Properties

Label 117.12.b.e.64.6
Level $117$
Weight $12$
Character 117.64
Analytic conductor $89.896$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,12,Mod(64,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.64"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 117.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,-12288] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(89.8961521255\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 6409296870 x^{18} + \cdots + 25\!\cdots\!25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{56}\cdot 3^{31}\cdot 5^{4}\cdot 11^{4}\cdot 13^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.6
Root \(-37188.3i\) of defining polynomial
Character \(\chi\) \(=\) 117.64
Dual form 117.12.b.e.64.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-38.6066i q^{2} +557.529 q^{4} +1195.10i q^{5} +73143.0i q^{7} -100591. i q^{8} +46138.6 q^{10} -954939. i q^{11} +(-1.02805e6 + 857481. i) q^{13} +2.82380e6 q^{14} -2.74164e6 q^{16} +2.94883e6 q^{17} +1.05100e7i q^{19} +666301. i q^{20} -3.68670e7 q^{22} -5.56429e7 q^{23} +4.73999e7 q^{25} +(3.31044e7 + 3.96895e7i) q^{26} +4.07793e7i q^{28} +4.50346e7 q^{29} -1.42399e8i q^{31} -1.00164e8i q^{32} -1.13844e8i q^{34} -8.74129e7 q^{35} -4.72518e8i q^{37} +4.05756e8 q^{38} +1.20216e8 q^{40} -7.78714e7i q^{41} +4.31061e8 q^{43} -5.32407e8i q^{44} +2.14819e9i q^{46} -5.63078e8i q^{47} -3.37257e9 q^{49} -1.82995e9i q^{50} +(-5.73168e8 + 4.78071e8i) q^{52} +1.65808e9 q^{53} +1.14124e9 q^{55} +7.35750e9 q^{56} -1.73864e9i q^{58} -3.87972e9i q^{59} +1.04030e10 q^{61} -5.49754e9 q^{62} -9.48188e9 q^{64} +(-1.02477e9 - 1.22862e9i) q^{65} -1.38881e10i q^{67} +1.64406e9 q^{68} +3.37472e9i q^{70} -1.13127e10i q^{71} -1.01627e10i q^{73} -1.82423e10 q^{74} +5.85964e9i q^{76} +6.98471e10 q^{77} -2.77723e9 q^{79} -3.27653e9i q^{80} -3.00635e9 q^{82} -3.88719e10i q^{83} +3.52414e9i q^{85} -1.66418e10i q^{86} -9.60580e10 q^{88} +2.56648e9i q^{89} +(-6.27187e10 - 7.51946e10i) q^{91} -3.10226e10 q^{92} -2.17385e10 q^{94} -1.25605e10 q^{95} +3.20279e10i q^{97} +1.30203e11i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 12288 q^{4} - 2212240 q^{10} - 1708564 q^{13} + 32533888 q^{16} - 89284144 q^{22} + 209701380 q^{25} + 309455680 q^{40} + 2936996032 q^{43} - 10965350212 q^{49} + 4282707936 q^{52} + 6622126880 q^{55}+ \cdots + 330546354704 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 38.6066i 0.853094i −0.904465 0.426547i \(-0.859730\pi\)
0.904465 0.426547i \(-0.140270\pi\)
\(3\) 0 0
\(4\) 557.529 0.272231
\(5\) 1195.10i 0.171028i 0.996337 + 0.0855141i \(0.0272533\pi\)
−0.996337 + 0.0855141i \(0.972747\pi\)
\(6\) 0 0
\(7\) 73143.0i 1.64488i 0.568854 + 0.822438i \(0.307387\pi\)
−0.568854 + 0.822438i \(0.692613\pi\)
\(8\) 100591.i 1.08533i
\(9\) 0 0
\(10\) 46138.6 0.145903
\(11\) 954939.i 1.78779i −0.448279 0.893894i \(-0.647963\pi\)
0.448279 0.893894i \(-0.352037\pi\)
\(12\) 0 0
\(13\) −1.02805e6 + 857481.i −0.767937 + 0.640525i
\(14\) 2.82380e6 1.40323
\(15\) 0 0
\(16\) −2.74164e6 −0.653659
\(17\) 2.94883e6 0.503711 0.251855 0.967765i \(-0.418959\pi\)
0.251855 + 0.967765i \(0.418959\pi\)
\(18\) 0 0
\(19\) 1.05100e7i 0.973775i 0.873465 + 0.486888i \(0.161868\pi\)
−0.873465 + 0.486888i \(0.838132\pi\)
\(20\) 666301.i 0.0465592i
\(21\) 0 0
\(22\) −3.68670e7 −1.52515
\(23\) −5.56429e7 −1.80263 −0.901316 0.433162i \(-0.857398\pi\)
−0.901316 + 0.433162i \(0.857398\pi\)
\(24\) 0 0
\(25\) 4.73999e7 0.970749
\(26\) 3.31044e7 + 3.96895e7i 0.546428 + 0.655122i
