# Properties

 Label 117.2.a.c Level $117$ Weight $2$ Character orbit 117.a Self dual yes Analytic conductor $0.934$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$117 = 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 117.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$0.934249703649$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{2})$$ Defining polynomial: $$x^{2} - 2$$ x^2 - 2 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 39) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta + 1) q^{2} + (2 \beta + 1) q^{4} - 2 \beta q^{5} - 2 \beta q^{7} + (\beta + 3) q^{8} +O(q^{10})$$ q + (b + 1) * q^2 + (2*b + 1) * q^4 - 2*b * q^5 - 2*b * q^7 + (b + 3) * q^8 $$q + (\beta + 1) q^{2} + (2 \beta + 1) q^{4} - 2 \beta q^{5} - 2 \beta q^{7} + (\beta + 3) q^{8} + ( - 2 \beta - 4) q^{10} + 2 q^{11} - q^{13} + ( - 2 \beta - 4) q^{14} + 3 q^{16} + (4 \beta - 2) q^{17} + 2 \beta q^{19} + ( - 2 \beta - 8) q^{20} + (2 \beta + 2) q^{22} + 4 q^{23} + 3 q^{25} + ( - \beta - 1) q^{26} + ( - 2 \beta - 8) q^{28} - 2 q^{29} + ( - 2 \beta - 4) q^{31} + (\beta - 3) q^{32} + (2 \beta + 6) q^{34} + 8 q^{35} + (4 \beta - 2) q^{37} + (2 \beta + 4) q^{38} + ( - 6 \beta - 4) q^{40} + ( - 2 \beta - 8) q^{41} + (4 \beta + 4) q^{43} + (4 \beta + 2) q^{44} + (4 \beta + 4) q^{46} + ( - 4 \beta + 6) q^{47} + q^{49} + (3 \beta + 3) q^{50} + ( - 2 \beta - 1) q^{52} + 2 q^{53} - 4 \beta q^{55} + ( - 6 \beta - 4) q^{56} + ( - 2 \beta - 2) q^{58} + (4 \beta - 2) q^{59} + ( - 8 \beta + 2) q^{61} + ( - 6 \beta - 8) q^{62} + ( - 2 \beta - 7) q^{64} + 2 \beta q^{65} + ( - 2 \beta + 4) q^{67} + 14 q^{68} + (8 \beta + 8) q^{70} - 2 q^{71} + (4 \beta + 6) q^{73} + (2 \beta + 6) q^{74} + (2 \beta + 8) q^{76} - 4 \beta q^{77} + 8 \beta q^{79} - 6 \beta q^{80} + ( - 10 \beta - 12) q^{82} + (4 \beta + 2) q^{83} + (4 \beta - 16) q^{85} + (8 \beta + 12) q^{86} + (2 \beta + 6) q^{88} + (2 \beta - 12) q^{89} + 2 \beta q^{91} + (8 \beta + 4) q^{92} + (2 \beta - 2) q^{94} - 8 q^{95} + ( - 4 \beta - 2) q^{97} + (\beta + 1) q^{98} +O(q^{100})$$ q + (b + 1) * q^2 + (2*b + 1) * q^4 - 2*b * q^5 - 2*b * q^7 + (b + 3) * q^8 + (-2*b - 4) * q^10 + 2 * q^11 - q^13 + (-2*b - 4) * q^14 + 3 * q^16 + (4*b - 2) * q^17 + 2*b * q^19 + (-2*b - 8) * q^20 + (2*b + 2) * q^22 + 4 * q^23 + 3 * q^25 + (-b - 1) * q^26 + (-2*b - 8) * q^28 - 2 * q^29 + (-2*b - 4) * q^31 + (b - 3) * q^32 + (2*b + 6) * q^34 + 8 * q^35 + (4*b - 2) * q^37 + (2*b + 4) * q^38 + (-6*b - 4) * q^40 + (-2*b - 8) * q^41 + (4*b + 4) * q^43 + (4*b + 2) * q^44 + (4*b + 4) * q^46 + (-4*b + 6) * q^47 + q^49 + (3*b + 3) * q^50 + (-2*b - 1) * q^52 + 2 * q^53 - 4*b * q^55 + (-6*b - 4) * q^56 + (-2*b - 2) * q^58 + (4*b - 2) * q^59 + (-8*b + 2) * q^61 + (-6*b - 8) * q^62 + (-2*b - 7) * q^64 + 2*b * q^65 + (-2*b + 4) * q^67 + 14 * q^68 + (8*b + 8) * q^70 - 2 * q^71 + (4*b + 6) * q^73 + (2*b + 6) * q^74 + (2*b + 8) * q^76 - 4*b * q^77 + 8*b * q^79 - 6*b * q^80 + (-10*b - 12) * q^82 + (4*b + 2) * q^83 + (4*b - 16) * q^85 + (8*b + 12) * q^86 + (2*b + 6) * q^88 + (2*b - 12) * q^89 + 2*b * q^91 + (8*b + 4) * q^92 + (2*b - 2) * q^94 - 8 * q^95 + (-4*b - 2) * q^97 + (b + 1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{2} + 2 q^{4} + 6 q^{8}+O(q^{10})$$ 2 * q + 2 * q^2 + 2 * q^4 + 6 * q^8 $$2 q + 2 q^{2} + 2 q^{4} + 6 q^{8} - 8 q^{10} + 4 q^{11} - 2 q^{13} - 8 q^{14} + 6 q^{16} - 4 q^{17} - 16 q^{20} + 4 q^{22} + 8 q^{23} + 6 q^{25} - 2 q^{26} - 16 q^{28} - 4 q^{29} - 8 q^{31} - 6 q^{32} + 12 q^{34} + 16 q^{35} - 4 q^{37} + 8 q^{38} - 8 q^{40} - 16 q^{41} + 8 q^{43} + 4 q^{44} + 8 q^{46} + 12 q^{47} + 2 q^{49} + 6 q^{50} - 2 q^{52} + 4 q^{53} - 8 q^{56} - 4 q^{58} - 4 q^{59} + 4 q^{61} - 16 q^{62} - 14 q^{64} + 8 q^{67} + 28 q^{68} + 16 q^{70} - 4 q^{71} + 12 q^{73} + 12 q^{74} + 16 q^{76} - 24 q^{82} + 4 q^{83} - 32 q^{85} + 24 q^{86} + 12 q^{88} - 24 q^{89} + 8 q^{92} - 4 q^{94} - 16 q^{95} - 4 q^{97} + 2 q^{98}+O(q^{100})$$ 2 * q + 2 * q^2 + 2 * q^4 + 6 * q^8 - 8 * q^10 + 4 * q^11 - 2 * q^13 - 8 * q^14 + 6 * q^16 - 4 * q^17 - 16 * q^20 + 4 * q^22 + 8 * q^23 + 6 * q^25 - 2 * q^26 - 16 * q^28 - 4 * q^29 - 8 * q^31 - 6 * q^32 + 12 * q^34 + 16 * q^35 - 4 * q^37 + 8 * q^38 - 8 * q^40 - 16 * q^41 + 8 * q^43 + 4 * q^44 + 8 * q^46 + 12 * q^47 + 2 * q^49 + 6 * q^50 - 2 * q^52 + 4 * q^53 - 8 * q^56 - 4 * q^58 - 4 * q^59 + 4 * q^61 - 16 * q^62 - 14 * q^64 + 8 * q^67 + 28 * q^68 + 16 * q^70 - 4 * q^71 + 12 * q^73 + 12 * q^74 + 16 * q^76 - 24 * q^82 + 4 * q^83 - 32 * q^85 + 24 * q^86 + 12 * q^88 - 24 * q^89 + 8 * q^92 - 4 * q^94 - 16 * q^95 - 4 * q^97 + 2 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.41421 1.41421
