Properties

Label 117.18.b.d
Level $117$
Weight $18$
Character orbit 117.b
Analytic conductor $214.370$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,18,Mod(64,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.64");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 117.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(214.369842193\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 1948739 x^{18} + 1581500033760 x^{16} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: multiple of \( 2^{59}\cdot 3^{31}\cdot 13^{11} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 63802) q^{4} + ( - \beta_{7} - 55 \beta_1) q^{5} + ( - \beta_{9} - \beta_{7} - 4977 \beta_1) q^{7} + (\beta_{8} - 10 \beta_{7} - 63497 \beta_1) q^{8} + ( - \beta_{3} - 370 \beta_{2} + 10658279) q^{10}+ \cdots + (464407 \beta_{19} - 96475 \beta_{18} + \cdots + 2860987) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 1276038 q^{4} + 213164840 q^{10} + 1624882760 q^{13} + 19397348268 q^{14} + 80213919634 q^{16} + 41035006032 q^{17} + 117544341452 q^{22} + 454322549928 q^{23} - 954883745412 q^{25} - 3740807243628 q^{26}+ \cdots - 24\!\cdots\!00 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 1948739 x^{18} + 1581500033760 x^{16} + \cdots + 11\!\cdots\!00 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 194874 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 41\!\cdots\!13 \nu^{18} + \cdots - 67\!\cdots\!80 ) / 53\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 26\!\cdots\!83 \nu^{18} + \cdots - 57\!\cdots\!00 ) / 24\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 10\!\cdots\!73 \nu^{18} + \cdots + 17\!\cdots\!40 ) / 12\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 46\!\cdots\!01 \nu^{18} + \cdots + 29\!\cdots\!00 ) / 48\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 78\!\cdots\!23 \nu^{19} + \cdots + 32\!\cdots\!76 \nu ) / 74\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 78\!\cdots\!23 \nu^{19} + \cdots + 56\!\cdots\!32 \nu ) / 74\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 16\!\cdots\!79 \nu^{19} + \cdots - 48\!\cdots\!76 \nu ) / 67\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 36\!\cdots\!13 \nu^{19} + \cdots - 55\!\cdots\!16 \nu ) / 67\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 23\!\cdots\!49 \nu^{19} + \cdots - 74\!\cdots\!40 ) / 83\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 23\!\cdots\!49 \nu^{19} + \cdots + 17\!\cdots\!20 ) / 83\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 34\!\cdots\!43 \nu^{19} + \cdots + 39\!\cdots\!20 ) / 67\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 44\!\cdots\!69 \nu^{19} + \cdots - 12\!\cdots\!20 ) / 55\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 21\!\cdots\!77 \nu^{19} + \cdots + 50\!\cdots\!20 ) / 67\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 27\!\cdots\!67 \nu^{19} + \cdots + 22\!\cdots\!80 ) / 74\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 13\!\cdots\!01 \nu^{19} + \cdots + 65\!\cdots\!20 ) / 33\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 13\!\cdots\!77 \nu^{19} + \cdots - 64\!\cdots\!60 ) / 33\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 18\!\cdots\!05 \nu^{19} + \cdots - 41\!\cdots\!80 ) / 22\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 194874 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{8} - 10\beta_{7} - 325641\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{13} + 2 \beta_{11} + \beta_{10} + \beta_{9} + \beta_{7} + \beta_{4} + 6 \beta_{3} + \cdots + 63458408098 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 76 \beta_{19} - 25 \beta_{18} - 33 \beta_{17} + 33 \beta_{16} + 27 \beta_{15} - 27 \beta_{13} + \cdots - 182 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 18896 \beta_{15} - 51192 \beta_{14} - 727135 \beta_{13} - 21596 \beta_{12} - 1549042 \beta_{11} + \cdots - 24\!\cdots\!02 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 75337700 \beta_{19} + 16568391 \beta_{18} + 18034431 \beta_{17} - 25488991 \beta_{16} + \cdots + 149879562 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 21241054384 \beta_{15} + 47417563432 \beta_{14} + 415880935773 \beta_{13} + 23489624148 \beta_{12} + \cdots + 98\!\cdots\!38 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 52327426431724 \beta_{19} - 7741148008053 \beta_{18} - 6891228340957 \beta_{17} + 14939170346045 \beta_{16} + \cdots - 91183454271134 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 15\!