\(27\) 0 0
\(28\) 4.07793e7i 0.447787i
\(29\) 4.50346e7 0.407716 0.203858 0.979000i \(-0.434652\pi\)
0.203858 + 0.979000i \(0.434652\pi\)
\(30\) 0 0
\(31\) 1.42399e8i 0.893340i −0.894699 0.446670i \(-0.852610\pi\)
0.894699 0.446670i \(-0.147390\pi\)
\(32\) 1.00164e8i 0.527700i
\(33\) 0 0
\(34\) 1.13844e8i 0.429712i
\(35\) −8.74129e7 −0.281320
\(36\) 0 0
\(37\) 4.72518e8i 1.12023i −0.828413 0.560117i \(-0.810756\pi\)
0.828413 0.560117i \(-0.189244\pi\)
\(38\) 4.05756e8 0.830721
\(39\) 0 0
\(40\) 1.20216e8 0.185623
\(41\) 7.78714e7i 0.104970i −0.998622 0.0524852i \(-0.983286\pi\)
0.998622 0.0524852i \(-0.0167142\pi\)
\(42\) 0 0
\(43\) 4.31061e8 0.447159 0.223580 0.974686i \(-0.428226\pi\)
0.223580 + 0.974686i \(0.428226\pi\)
\(44\) 5.32407e8i 0.486691i
\(45\) 0 0
\(46\) 2.14819e9i 1.53781i
\(47\) 5.63078e8i 0.358121i −0.983838 0.179061i \(-0.942694\pi\)
0.983838 0.179061i \(-0.0573059\pi\)
\(48\) 0 0
\(49\) −3.37257e9 −1.70562
\(50\) 1.82995e9i 0.828140i
\(51\) 0 0
\(52\) −5.73168e8 + 4.78071e8i −0.209056 + 0.174371i
\(53\) 1.65808e9 0.544613 0.272307 0.962211i \(-0.412214\pi\)
0.272307 + 0.962211i \(0.412214\pi\)
\(54\) 0 0
\(55\) 1.14124e9 0.305762
\(56\) 7.35750e9 1.78524
\(57\) 0 0
\(58\) 1.73864e9i 0.347820i
\(59\) 3.87972e9i 0.706503i −0.935528 0.353252i \(-0.885076\pi\)
0.935528 0.353252i \(-0.114924\pi\)
\(60\) 0 0
\(61\) 1.04030e10 1.57704 0.788522 0.615006i \(-0.210846\pi\)
0.788522 + 0.615006i \(0.210846\pi\)
\(62\) −5.49754e9 −0.762103
\(63\) 0 0
\(64\) −9.48188e9 −1.10384
\(65\) −1.02477e9 1.22862e9i −0.109548 0.131339i
\(66\) 0 0
\(67\) 1.38881e10i 1.25670i −0.777930 0.628351i \(-0.783730\pi\)
0.777930 0.628351i \(-0.216270\pi\)
\(68\) 1.64406e9 0.137126
\(69\) 0 0
\(70\) 3.37472e9i 0.239993i
\(71\) 1.13127e10i 0.744127i −0.928207 0.372063i \(-0.878650\pi\)
0.928207 0.372063i \(-0.121350\pi\)
\(72\) 0 0
\(73\) 1.01627e10i 0.573766i −0.957966 0.286883i \(-0.907381\pi\)
0.957966 0.286883i \(-0.0926191\pi\)
\(74\) −1.82423e10 −0.955665
\(75\) 0 0
\(76\) 5.85964e9i 0.265092i
\(77\) 6.98471e10 2.94069
\(78\) 0 0
\(79\) −2.77723e9 −0.101546 −0.0507730 0.998710i \(-0.516168\pi\)
−0.0507730 + 0.998710i \(0.516168\pi\)
\(80\) 3.27653e9i 0.111794i
\(81\) 0 0
\(82\) −3.00635e9 −0.0895495
\(83\) 3.88719e10i 1.08319i −0.840639 0.541597i \(-0.817820\pi\)
0.840639 0.541597i \(-0.182180\pi\)
\(84\) 0 0
\(85\) 3.52414e9i 0.0861487i
\(86\) 1.66418e10i 0.381469i
\(87\) 0 0
\(88\) −9.60580e10 −1.94034
\(89\) 2.56648e9i 0.0487184i 0.999703 + 0.0243592i \(0.00775453\pi\)
−0.999703 + 0.0243592i \(0.992245\pi\)
\(90\) 0 0
\(91\) −6.27187e10 7.51946e10i −1.05358 1.26316i
\(92\) −3.10226e10 −0.490732
\(93\) 0 0
\(94\) −2.17385e10 −0.305511
\(95\) −1.25605e10 −0.166543
\(96\) 0 0
\(97\) 3.20279e10i 0.378691i 0.981911 + 0.189345i \(0.0606366\pi\)
−0.981911 + 0.189345i \(0.939363\pi\)
\(98\) 1.30203e11i 1.45505i
\(99\) 0 0
\(100\) 2.64268e10 0.264268
\(101\) −1.10243e11 −1.04372 −0.521861 0.853030i \(-0.674762\pi\)
−0.521861 + 0.853030i \(0.674762\pi\)
\(102\) 0 0
\(103\) −1.94652e10 −0.165445 −0.0827227 0.996573i \(-0.526362\pi\)
−0.0827227 + 0.996573i \(0.526362\pi\)
\(104\) 8.62546e10 + 1.03412e11i 0.695183 + 0.833467i
\(105\) 0 0
\(106\) 6.40128e10i 0.464606i
\(107\) −2.13566e11 −1.47205 −0.736023 0.676957i \(-0.763298\pi\)
−0.736023 + 0.676957i \(0.763298\pi\)
\(108\) 0 0
\(109\) 2.44818e11i 1.52404i −0.647552 0.762021i \(-0.724207\pi\)
0.647552 0.762021i \(-0.275793\pi\)
\(110\) 4.40596e10i 0.260844i
\(111\) 0 0
\(112\) 2.00532e11i 1.07519i
