06218i −0.0813856 0.0469880i
\(512\) 22.6274 + 22.6274i 1.00000 + 1.00000i
\(513\) 0 0
\(514\) −2.53590 + 0.679492i −0.111854 + 0.0299711i
\(515\) −16.7303 + 16.7303i −0.737226 + 0.737226i
\(516\) 0 0
\(517\) −11.8756 + 6.85641i −0.522290 + 0.301544i
\(518\) 3.20736 + 0.859411i 0.140924 + 0.0377603i
\(519\) 0 0
\(520\) 0 0
\(521\) 26.5654i 1.16385i −0.813241 0.581927i \(-0.802299\pi\)
0.813241 0.581927i \(-0.197701\pi\)
\(522\) 0 0
\(523\) 21.3923 + 37.0526i 0.935420 + 1.62020i 0.773883 + 0.633329i \(0.218312\pi\)
0.161537 + 0.986867i \(0.448355\pi\)
\(524\) 7.07107 12.2474i 0.308901 0.535032i
\(525\) 0 0
\(526\) 12.1436 + 45.3205i 0.529486 + 1.97607i
\(527\) 11.3509 + 42.3620i 0.494452 + 1.84532i
\(528\) 0 0
\(529\) 8.50000 14.7224i 0.369565 0.640106i
\(530\) −16.2127 28.0812i −0.704234 1.21977i
\(531\) 0 0
\(532\) 6.53590i 0.283367i
\(533\) −1.03528 + 5.17638i −0.0448428 + 0.224214i
\(534\) 0 0
\(535\) −4.46410 1.19615i −0.193000 0.0517142i
\(536\) 0 0
\(537\) 0 0
\(538\) −29.1769 + 29.1769i −1.25791 + 1.25791i
\(539\) −27.2862 + 7.31130i −1.17530 + 0.314920i
\(540\) 0 0
\(541\) −30.6865 30.6865i −1.31932 1.31932i −0.914316 0.405001i \(-0.867271\pi\)
−0.405001 0.914316i \(-0.632729\pi\)
\(542\) −17.5625 10.1397i −0.754375 0.435539i
\(543\) 0 0
\(544\) 13.8564 51.7128i 0.594089 2.21717i
\(545\) 43.6375 1.86923
\(546\) 0 0
\(547\) −17.3923 −0.743641 −0.371821 0.928305i \(-0.621266\pi\)
−0.371821 + 0.928305i \(0.621266\pi\)
\(548\) −7.72741 + 28.8391i −0.330098 + 1.23194i
\(549\) 0 0
\(550\) 17.9090 + 10.3397i 0.763641 + 0.440888i
\(551\) −6.31319 6.31319i −0.268951 0.268951i
\(552\) 0 0
\(553\) −3.59808 + 0.964102i −0.153006 + 0.0409978i
\(554\) 28.0812 28.0812i 1.19306 1.19306i
\(555\) 0 0
\(556\) 5.87564 3.39230i 0.249183 0.143866i
\(557\) 4.38134 + 1.17398i 0.185643 + 0.0497430i 0.350443 0.936584i \(-0.386031\pi\)
−0.164800 + 0.986327i \(0.552698\pi\)
\(558\) 0 0
\(559\) −24.9904 12.3564i −1.05698 0.522620i
\(560\) 5.65685i 0.239046i
\(561\) 0 0
\(562\) −23.5167 40.7321i −0.991990 1.71818i
\(563\) 14.8492 25.7196i 0.625821 1.08395i −0.362561 0.931960i \(-0.618097\pi\)
0.988381 0.151993i \(-0.0485693\pi\)
\(564\) 0 0
\(565\) −3.19615 11.9282i −0.134463 0.501823i
\(566\) −11.8313 44.1552i −0.497309 1.85598i
\(567\) 0 0
\(568\) 0 0
\(569\) −3.67423 6.36396i −0.154032 0.266791i 0.778674 0.627428i \(-0.215893\pi\)