\cdots\!36 \beta_{15} + \cdots - 42\!\cdots\!54 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 31\!\cdots\!84 \beta_{19} + \cdots + 49\!\cdots\!94 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 10\!\cdots\!28 \beta_{15} + \cdots + 18\!\cdots\!94 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 17\!\cdots\!20 \beta_{19} + \cdots - 25\!\cdots\!82 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 58\!\cdots\!16 \beta_{15} + \cdots - 86\!\cdots\!54 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 94\!\cdots\!68 \beta_{19} + \cdots + 13\!\cdots\!02 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 32\!\cdots\!04 \beta_{15} + \cdots + 40\!\cdots\!18 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 49\!\cdots\!08 \beta_{19} + \cdots - 66\!\cdots\!78 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 17\!\cdots\!80 \beta_{15} + \cdots - 19\!\cdots\!94 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 25\!\cdots\!76 \beta_{19} + \cdots + 33\!\cdots\!86 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
702.468i
599.814i
593.865i
493.882i
487.274i
335.072i
259.347i
252.345i
116.120i
69.1047i
69.1047i
116.120i
252.345i
259.347i
335.072i
487.274i
493.882i
593.865i
599.814i
702.468i
702.468i 0 −362389. 46101.0i 0 1.54285e7i 1.62492e8i 0 3.23845e7
64.2 599.814i 0 −228705. 503961.i 0 8.24822e6i 5.85614e7i 0 −3.02283e8
64.3 593.865i 0 −221603. 645057.i 0 2.60356e7i 5.37634e7i 0 3.83076e8
64.4 493.882i 0 −112847. 1.61969e6i 0 1.46269e7i 9.00098e6i 0 7.99936e8
64.5 487.274i 0 −106364. 479196.i 0 4.45969e6i 1.20396e7i 0 −2.33500e8
64.6 335.072i 0 18799.0 1.41968e6i 0 1.14676e7i 5.02175e7i 0 −4.75693e8
64.7 259.347i 0 63811.1 1.10108e6i 0 1.56033e7i 5.05424e7i 0 −2.85562e8
64.8 252.345i 0 67393.9 293664.i 0 1.44137e7i 5.00819e7i 0 7.41048e7
64.9 116.120i 0 117588. 344995.i 0 2.96717e7i 2.88745e7i 0 4.00610e7
64.10 69.1047i 0 126297. 1.07168e6i 0 500846.i 1.77854e7i 0 7.40578e7
64.11 69.1047i 0 126297. 1.07168e6i 0 500846.i 1.77854e7i 0 7.40578e7
64.12 116.120i 0 117588. 344995.i 0 2.96717e7i 2.88745e7i 0 4.00610e7
64.13 252.345i 0 67393.9 293664.i 0 1.44137e7i 5.00819e7i 0 7.41048e7
64.14 259.347i 0 63811.1 1.10108e6i 0 1.56033e7i 5.05424e7i 0 −2.85562e8
64.15 335.072i 0 18799.0 1.41968e6i 0 1.14676e7i 5.02175e7i 0 −4.75693e8
64.16 487.274i 0 −106364. 479196.i 0 4.45969e6i 1.20396e7i 0 −2.33500e8
64.17 493.882i 0 −112847. 1.61969e6i 0 1.46269e7i 9.00098e6i 0 7.99936e8
64.18 593.865i 0 −221603. 645057.i 0 2.60356e7i 5.37634e7i 0 3.83076e8
64.19 599.814i 0 −228705. 503961.i 0 8.24822e6i 5.85614e7i 0 −3.02283e8
64.20 702.468i 0 −362389. 46101.0i 0 1.54285e7i 1.62492e8i 0 3.23845e7
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.18.b.d 20
3.b odd 2 1 39.18.b.b 20
13.b even 2 1 inner 117.18.b.d 20
39.d odd 2 1 39.18.b.b 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.18.b.b 20 3.b odd 2 1
39.18.b.b 20 39.d odd 2 1
117.18.b.d 20 1.a even 1 1 trivial
117.18.b.d 20 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 1948739 T_{2}^{18} + 1581500033760 T_{2}^{16} + \cdots + 11\!\cdots\!00 \) acting on \(S_{18}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 38\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 68\!\cdots\!44 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 23\!\cdots\!49 \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots - 21\!\cdots\!08)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 27\!\cdots\!00 \) Copy content Toggle raw display
$23$ \( (T^{10} + \cdots - 24\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots + 82\!\cdots\!60)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 63\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 50\!\cdots\!40)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 89\!\cdots\!56 \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots + 52\!\cdots\!20)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 15\!\cdots\!64 \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots - 77\!\cdots\!20)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 68\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots - 25\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 24\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 70\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 44\!\cdots\!00 \) Copy content Toggle raw display
show more
show less