\(113\) 2.16778e11 1.10684 0.553419 0.832903i \(-0.313323\pi\)
0.553419 + 0.832903i \(0.313323\pi\)
\(114\) 0 0
\(115\) 6.64987e10i 0.308301i
\(116\) 2.51081e10 0.110993
\(117\) 0 0
\(118\) −1.49783e11 −0.602713
\(119\) 2.15686e11i 0.828542i
\(120\) 0 0
\(121\) −6.26597e11 −2.19618
\(122\) 4.01624e11i 1.34537i
\(123\) 0 0
\(124\) 7.93915e10i 0.243195i
\(125\) 1.15002e11i 0.337054i
\(126\) 0 0
\(127\) 3.69355e11 0.992026 0.496013 0.868315i \(-0.334797\pi\)
0.496013 + 0.868315i \(0.334797\pi\)
\(128\) 1.60927e11i 0.413976i
\(129\) 0 0
\(130\) −4.74328e10 + 3.95630e10i −0.112044 + 0.0934546i
\(131\) −6.58983e11 −1.49239 −0.746195 0.665727i \(-0.768121\pi\)
−0.746195 + 0.665727i \(0.768121\pi\)
\(132\) 0 0
\(133\) −7.68734e11 −1.60174
\(134\) −5.36174e11 −1.07208
\(135\) 0 0
\(136\) 2.96625e11i 0.546693i
\(137\) 8.45092e11i 1.49603i 0.663681 + 0.748016i \(0.268993\pi\)
−0.663681 + 0.748016i \(0.731007\pi\)
\(138\) 0 0
\(139\) −9.38004e11 −1.53329 −0.766643 0.642074i \(-0.778074\pi\)
−0.766643 + 0.642074i \(0.778074\pi\)
\(140\) −4.87353e10 −0.0765842
\(141\) 0 0
\(142\) −4.36747e11 −0.634810
\(143\) 8.18842e11 + 9.81725e11i 1.14512 + 1.37291i
\(144\) 0 0
\(145\) 5.38207e10i 0.0697310i
\(146\) −3.92349e11 −0.489476
\(147\) 0 0
\(148\) 2.63443e11i 0.304963i
\(149\) 1.14328e12i 1.27535i −0.770305 0.637675i \(-0.779896\pi\)
0.770305 0.637675i \(-0.220104\pi\)
\(150\) 0 0
\(151\) 1.13990e11i 0.118166i −0.998253 0.0590832i \(-0.981182\pi\)
0.998253 0.0590832i \(-0.0188177\pi\)
\(152\) 1.05721e12 1.05687
\(153\) 0 0
\(154\) 2.69656e12i 2.50868i
\(155\) 1.70180e11 0.152786
\(156\) 0 0
\(157\) −4.68773e10 −0.0392207 −0.0196103 0.999808i \(-0.506243\pi\)
−0.0196103 + 0.999808i \(0.506243\pi\)
\(158\) 1.07219e11i 0.0866282i
\(159\) 0 0
\(160\) 1.19706e11 0.0902516
\(161\) 4.06989e12i 2.96511i
\(162\) 0 0
\(163\) 8.59928e11i 0.585370i −0.956209 0.292685i \(-0.905451\pi\)
0.956209 0.292685i \(-0.0945487\pi\)
\(164\) 4.34156e10i 0.0285762i
\(165\) 0 0
\(166\) −1.50071e12 −0.924065
\(167\) 1.12243e12i 0.668682i −0.942452 0.334341i \(-0.891486\pi\)
0.942452 0.334341i \(-0.108514\pi\)
\(168\) 0 0
\(169\) 3.21613e11 1.76307e12i 0.179455 0.983766i
\(170\) 1.36055e11 0.0734929
\(171\) 0 0
\(172\) 2.40329e11 0.121731
\(173\) 2.62834e12 1.28952 0.644760 0.764385i \(-0.276957\pi\)
0.644760 + 0.764385i \(0.276957\pi\)
\(174\) 0 0
\(175\) 3.46697e12i 1.59676i
\(176\) 2.61810e12i 1.16860i
\(177\) 0 0
\(178\) 9.90830e10 0.0415613
\(179\) 2.34555e12 0.954012 0.477006 0.878900i \(-0.341722\pi\)
0.477006 + 0.878900i \(0.341722\pi\)
\(180\) 0 0
\(181\) −1.18326e12 −0.452739 −0.226369 0.974042i \(-0.572686\pi\)
−0.226369 + 0.974042i \(0.572686\pi\)
\(182\) −2.90301e12 + 2.42136e12i −1.07760 + 0.898806i
\(183\) 0 0
\(184\) 5.59716e12i 1.95645i
\(185\) 5.64705e11 0.191592
\(186\) 0 0
\(187\) 2.81596e12i 0.900527i
\(188\) 3.13933e11i 0.0974918i
\(189\) 0 0
\(190\) 4.84918e11i 0.142077i
\(191\) −4.82060e12 −1.37220 −0.686100 0.727507i \(-0.740679\pi\)
−0.686100 + 0.727507i \(0.740679\pi\)
\(192\) 0 0
\(193\) 2.21550e12i 0.595535i −0.954638 0.297768i \(-0.903758\pi\)
0.954638 0.297768i \(-0.0962420\pi\)
\(194\) 1.23649e12 0.323059
\(195\) 0 0
\(196\) −1.88030e12 −0.464323
\(197\) 5.49523e12i 1.31954i −0.751469 0.659769i \(-0.770654\pi\)
0.751469 0.659769i \(-0.229346\pi\)
\(198\) 0 0
\(199\) 2.56932e12 0.583614 0.291807 0.956477i \(-0.405743\pi\)
0.291807 + 0.956477i \(0.405743\pi\)
\(200\) 4.76798e12i 1.05359i
\(201\) 0 0
\(202\) 4.25613e12i 0.890393i
\(203\) 3.29397e12i 0.670643i