−0.932706 + 0.360637i \(0.882559\pi\)
\(570\) 0 0
\(571\) 21.7128i 0.908653i 0.890835 + 0.454326i \(0.150120\pi\)
−0.890835 + 0.454326i \(0.849880\pi\)
\(572\) −22.7290 19.9749i −0.950345 0.835191i
\(573\) 0 0
\(574\) −1.46410 0.392305i −0.0611104 0.0163745i
\(575\) 5.22715 3.01790i 0.217987 0.125855i
\(576\) 0 0
\(577\) 9.19615 9.19615i 0.382841 0.382841i −0.489284 0.872125i \(-0.662742\pi\)
0.872125 + 0.489284i \(0.162742\pi\)
\(578\) −53.6757 + 14.3824i −2.23262 + 0.598228i
\(579\) 0 0
\(580\) −5.46410 5.46410i −0.226884 0.226884i
\(581\) 3.34607 + 1.93185i 0.138818 + 0.0801467i
\(582\) 0 0
\(583\) −6.44486 + 24.0526i −0.266919 + 0.996155i
\(584\) 0 0
\(585\) 0 0
\(586\) −23.6077 −0.975225
\(587\) 9.98743 37.2736i 0.412225 1.53845i −0.378104 0.925763i \(-0.623424\pi\)
0.790329 0.612682i \(-0.209910\pi\)
\(588\) 0 0
\(589\) 35.8301 + 20.6865i 1.47635 + 0.852374i
\(590\) −0.757875 0.757875i −0.0312012 0.0312012i
\(591\) 0 0
\(592\) −12.3923 + 3.32051i −0.509321 + 0.136472i
\(593\) −4.10394 + 4.10394i −0.168529 + 0.168529i −0.786332 0.617804i \(-0.788023\pi\)
0.617804 + 0.786332i \(0.288023\pi\)
\(594\) 0 0
\(595\) −8.19615 + 4.73205i −0.336009 + 0.193995i
\(596\) 12.3490 + 3.30890i 0.505834 + 0.135538i
\(597\) 0 0
\(598\) −16.7321 + 5.66025i −0.684224 + 0.231465i
\(599\) 15.2789i 0.624281i −0.950036 0.312140i \(-0.898954\pi\)
0.950036 0.312140i \(-0.101046\pi\)
\(600\) 0 0
\(601\) 18.3923 + 31.8564i 0.750238 + 1.29945i 0.947707 + 0.319141i \(0.103394\pi\)
−0.197470 + 0.980309i \(0.563272\pi\)
\(602\) 4.00240 6.93237i 0.163126 0.282542i
\(603\) 0 0
\(604\) 6.19615 + 23.1244i 0.252118 + 0.940917i
\(605\) −4.67235 17.4374i −0.189958 0.708932i
\(606\) 0 0
\(607\) 19.1962 33.2487i 0.779148 1.34952i −0.153286 0.988182i \(-0.548985\pi\)
0.932433 0.361342i \(-0.117681\pi\)
\(608\) −25.2528 43.7391i −1.02414 1.77385i
\(609\) 0 0
\(610\) 72.1051i 2.91945i
\(611\) −7.77817 + 8.85062i −0.314671 + 0.358058i
\(612\) 0 0
\(613\) −6.33013 1.69615i −0.255671 0.0685070i 0.128707 0.991683i \(-0.458917\pi\)
−0.384378 + 0.923176i \(0.625584\pi\)
\(614\) 47.2610 27.2862i 1.90730 1.10118i
\(615\) 0 0
\(616\) 0 0
\(617\) −29.9251 + 8.01841i −1.20474 + 0.322809i −0.804696 0.593687i \(-0.797672\pi\)
−0.400044 + 0.916496i \(0.631005\pi\)
\(618\) 0 0
\(619\) 12.8301 + 12.8301i 0.515686 + 0.515686i 0.916263 0.400577i \(-0.131190\pi\)