−0.414214 0 −1.82843 2.82843 0 2.82843 1.58579 0 −1.17157
1.2 2.41421 0 3.82843 −2.82843 0 −2.82843 4.41421 0 −6.82843
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.2.a.c 2
3.b odd 2 1 39.2.a.b 2
4.b odd 2 1 1872.2.a.w 2
5.b even 2 1 2925.2.a.v 2
5.c odd 4 2 2925.2.c.u 4
7.b odd 2 1 5733.2.a.u 2
8.b even 2 1 7488.2.a.cl 2
8.d odd 2 1 7488.2.a.co 2
9.c even 3 2 1053.2.e.e 4
9.d odd 6 2 1053.2.e.m 4
12.b even 2 1 624.2.a.k 2
13.b even 2 1 1521.2.a.f 2
13.d odd 4 2 1521.2.b.j 4
15.d odd 2 1 975.2.a.l 2
15.e even 4 2 975.2.c.h 4
21.c even 2 1 1911.2.a.h 2
24.f even 2 1 2496.2.a.bi 2
24.h odd 2 1 2496.2.a.bf 2
33.d even 2 1 4719.2.a.p 2
39.d odd 2 1 507.2.a.h 2
39.f even 4 2 507.2.b.e 4
39.h odd 6 2 507.2.e.d 4
39.i odd 6 2 507.2.e.h 4
39.k even 12 4 507.2.j.f 8
156.h even 2 1 8112.2.a.bm 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.2.a.b 2 3.b odd 2 1
117.2.a.c 2 1.a even 1 1 trivial
507.2.a.h 2 39.d odd 2 1
507.2.b.e 4 39.f even 4 2
507.2.e.d 4 39.h odd 6 2
507.2.e.h 4 39.i odd 6 2
507.2.j.f 8 39.k even 12 4
624.2.a.k 2 12.b even 2 1
975.2.a.l 2 15.d odd 2 1
975.2.c.h 4 15.e even 4 2
1053.2.e.e 4 9.c even 3 2
1053.2.e.m 4 9.d odd 6 2
1521.2.a.f 2 13.b even 2 1
1521.2.b.j 4 13.d odd 4 2
1872.2.a.w 2 4.b odd 2 1
1911.2.a.h 2 21.c even 2 1
2496.2.a.bf 2 24.h odd 2 1
2496.2.a.bi 2 24.f even 2 1
2925.2.a.v 2 5.b even 2 1
2925.2.c.u 4 5.c odd 4 2
4719.2.a.p 2 33.d even 2 1
5733.2.a.u 2 7.b odd 2 1
7488.2.a.cl 2 8.b even 2 1
7488.2.a.co 2 8.d odd 2 1
8112.2.a.bm 2 156.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} - 2T_{2} - 1$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(117))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - 2T - 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} - 8$$
$7$ $$T^{2} - 8$$
$11$ $$(T - 2)^{2}$$
$13$ $$(T + 1)^{2}$$
$17$ $$T^{2} + 4T - 28$$
$19$ $$T^{2} - 8$$
$23$ $$(T - 4)^{2}$$
$29$ $$(T + 2)^{2}$$
$31$ $$T^{2} + 8T + 8$$
$37$ $$T^{2} + 4T - 28$$
$41$ $$T^{2} + 16T + 56$$
$43$ $$T^{2} - 8T - 16$$
$47$ $$T^{2} - 12T + 4$$
$53$ $$(T - 2)^{2}$$
$59$ $$T^{2} + 4T - 28$$
$61$ $$T^{2} - 4T - 124$$
$67$ $$T^{2} - 8T + 8$$
$71$ $$(T + 2)^{2}$$
$73$ $$T^{2} - 12T + 4$$
$79$ $$T^{2} - 128$$
$83$ $$T^{2} - 4T - 28$$
$89$ $$T^{2} + 24T + 136$$
$97$ $$T^{2} + 4T - 28$$