\(204\) 0 0
\(205\) 9.30638e10 0.0179529
\(206\) 7.51487e11i 0.141141i
\(207\) 0 0
\(208\) 2.81855e12 2.35091e12i 0.501969 0.418685i
\(209\) 1.00364e13 1.74090
\(210\) 0 0
\(211\) 8.22813e12 1.35440 0.677201 0.735798i \(-0.263193\pi\)
0.677201 + 0.735798i \(0.263193\pi\)
\(212\) 9.24428e11 0.148261
\(213\) 0 0
\(214\) 8.24506e12i 1.25579i
\(215\) 5.15159e11i 0.0764769i
\(216\) 0 0
\(217\) 1.04155e13 1.46943
\(218\) −9.45158e12 −1.30015
\(219\) 0 0
\(220\) 6.36277e11 0.0832380
\(221\) −3.03155e12 + 2.52857e12i −0.386818 + 0.322639i
\(222\) 0 0
\(223\) 6.72248e12i 0.816305i 0.912914 + 0.408153i \(0.133827\pi\)
−0.912914 + 0.408153i \(0.866173\pi\)
\(224\) 7.32630e12 0.868001
\(225\) 0 0
\(226\) 8.36907e12i 0.944237i
\(227\) 1.02259e13i 1.12605i 0.826440 + 0.563025i \(0.190362\pi\)
−0.826440 + 0.563025i \(0.809638\pi\)
\(228\) 0 0
\(229\) 1.16258e12i 0.121990i −0.998138 0.0609952i \(-0.980573\pi\)
0.998138 0.0609952i \(-0.0194274\pi\)
\(230\) −2.56729e12 −0.263010
\(231\) 0 0
\(232\) 4.53007e12i 0.442507i
\(233\) −1.36620e13 −1.30334 −0.651668 0.758504i \(-0.725931\pi\)
−0.651668 + 0.758504i \(0.725931\pi\)
\(234\) 0 0
\(235\) 6.72932e11 0.0612489
\(236\) 2.16306e12i 0.192332i
\(237\) 0 0
\(238\) 8.32692e12 0.706824
\(239\) 7.78795e11i 0.0646003i −0.999478 0.0323002i \(-0.989717\pi\)
0.999478 0.0323002i \(-0.0102832\pi\)
\(240\) 0 0
\(241\) 2.26102e13i 1.79147i 0.444585 + 0.895736i \(0.353351\pi\)
−0.444585 + 0.895736i \(0.646649\pi\)
\(242\) 2.41908e13i 1.87355i
\(243\) 0 0
\(244\) 5.79997e12 0.429321
\(245\) 4.03054e12i 0.291709i
\(246\) 0 0
\(247\) −9.01214e12 1.08048e13i −0.623727 0.747798i
\(248\) −1.43240e13 −0.969571
\(249\) 0 0
\(250\) 4.43983e12 0.287539
\(251\) −1.87662e13 −1.18897 −0.594485 0.804107i \(-0.702644\pi\)
−0.594485 + 0.804107i \(0.702644\pi\)
\(252\) 0 0
\(253\) 5.31356e13i 3.22272i
\(254\) 1.42595e13i 0.846291i
\(255\) 0 0
\(256\) −1.32060e13 −0.750676
\(257\) 3.08184e13 1.71466 0.857330 0.514768i \(-0.172122\pi\)
0.857330 + 0.514768i \(0.172122\pi\)
\(258\) 0 0
\(259\) 3.45614e13 1.84265
\(260\) −5.71341e11 6.84991e11i −0.0298223 0.0357546i
\(261\) 0 0
\(262\) 2.54411e13i 1.27315i
\(263\) 5.00200e12 0.245125 0.122562 0.992461i \(-0.460889\pi\)
0.122562 + 0.992461i \(0.460889\pi\)
\(264\) 0 0
\(265\) 1.98156e12i 0.0931442i
\(266\) 2.96782e13i 1.36643i
\(267\) 0 0
\(268\) 7.74304e12i 0.342113i
\(269\) 7.05544e12 0.305412 0.152706 0.988272i \(-0.451201\pi\)
0.152706 + 0.988272i \(0.451201\pi\)
\(270\) 0 0
\(271\) 4.50472e13i 1.87213i −0.351825 0.936066i \(-0.614439\pi\)
0.351825 0.936066i \(-0.385561\pi\)
\(272\) −8.08465e12 −0.329255
\(273\) 0 0
\(274\) 3.26261e13 1.27625
\(275\) 4.52640e13i 1.73549i
\(276\) 0 0
\(277\) −3.50464e13 −1.29123 −0.645616 0.763662i \(-0.723399\pi\)
−0.645616 + 0.763662i \(0.723399\pi\)
\(278\) 3.62131e13i 1.30804i
\(279\) 0 0
\(280\) 8.79292e12i 0.305326i
\(281\) 3.65086e12i 0.124311i 0.998066 + 0.0621556i \(0.0197975\pi\)
−0.998066 + 0.0621556i \(0.980202\pi\)
\(282\) 0 0
\(283\) 4.13087e13 1.35275 0.676373 0.736559i \(-0.263551\pi\)
0.676373 + 0.736559i \(0.263551\pi\)
\(284\) 6.30718e12i 0.202574i
\(285\) 0 0
\(286\) 3.79011e13 3.16127e13i 1.17122 0.976897i
\(287\) 5.69574e12 0.172663
\(288\) 0 0
\(289\) −2.55763e13 −0.746276
\(290\) 2.07784e12 0.0594870
\(291\) 0 0
\(292\) 5.66602e12i 0.156197i
\(293\) 5.85460e13i 1.58389i −0.610592 0.791946i \(-0.709068\pi\)
0.610592 0.791946i \(-0.290932\pi\)
\(294\) 0 0
\(295\) 4.63664e12 0.120832
\(296\) −4.75309e13 −1.21583
\(297\) 0 0