−0.400577 + 0.916263i \(0.631190\pi\)
\(620\) 31.0112 + 17.9043i 1.24544 + 0.719054i
\(621\) 0 0
\(622\) 5.75129 21.4641i 0.230606 0.860632i
\(623\) −2.34795 −0.0940688
\(624\) 0 0
\(625\) 31.2487 1.24995
\(626\) −1.65445 + 6.17449i −0.0661251 + 0.246782i
\(627\) 0 0
\(628\) 19.7321 + 11.3923i 0.787395 + 0.454602i
\(629\) 15.1774 + 15.1774i 0.605163 + 0.605163i
\(630\) 0 0
\(631\) 38.4545 10.3038i 1.53085 0.410190i 0.607553 0.794279i \(-0.292151\pi\)
0.923296 + 0.384090i \(0.125485\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 25.8564 14.9282i 1.02689 0.592875i
\(635\) −26.2001 7.02030i −1.03972 0.278592i
\(636\) 0 0
\(637\) −20.1962 + 13.4641i −0.800201 + 0.533467i
\(638\) 11.8685i 0.469879i
\(639\) 0 0
\(640\) 0 0
\(641\) −13.4722 + 23.3345i −0.532120 + 0.921658i 0.467177 + 0.884164i \(0.345271\pi\)
−0.999297 + 0.0374946i \(0.988062\pi\)
\(642\) 0 0
\(643\) 5.96410 + 22.2583i 0.235201 + 0.877783i 0.978058 + 0.208333i \(0.0668036\pi\)
−0.742857 + 0.669450i \(0.766530\pi\)
\(644\) −0.656339 2.44949i −0.0258634 0.0965234i
\(645\) 0 0
\(646\) −42.2487 + 73.1769i −1.66225 + 2.87911i
\(647\) −14.1929 24.5828i −0.557981 0.966451i −0.997665 0.0682984i \(-0.978243\pi\)
0.439684 0.898152i \(-0.355090\pi\)
\(648\) 0 0
\(649\) 0.823085i 0.0323089i
\(650\) 17.4238 + 3.48477i 0.683419 + 0.136684i
\(651\) 0 0
\(652\) −32.1244 8.60770i −1.25809 0.337103i
\(653\) 9.79796 5.65685i 0.383424 0.221370i −0.295883 0.955224i \(-0.595614\pi\)
0.679307 + 0.733854i \(0.262281\pi\)
\(654\) 0 0
\(655\) 13.6603 13.6603i 0.533750 0.533750i
\(656\) 5.65685 1.51575i 0.220863 0.0591801i
\(657\) 0 0
\(658\) −2.39230 2.39230i −0.0932618 0.0932618i
\(659\) 40.3930 + 23.3209i 1.57349 + 0.908454i 0.995737 + 0.0922417i \(0.0294032\pi\)
0.577752 + 0.816212i \(0.303930\pi\)
\(660\) 0 0
\(661\) 9.59808 35.8205i 0.373322 1.39326i −0.482459 0.875918i \(-0.660256\pi\)
0.855781 0.517338i \(-0.173077\pi\)
\(662\) 10.8332 0.421046
\(663\) 0 0
\(664\) 0 0
\(665\) −2.31079 + 8.62398i −0.0896086 + 0.334424i
\(666\) 0 0
\(667\) 3.00000 + 1.73205i 0.116160 + 0.0670653i
\(668\) −7.72741 7.72741i −0.298982 0.298982i
\(669\) 0 0
\(670\) 41.5167 11.1244i 1.60393 0.429771i
\(671\) −39.1547 + 39.1547i −1.51155 + 1.51155i
\(672\) 0 0
\(673\) 7.28461 4.20577i 0.280801 0.162121i −0.352985 0.935629i \(-0.614833\pi\)
