Properties

Label 117.18.b.c
Level $117$
Weight $18$
Character orbit 117.b
Analytic conductor $214.370$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,18,Mod(64,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 18, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.64");
 
S:= CuspForms(chi, 18);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 117.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(214.369842193\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2031617 x^{18} + 1715857968816 x^{16} + \cdots + 62\!\cdots\!36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: multiple of \( 2^{43}\cdot 3^{33}\cdot 13^{11} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 72090) q^{4} + ( - \beta_{8} + 285 \beta_1) q^{5} + (\beta_{10} - 2 \beta_{8} + 1748 \beta_1) q^{7} + (\beta_{9} + 5 \beta_{8} - 80318 \beta_1) q^{8} + (\beta_{5} + 233 \beta_{3} + \cdots - 57886098) q^{10}+ \cdots + (96503 \beta_{19} - 492387 \beta_{18} + \cdots - 1728630) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 1441794 q^{4} - 1157719078 q^{10} + 2164505000 q^{13} - 7100918310 q^{14} + 137372157250 q^{16} + 41886537180 q^{17} - 517583912680 q^{22} - 222078810480 q^{23} - 5105437226376 q^{25} + 3236456408130 q^{26}+ \cdots + 46\!\cdots\!04 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 2031617 x^{18} + 1715857968816 x^{16} + \cdots + 62\!\cdots\!36 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 203162 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 13\!\cdots\!83 \nu^{18} + \cdots - 13\!\cdots\!84 ) / 35\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 42\!\cdots\!63 \nu^{18} + \cdots + 55\!\cdots\!60 ) / 39\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 63\!\cdots\!07 \nu^{18} + \cdots - 67\!\cdots\!40 ) / 39\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 10\!\cdots\!91 \nu^{18} + \cdots - 75\!\cdots\!00 ) / 19\!\cdots\!20 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 62\!\cdots\!73 \nu^{18} + \cdots - 40\!\cdots\!08 ) / 14\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 25\!\cdots\!77 \nu^{19} + \cdots - 47\!\cdots\!56 \nu ) / 73\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 25\!\cdots\!77 \nu^{19} + \cdots + 97\!\cdots\!12 \nu ) / 14\!\cdots\!88 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 36\!\cdots\!71 \nu^{19} + \cdots - 29\!\cdots\!08 \nu ) / 23\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 40\!\cdots\!67 \nu^{19} + \cdots - 25\!\cdots\!24 \nu ) / 23\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 14\!\cdots\!41 \nu^{19} + \cdots + 12\!\cdots\!36 \nu ) / 23\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 19\!\cdots\!19 \nu^{19} + \cdots - 17\!\cdots\!60 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 19\!\cdots\!19 \nu^{19} + \cdots + 24\!\cdots\!76 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 79\!\cdots\!59 \nu^{19} + \cdots + 24\!\cdots\!20 ) / 23\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 98\!\cdots\!45 \nu^{19} + \cdots + 95\!\cdots\!36 \nu ) / 10\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 18\!\cdots\!11 \nu^{19} + \cdots - 29\!\cdots\!80 ) / 98\!\cdots\!40 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 12\!\cdots\!33 \nu^{19} + \cdots + 14\!\cdots\!04 ) / 23\!\cdots\!60 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 86\!\cdots\!39 \nu^{19} + \cdots - 10\!\cdots\!32 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 203162 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} + 5\beta_{8} - 342462\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 6\beta_{5} + \beta_{4} - 29285\beta_{3} - 461416\beta_{2} + 69575308128 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2 \beta_{19} - 3 \beta_{18} - 77 \beta_{17} + 35 \beta_{16} - 77 \beta_{15} + 977 \beta_{13} + \cdots - 375 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 19120 \beta_{17} + 20080 \beta_{15} + 32160 \beta_{14} + 218320 \beta_{13} + 57360 \beta_{11} + \cdots - 27\!\cdots\!48 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 3993642 \beta_{19} + 4757943 \beta_{18} + 60371913 \beta_{17} - 25010055 \beta_{16} + \cdots + 284356395 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 16064571760 \beta_{17} - 18771196240 \beta_{15} - 26788390560 \beta_{14} - 187464291280 \beta_{13} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 3842331412810 \beta_{19} - 3263078487015 \beta_{18} - 34759834780825 \beta_{17} + 14280768762295 \beta_{16} + \cdots - 159588354104475 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 94\!\cdots\!20 \beta_{17} + \cdots - 48\!