\(298\) −4.41383e13 −1.08799
\(299\) 5.72037e13 4.77128e13i 1.38431 1.15463i
\(300\) 0 0
\(301\) 3.15291e13i 0.735522i
\(302\) −4.40077e12 −0.100807
\(303\) 0 0
\(304\) 2.88147e13i 0.636517i
\(305\) 1.24326e13i 0.269719i
\(306\) 0 0
\(307\) 3.50235e13i 0.732992i 0.930420 + 0.366496i \(0.119443\pi\)
−0.930420 + 0.366496i \(0.880557\pi\)
\(308\) 3.89418e13 0.800547
\(309\) 0 0
\(310\) 6.57008e12i 0.130341i
\(311\) 5.98876e13 1.16723 0.583613 0.812032i \(-0.301639\pi\)
0.583613 + 0.812032i \(0.301639\pi\)
\(312\) 0 0
\(313\) 1.21122e12 0.0227892 0.0113946 0.999935i \(-0.496373\pi\)
0.0113946 + 0.999935i \(0.496373\pi\)
\(314\) 1.80978e12i 0.0334589i
\(315\) 0 0
\(316\) −1.54839e12 −0.0276440
\(317\) 3.05253e12i 0.0535593i 0.999641 + 0.0267796i \(0.00852524\pi\)
−0.999641 + 0.0267796i \(0.991475\pi\)
\(318\) 0 0
\(319\) 4.30053e13i 0.728910i
\(320\) 1.13318e13i 0.188787i
\(321\) 0 0
\(322\) −1.57125e14 −2.52951
\(323\) 3.09923e13i 0.490501i
\(324\) 0 0
\(325\) −4.87294e13 + 4.06445e13i −0.745475 + 0.621789i
\(326\) −3.31989e13 −0.499375
\(327\) 0 0
\(328\) −7.83313e12 −0.113928
\(329\) 4.11852e13 0.589066
\(330\) 0 0
\(331\) 4.33747e13i 0.600043i −0.953932 0.300021i \(-0.903006\pi\)
0.953932 0.300021i \(-0.0969938\pi\)
\(332\) 2.16722e13i 0.294879i
\(333\) 0 0
\(334\) −4.33333e13 −0.570449
\(335\) 1.65976e13 0.214932
\(336\) 0 0
\(337\) 1.89342e13 0.237292 0.118646 0.992937i \(-0.462145\pi\)
0.118646 + 0.992937i \(0.462145\pi\)
\(338\) −6.80660e13 1.24164e13i −0.839245 0.153092i
\(339\) 0 0
\(340\) 1.96481e12i 0.0234524i
\(341\) −1.35982e14 −1.59710
\(342\) 0 0
\(343\) 1.02052e14i 1.16066i
\(344\) 4.33607e13i 0.485316i
\(345\) 0 0
\(346\) 1.01471e14i 1.10008i
\(347\) −3.14756e13 −0.335862 −0.167931 0.985799i \(-0.553709\pi\)
−0.167931 + 0.985799i \(0.553709\pi\)
\(348\) 0 0
\(349\) 4.21755e13i 0.436034i −0.975945 0.218017i \(-0.930041\pi\)
0.975945 0.218017i \(-0.0699589\pi\)
\(350\) 1.33848e14 1.36219
\(351\) 0 0
\(352\) −9.56506e13 −0.943415
\(353\) 1.16131e14i 1.12768i 0.825883 + 0.563842i \(0.190677\pi\)
−0.825883 + 0.563842i \(0.809323\pi\)
\(354\) 0 0
\(355\) 1.35198e13 0.127267
\(356\) 1.43089e12i 0.0132627i
\(357\) 0 0
\(358\) 9.05539e13i 0.813861i
\(359\) 9.68116e13i 0.856856i −0.903576 0.428428i \(-0.859068\pi\)
0.903576 0.428428i \(-0.140932\pi\)
\(360\) 0 0
\(361\) 6.02977e12 0.0517620
\(362\) 4.56816e13i 0.386229i
\(363\) 0 0
\(364\) −3.49675e13 4.19232e13i −0.286819 0.343872i
\(365\) 1.21454e13 0.0981302
\(366\) 0 0
\(367\) 8.37029e13 0.656262 0.328131 0.944632i \(-0.393581\pi\)
0.328131 + 0.944632i \(0.393581\pi\)
\(368\) 1.52553e14 1.17831
\(369\) 0 0
\(370\) 2.18013e13i 0.163446i
\(371\) 1.21277e14i 0.895821i
\(372\) 0 0
\(373\) −1.96708e13 −0.141066 −0.0705331 0.997509i \(-0.522470\pi\)
−0.0705331 + 0.997509i \(0.522470\pi\)
\(374\) −1.08715e14 −0.768234
\(375\) 0 0
\(376\) −5.66404e13 −0.388681
\(377\) −4.62979e13 + 3.86164e13i −0.313100 + 0.261152i
\(378\) 0 0
\(379\) 1.84123e14i 1.20946i −0.796430 0.604731i \(-0.793280\pi\)
0.796430 0.604731i \(-0.206720\pi\)
\(380\) −7.00284e12 −0.0453382
\(381\) 0 0
\(382\) 1.86107e14i 1.17062i
\(383\) 1.03120e14i 0.639364i −0.947525 0.319682i \(-0.896424\pi\)
0.947525 0.319682i \(-0.103576\pi\)
\(384\) 0 0
\(385\) 8.34740e13i 0.502941i
\(386\) −8.55331e13 −0.508047
\(387\) 0 0
\(388\) 1.78565e13i 0.103091i
\(389\) −2.40454e14 −1.36870 −0.684352 0.729151i \(-0.739915\pi\)
−0.684352 + 0.729151i \(0.739915\pi\)
\(390\) 0 0
\(391\) −1.64082e14 −0.908005
\(392\) 3.39249e14i 1.85116i
\(393\) 0 0