0.633786 + 0.773508i \(0.281500\pi\)
\(674\) 53.9531 + 14.4567i 2.07820 + 0.556851i
\(675\) 0 0
\(676\) −24.0000 10.0000i −0.923077 0.384615i
\(677\) 13.5873i 0.522204i 0.965311 + 0.261102i \(0.0840858\pi\)
−0.965311 + 0.261102i \(0.915914\pi\)
\(678\) 0 0
\(679\) 1.30385 + 2.25833i 0.0500371 + 0.0866668i
\(680\) 0 0
\(681\) 0 0
\(682\) −14.2346 53.1244i −0.545072 2.03424i
\(683\) 4.53365 + 16.9198i 0.173475 + 0.647418i 0.996806 + 0.0798568i \(0.0254463\pi\)
−0.823331 + 0.567561i \(0.807887\pi\)
\(684\) 0 0
\(685\) −20.3923 + 35.3205i −0.779150 + 1.34953i
\(686\) −7.10823 12.3118i −0.271394 0.470067i
\(687\) 0 0
\(688\) 30.9282i 1.17913i
\(689\) 1.37705 + 21.3519i 0.0524614 + 0.813443i
\(690\) 0 0
\(691\) 24.4282 + 6.54552i 0.929293 + 0.249003i 0.691553 0.722326i \(-0.256927\pi\)
0.237740 + 0.971329i \(0.423594\pi\)
\(692\) −24.3190 + 14.0406i −0.924471 + 0.533744i
\(693\) 0 0
\(694\) −41.1769 + 41.1769i −1.56305 + 1.56305i
\(695\) 8.95215 2.39872i 0.339574 0.0909887i
\(696\) 0 0
\(697\) −6.92820 6.92820i −0.262424 0.262424i
\(698\) 3.65067 + 2.10772i 0.138180 + 0.0797783i
\(699\) 0 0
\(700\) −0.660254 + 2.46410i −0.0249553 + 0.0931343i
\(701\) −23.1822 −0.875580 −0.437790 0.899077i \(-0.644239\pi\)
−0.437790 + 0.899077i \(0.644239\pi\)
\(702\) 0 0
\(703\) 20.2487 0.763695
\(704\) −8.68835 + 32.4254i −0.327455 + 1.22208i
\(705\) 0 0
\(706\) 3.12436 + 1.80385i 0.117587 + 0.0678887i
\(707\) −0.416102 0.416102i −0.0156491 0.0156491i
\(708\) 0 0
\(709\) −11.6962 + 3.13397i −0.439258 + 0.117699i −0.471669 0.881776i \(-0.656348\pi\)
0.0324106 + 0.999475i \(0.489682\pi\)
\(710\) −60.5066 + 60.5066i −2.27077 + 2.27077i
\(711\) 0 0
\(712\) 0 0
\(713\) −15.5056 4.15471i −0.580689 0.155595i
\(714\) 0 0
\(715\) −22.9282 34.3923i −0.857466 1.28620i
\(716\) 32.9802i 1.23253i
\(717\) 0 0
\(718\) −10.0000 17.3205i −0.373197 0.646396i
\(719\) 21.9575 38.0315i 0.818876 1.41833i −0.0876356 0.996153i \(-0.527931\pi\)
0.906511 0.422182i \(-0.138736\pi\)
\(720\) 0 0
\(721\) 1.16025 + 4.33013i 0.0432101 + 0.161262i
\(722\) 10.7961 + 40.2915i 0.401788 + 1.49949i
\(723\) 0 0
\(724\) −6.00000 + 10.3923i −0.222988 + 0.386227i
\(725\) −1.74238 3.01790i −0.0647105 0.112082i
\(726\) 0 0
\(727\) 35.1051i 1.30198i −0.759088 0.650988i \(-0.774355\pi\)
0.759088 0.650988i \(-0.225645\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −21.6603 5.80385i −0.801682 0.214810i