\cdots\!72 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 27\!\cdots\!66 \beta_{19} + \cdots + 80\!\cdots\!15 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 48\!\cdots\!60 \beta_{17} + \cdots + 21\!\cdots\!76 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 17\!\cdots\!94 \beta_{19} + \cdots - 39\!\cdots\!75 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 23\!\cdots\!00 \beta_{17} + \cdots - 93\!\cdots\!72 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 10\!\cdots\!38 \beta_{19} + \cdots + 18\!\cdots\!95 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 11\!\cdots\!80 \beta_{17} + \cdots + 41\!\cdots\!36 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 56\!\cdots\!98 \beta_{19} + \cdots - 88\!\cdots\!75 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 53\!\cdots\!40 \beta_{17} + \cdots - 18\!\cdots\!36 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 30\!\cdots\!26 \beta_{19} + \cdots + 41\!\cdots\!55 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
687.035i
653.708i
626.928i
483.872i
476.204i
354.573i
338.300i
157.503i
91.7275i
70.2433i
70.2433i
91.7275i
157.503i
338.300i
354.573i
476.204i
483.872i
626.928i
653.708i
687.035i
687.035i 0 −340946. 1.30332e6i 0 225885.i 1.44191e8i 0 8.95425e8
64.2 653.708i 0 −296262. 1.18636e6i 0 6.26004e6i 1.07986e8i 0 −7.75534e8
64.3 626.928i 0 −261967. 1.55925e6i 0 2.20400e7i 8.20619e7i 0 −9.77538e8
64.4 483.872i 0 −103060. 411183.i 0 2.45337e7i 1.35541e7i 0 −1.98960e8
64.5 476.204i 0 −95698.4 450866.i 0 9.05916e6i 1.68451e7i 0 2.14704e8
64.6 354.573i 0 5349.95 907528.i 0 1.26328e6i 4.83715e7i 0 3.21785e8
64.7 338.300i 0 16625.1 129285.i 0 1.08835e7i 4.99659e7i 0 −4.37372e7
64.8 157.503i 0 106265. 861342.i 0 2.37605e7i 3.73812e7i 0 1.35664e8
64.9 91.7275i 0 122658. 430609.i 0 1.71984e7i 2.32740e7i 0 −3.94986e7
64.10 70.2433i 0 126138. 1.58264e6i 0 1.05039e7i 1.80673e7i 0 −1.11170e8
64.11 70.2433i 0 126138. 1.58264e6i 0 1.05039e7i 1.80673e7i 0 −1.11170e8
64.12 91.7275i 0 122658. 430609.i 0 1.71984e7i 2.32740e7i 0 −3.94986e7
64.13 157.503i 0 106265. 861342.i 0 2.37605e7i 3.73812e7i 0 1.35664e8
64.14 338.300i 0 16625.1 129285.i 0 1.08835e7i 4.99659e7i 0 −4.37372e7
64.15 354.573i 0 5349.95 907528.i 0 1.26328e6i 4.83715e7i 0 3.21785e8
64.16 476.204i 0 −95698.4 450866.i 0 9.05916e6i 1.68451e7i 0 2.14704e8
64.17 483.872i 0 −103060. 411183.i 0 2.45337e7i 1.35541e7i 0 −1.98960e8
64.18 626.928i 0 −261967. 1.55925e6i 0 2.20400e7i 8.20619e7i 0 −9.77538e8
64.19 653.708i 0 −296262. 1.18636e6i 0 6.26004e6i 1.07986e8i 0 −7.75534e8
64.20 687.035i 0 −340946. 1.30332e6i 0 225885.i 1.44191e8i 0 8.95425e8
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.18.b.c 20
3.b odd 2 1 13.18.b.a 20
13.b even 2 1 inner 117.18.b.c 20
39.d odd 2 1 13.18.b.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.18.b.a 20 3.b odd 2 1
13.18.b.a 20 39.d odd 2 1
117.18.b.c 20 1.a even 1 1 trivial
117.18.b.c 20 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 2031617 T_{2}^{18} + 1715857968816 T_{2}^{16} + \cdots + 62\!\cdots\!36 \) acting on \(S_{18}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + \cdots + 62\!\cdots\!36 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + \cdots + 94\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 37\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{20} + \cdots + 23\!\cdots\!49 \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots + 71\!\cdots\!00)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 92\!\cdots\!56 \) Copy content Toggle raw display
$23$ \( (T^{10} + \cdots - 94\!\cdots\!96)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + \cdots + 53\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 42\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{20} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$41$ \( T^{20} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 41\!\cdots\!16)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 63\!\cdots\!96 \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots - 78\!\cdots\!56)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 12\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots - 90\!\cdots\!96)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 88\!\cdots\!76 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 23\!\cdots\!36 \) Copy content Toggle raw display
$79$ \( (T^{10} + \cdots - 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 21\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 49\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 41\!\cdots\!96 \) Copy content Toggle raw display
show more
show less