\(394\) −2.12152e14 −1.12569
\(395\) 3.31905e12i 0.0173672i
\(396\) 0 0
\(397\) 7.22425e13i 0.367659i 0.982958 + 0.183829i \(0.0588494\pi\)
−0.982958 + 0.183829i \(0.941151\pi\)
\(398\) 9.91927e13i 0.497878i
\(399\) 0 0
\(400\) −1.29954e14 −0.634539
\(401\) 2.33817e14i 1.12611i 0.826418 + 0.563057i \(0.190375\pi\)
−0.826418 + 0.563057i \(0.809625\pi\)
\(402\) 0 0
\(403\) 1.22104e14 + 1.46393e14i 0.572207 + 0.686029i
\(404\) −6.14640e13 −0.284134
\(405\) 0 0
\(406\) 1.27169e14 0.572121
\(407\) −4.51226e14 −2.00274
\(408\) 0 0
\(409\) 2.40388e14i 1.03857i −0.854602 0.519283i \(-0.826199\pi\)
0.854602 0.519283i \(-0.173801\pi\)
\(410\) 3.59288e12i 0.0153155i
\(411\) 0 0
\(412\) −1.08524e13 −0.0450394
\(413\) 2.83774e14 1.16211
\(414\) 0 0
\(415\) 4.64556e13 0.185257
\(416\) 8.58888e13 + 1.02974e14i 0.338005 + 0.405240i
\(417\) 0 0
\(418\) 3.87473e14i 1.48515i
\(419\) 4.02827e14 1.52385 0.761923 0.647668i \(-0.224256\pi\)
0.761923 + 0.647668i \(0.224256\pi\)
\(420\) 0 0
\(421\) 3.20869e14i 1.18243i 0.806513 + 0.591216i \(0.201352\pi\)
−0.806513 + 0.591216i \(0.798648\pi\)
\(422\) 3.17660e14i 1.15543i
\(423\) 0 0
\(424\) 1.66787e14i 0.591086i
\(425\) 1.39774e14 0.488977
\(426\) 0 0
\(427\) 7.60905e14i 2.59404i
\(428\) −1.19069e14 −0.400736
\(429\) 0 0
\(430\) 1.98886e13 0.0652419
\(431\) 2.22214e14i 0.719690i 0.933012 + 0.359845i \(0.117170\pi\)
−0.933012 + 0.359845i \(0.882830\pi\)
\(432\) 0 0
\(433\) 1.95046e14 0.615818 0.307909 0.951416i \(-0.400371\pi\)
0.307909 + 0.951416i \(0.400371\pi\)
\(434\) 4.02106e14i 1.25357i
\(435\) 0 0
\(436\) 1.36493e14i 0.414892i
\(437\) 5.84808e14i 1.75536i
\(438\) 0 0
\(439\) 4.58811e14 1.34301 0.671505 0.741000i \(-0.265648\pi\)
0.671505 + 0.741000i \(0.265648\pi\)
\(440\) 1.14799e14i 0.331854i
\(441\) 0 0
\(442\) 9.76194e13 + 1.17038e14i 0.275241 + 0.329992i
\(443\) 1.55808e14 0.433879 0.216939 0.976185i \(-0.430393\pi\)
0.216939 + 0.976185i \(0.430393\pi\)
\(444\) 0 0
\(445\) −3.06719e12 −0.00833222
\(446\) 2.59532e14 0.696385
\(447\) 0 0
\(448\) 6.93533e14i 1.81567i
\(449\) 5.03741e14i 1.30273i 0.758767 + 0.651363i \(0.225802\pi\)
−0.758767 + 0.651363i \(0.774198\pi\)
\(450\) 0 0
\(451\) −7.43624e13 −0.187665
\(452\) 1.20860e14 0.301316
\(453\) 0 0
\(454\) 3.94786e14 0.960626
\(455\) 8.98648e13 7.49549e13i 0.216036 0.180193i
\(456\) 0 0
\(457\) 8.67205e13i 0.203508i −0.994810 0.101754i \(-0.967554\pi\)
0.994810 0.101754i \(-0.0324455\pi\)
\(458\) −4.48831e13 −0.104069
\(459\) 0 0
\(460\) 3.70750e13i 0.0839291i
\(461\) 1.01192e14i 0.226356i 0.993575 + 0.113178i \(0.0361031\pi\)
−0.993575 + 0.113178i \(0.963897\pi\)
\(462\) 0 0
\(463\) 4.25093e14i 0.928514i 0.885700 + 0.464257i \(0.153679\pi\)
−0.885700 + 0.464257i \(0.846321\pi\)
\(464\) −1.23469e14 −0.266507
\(465\) 0 0
\(466\) 5.27444e14i 1.11187i
\(467\) −9.02962e14 −1.88116 −0.940582 0.339565i \(-0.889720\pi\)
−0.940582 + 0.339565i \(0.889720\pi\)
\(468\) 0 0
\(469\) 1.01582e15 2.06712
\(470\) 2.59796e13i 0.0522510i
\(471\) 0 0
\(472\) −3.90263e14 −0.766791
\(473\) 4.11637e14i 0.799426i
\(474\) 0 0
\(475\) 4.98174e14i 0.945292i
\(476\) 1.20251e14i 0.225555i
\(477\) 0 0
\(478\) −3.00666e13 −0.0551101
\(479\) 5.85187e14i 1.06035i 0.847888 + 0.530175i \(0.177874\pi\)
−0.847888 + 0.530175i \(0.822126\pi\)
\(480\) 0 0
\(481\) 4.05175e14 + 4.85772e14i 0.717538 + 0.860270i
\(482\) 8.72902e14 1.52829
\(483\) 0 0
\(484\) −3.49346e14 −0.597870
\(485\) −3.82765e13 −0.0647668
\(486\) 0 0
\(487\) 3.79384e14i 0.627582i 0.949492 + 0.313791i \(0.101599\pi\)