\(731\) 44.8115 25.8719i 1.65741 0.956908i
\(732\) 0 0
\(733\) −32.7583 + 32.7583i −1.20996 + 1.20996i −0.238916 + 0.971040i \(0.576792\pi\)
−0.971040 + 0.238916i \(0.923208\pi\)
\(734\) 10.4171 2.79126i 0.384503 0.103027i
\(735\) 0 0
\(736\) 13.8564 + 13.8564i 0.510754 + 0.510754i
\(737\) −28.5852 16.5037i −1.05295 0.607921i
\(738\) 0 0
\(739\) −0.562178 + 2.09808i −0.0206800 + 0.0771790i −0.975495 0.220023i \(-0.929387\pi\)
0.954815 + 0.297202i \(0.0960534\pi\)
\(740\) 17.5254 0.644245
\(741\) 0 0
\(742\) −6.14359 −0.225538
\(743\) −1.77955 + 6.64136i −0.0652853 + 0.243648i −0.990855 0.134928i \(-0.956920\pi\)
0.925570 + 0.378576i \(0.123586\pi\)
\(744\) 0 0
\(745\) 15.1244 + 8.73205i 0.554114 + 0.319918i
\(746\) −10.7317 10.7317i −0.392915 0.392915i
\(747\) 0 0
\(748\) 54.2487 14.5359i 1.98353 0.531485i
\(749\) −0.619174 + 0.619174i −0.0226241 + 0.0226241i
\(750\) 0 0
\(751\) −8.78461 + 5.07180i −0.320555 + 0.185072i −0.651640 0.758528i \(-0.725919\pi\)
0.331085 + 0.943601i \(0.392585\pi\)
\(752\) 12.6264 + 3.38323i 0.460437 + 0.123374i
\(753\) 0 0
\(754\) 3.26795 + 9.66025i 0.119012 + 0.351806i
\(755\) 32.7028i 1.19018i
\(756\) 0 0
\(757\) 14.8038 + 25.6410i 0.538055 + 0.931939i 0.999009 + 0.0445144i \(0.0141741\pi\)
−0.460954 + 0.887424i \(0.652493\pi\)
\(758\) 23.1451 40.0884i 0.840666 1.45608i
\(759\) 0 0
\(760\) 0 0
\(761\) 0.314566 + 1.17398i 0.0114030 + 0.0425566i 0.971393 0.237478i \(-0.0763207\pi\)
−0.959990 + 0.280035i \(0.909654\pi\)
\(762\) 0 0
\(763\) 4.13397 7.16025i 0.149660 0.259219i
\(764\) −13.0053 22.5259i −0.470516 0.814958i
\(765\) 0 0
\(766\) 20.0000i 0.722629i
\(767\) 0.226633 + 0.669942i 0.00818326 + 0.0241902i
\(768\) 0 0
\(769\) 33.4904 + 8.97372i 1.20769 + 0.323601i 0.805857 0.592110i \(-0.201705\pi\)
0.401837 + 0.915711i \(0.368372\pi\)
\(770\) 10.2784 5.93426i 0.370409 0.213856i
\(771\) 0 0
\(772\) −1.66025 + 1.66025i −0.0597539 + 0.0597539i
\(773\) −3.81294 + 1.02167i −0.137142 + 0.0367470i −0.326737 0.945115i \(-0.605949\pi\)
0.189595 + 0.981862i \(0.439282\pi\)
\(774\) 0 0
\(775\) 11.4186 + 11.4186i 0.410168 + 0.410168i
\(776\) 0 0
\(777\) 0 0
\(778\) 3.46410 12.9282i 0.124194 0.463499i
\(779\) −9.24316 −0.331170
\(780\) 0 0
\(781\) 65.7128 2.35139
\(782\) 8.48528 31.6675i 0.303433 1.13243i
\(783\) 0 0