−0.949492 + 0.313791i \(0.898401\pi\)
\(488\) 1.04644e15i 1.71162i
\(489\) 0 0
\(490\) −1.55606e14 −0.248855
\(491\) −4.15557e14 −0.657177 −0.328589 0.944473i \(-0.606573\pi\)
−0.328589 + 0.944473i \(0.606573\pi\)
\(492\) 0 0
\(493\) 1.32800e14 0.205371
\(494\) −4.17138e14 + 3.47928e14i −0.637942 + 0.532098i
\(495\) 0 0
\(496\) 3.90407e14i 0.583940i
\(497\) 8.27447e14 1.22400
\(498\) 0 0
\(499\) 6.43898e14i 0.931674i 0.884871 + 0.465837i \(0.154247\pi\)
−0.884871 + 0.465837i \(0.845753\pi\)
\(500\) 6.41168e13i 0.0917566i
\(501\) 0 0
\(502\) 7.24500e14i 1.01430i
\(503\) 2.25226e14 0.311885 0.155943 0.987766i \(-0.450159\pi\)
0.155943 + 0.987766i \(0.450159\pi\)
\(504\) 0 0
\(505\) 1.31752e14i 0.178506i
\(506\) 2.05139e15 2.74928
\(507\) 0 0
\(508\) 2.05926e14 0.270060
\(509\) 1.26379e15i 1.63955i −0.572684 0.819777i \(-0.694098\pi\)
0.572684 0.819777i \(-0.305902\pi\)
\(510\) 0 0
\(511\) 7.43332e14 0.943774
\(512\) 8.39420e14i 1.05437i
\(513\) 0 0
\(514\) 1.18979e15i 1.46276i
\(515\) 2.32628e13i 0.0282959i
\(516\) 0 0
\(517\) −5.37705e14 −0.640245
\(518\) 1.33430e15i 1.57195i
\(519\) 0 0
\(520\) −1.23588e14 + 1.03083e14i −0.142546 + 0.118896i
\(521\) −1.46094e15 −1.66734 −0.833671 0.552262i \(-0.813765\pi\)
−0.833671 + 0.552262i \(0.813765\pi\)
\(522\) 0 0
\(523\) 1.24984e15 1.39668 0.698338 0.715768i \(-0.253923\pi\)
0.698338 + 0.715768i \(0.253923\pi\)
\(524\) −3.67403e14 −0.406275
\(525\) 0 0
\(526\) 1.93110e14i 0.209114i
\(527\) 4.19910e14i 0.449985i
\(528\) 0 0
\(529\) 2.14333e15 2.24948
\(530\) 7.65015e13 0.0794608
\(531\) 0 0
\(532\) −4.28592e14 −0.436043
\(533\) 6.67732e13 + 8.00557e13i 0.0672361 + 0.0806106i
\(534\) 0 0
\(535\) 2.55232e14i 0.251761i
\(536\) −1.39702e15 −1.36394
\(537\) 0 0
\(538\) 2.72387e14i 0.260545i
\(539\) 3.22060e15i 3.04928i
\(540\) 0 0
\(541\) 1.09182e15i 1.01290i −0.862270 0.506448i \(-0.830958\pi\)
0.862270 0.506448i \(-0.169042\pi\)
\(542\) −1.73912e15 −1.59710
\(543\) 0 0
\(544\) 2.95367e14i 0.265808i
\(545\) 2.92581e14 0.260654
\(546\) 0 0
\(547\) −1.18659e15 −1.03603 −0.518015 0.855372i \(-0.673329\pi\)
−0.518015 + 0.855372i \(0.673329\pi\)
\(548\) 4.71163e14i 0.407266i
\(549\) 0 0
\(550\) −1.74749e15 −1.48054
\(551\) 4.73315e14i 0.397024i
\(552\) 0 0
\(553\) 2.03135e14i 0.167030i
\(554\) 1.35302e15i 1.10154i
\(555\) 0 0
\(556\) −5.22965e14 −0.417408
\(557\) 1.51714e15i 1.19901i 0.800373 + 0.599503i \(0.204635\pi\)
−0.800373 + 0.599503i \(0.795365\pi\)
\(558\) 0 0
\(559\) −4.43152e14 + 3.69627e14i −0.343390 + 0.286417i
\(560\) 2.39655e14 0.183888
\(561\) 0 0
\(562\) 1.40947e14 0.106049
\(563\) 1.29636e15 0.965896 0.482948 0.875649i \(-0.339566\pi\)
0.482948 + 0.875649i \(0.339566\pi\)
\(564\) 0 0
\(565\) 2.59071e14i 0.189301i
\(566\) 1.59479e15i 1.15402i
\(567\) 0 0
\(568\) −1.13796e15 −0.807625
\(569\) −1.31170e15 −0.921968 −0.460984 0.887408i \(-0.652503\pi\)
−0.460984 + 0.887408i \(0.652503\pi\)
\(570\) 0 0
\(571\) 7.54286e14 0.520041 0.260020 0.965603i \(-0.416271\pi\)
0.260020 + 0.965603i \(0.416271\pi\)
\(572\) 4.56529e14 + 5.47341e14i 0.311738 + 0.373749i
\(573\) 0 0
\(574\) 2.19893e14i 0.147298i
\(575\) −2.63747e15 −1.74990
\(576\) 0 0
\(577\) 1.43380e15i 0.933298i 0.884443 + 0.466649i \(0.154539\pi\)
−0.884443 + 0.466649i \(0.845461\pi\)
\(578\) 9.87414e14i 0.636643i
\(579\) 0 0
\(580\) 3.00066e13i 0.0189829i
\(581\) 2.84320e15 1.78172
\(582\) 0 0
\(583\) 1.58337e15i 0.973653i
\(584\) −1.02228e15 −0.622727
\(585\) 0 0
\(586\) −2.26026e15 −1.35121
\(587\) 3.26552e15i 1.93394i −0.254891 0.966970i \(-0.582040\pi\)
0.254891 0.966970i \(-0.417960\pi\)
\(588\) 0 0
\(589\) 1.49661e15 0.869913
\(590\) 1.79005e14i 0.103081i
\(591\) 0 0
\(592\) 1.29548e15i 0.732252i
\(593\) 1.00603e15i 0.563392i −0.959504 0.281696i \(-0.909103\pi\)
0.959504 0.281696i \(-0.0908970\pi\)
\(594\) 0 0
\(595\) −2.57766e14 −0.141704
\(596\) 6.37414e14i 0.347190i
\(597\) 0 0
\(598\) −1.84203e15 2.20844e15i −0.985008 1.18094i
\(599\) −1.00989e15 −0.535090 −0.267545 0.963545i \(-0.586212\pi\)
−0.267545 + 0.963545i \(0.586212\pi\)
\(600\) 0 0
\(601\) −2.17878e15 −1.13345 −0.566726 0.823907i \(-0.691790\pi\)
−0.566726 + 0.823907i \(0.691790\pi\)
\(602\) 1.21723e15 0.627469
\(603\) 0 0
\(604\) 6.35529e13i 0.0321686i
\(605\) 7.48844e14i 0.375610i
\(606\) 0 0
\(607\) −3.53335e15 −1.74040 −0.870201 0.492698i \(-0.836011\pi\)
−0.870201 + 0.492698i \(0.836011\pi\)
\(608\) 1.05273e15 0.513861
\(609\) 0 0
\(610\) 4.79980e14 0.230096
\(611\) 4.82829e14 + 5.78872e14i 0.229386 + 0.275015i
\(612\) 0 0
\(613\) 2.55011e15i 1.18994i 0.803746 + 0.594972i \(0.202837\pi\)
−0.803746 + 0.594972i \(0.797163\pi\)
\(614\) 1.35214e15 0.625311
\(615\) 0 0
\(616\) 7.02596e15i 3.19163i
\(617\) 3.01365e15i 1.35683i 0.734681 + 0.678413i \(0.237332\pi\)
−0.734681 + 0.678413i \(0.762668\pi\)
\(618\) 0 0
\(619\) 9.49187e14i 0.419811i −0.977722 0.209905i \(-0.932684\pi\)
0.977722 0.209905i \(-0.0673156\pi\)
\(620\) 9.48805e13 0.0415932
\(621\) 0 0
\(622\) 2.31206e15i 0.995753i
\(623\) −1.87720e14 −0.0801357
\(624\) 0 0
\(625\) 2.17701e15 0.913104
\(626\) 4.67612e13i 0.0194414i
\(627\) 0 0
\(628\) −2.61355e13 −0.0106771
\(629\) 1.39338e15i 0.564274i
\(630\) 0 0
\(631\) 1.91627e15i 0.762599i 0.924452 + 0.381299i \(0.124523\pi\)
−0.924452 + 0.381299i \(0.875477\pi\)
\(632\) 2.79363e14i 0.110211i
\(633\) 0 0
\(634\) 1.17848e14 0.0456911
\(635\) 4.41414e14i 0.169665i
\(636\) 0 0
\(637\) 3.46717e15 2.89191e15i 1.30981 1.09249i
\(638\) −1.66029e15 −0.621828
\(639\) 0 0
\(640\) −1.92324e14 −0.0708016
\(641\) −4.86008e15 −1.77388 −0.886940 0.461886i \(-0.847173\pi\)
−0.886940 + 0.461886i \(0.847173\pi\)
\(642\) 0 0
\(643\) 4.30752e15i 1.54549i 0.634716 + 0.772746i \(0.281117\pi\)
−0.634716 + 0.772746i \(0.718883\pi\)
\(644\) 2.26908e15i 0.807194i
\(645\) 0 0
\(646\) 1.19651e15 0.418443
\(647\) 3.57668e15 1.24024 0.620121 0.784506i \(-0.287084\pi\)
0.620121 + 0.784506i \(0.287084\pi\)
\(648\) 0 0
\(649\) −3.70490e15 −1.26308
\(650\) 1.56915e15 + 1.88128e15i 0.530444 + 0.635960i
\(651\) 0 0
\(652\) 4.79435e14i 0.159356i
\(653\) 2.82974e15 0.932662 0.466331 0.884610i \(-0.345576\pi\)
0.466331 + 0.884610i \(0.345576\pi\)
\(654\) 0 0
\(655\) 7.87549e14i 0.255241i
\(656\) 2.13496e14i 0.0686148i
\(657\) 0 0
\(658\) 1.59002e15i 0.502528i
\(659\) 1.92910e15 0.604622 0.302311 0.953209i \(-0.402242\pi\)
0.302311 + 0.953209i \(0.402242\pi\)
\(660\) 0 0
\(661\) 2.68418e15i 0.827379i −0.910418 0.413689i \(-0.864240\pi\)
0.910418 0.413689i \(-0.135760\pi\)
\(662\) −1.67455e15 −0.511893
\(663\) 0 0
\(664\) −3.91015e15 −1.17562
\(665\) 9.18711e14i 0.273943i
\(666\) 0 0
\(667\) −2.50586e15 −0.734962
\(668\) 6.25789e14i 0.182036i
\(669\) 0 0
\(670\) 6.40779e14i 0.183357i
\(671\) 9.93422e15i 2.81942i
\(672\) 0 0
\(673\) 7.27068e14 0.202998 0.101499 0.994836i \(-0.467636\pi\)
0.101499 + 0.994836i \(0.467636\pi\)
\(674\) 7.30987e14i 0.202433i
\(675\) 0 0
\(676\) 1.79309e14 9.82961e14i 0.0488534 0.267812i
\(677\) 5.46656e15 1.47733 0.738664 0.674074i \(-0.235457\pi\)
0.738664 + 0.674074i \(0.235457\pi\)
\(678\) 0 0
\(679\) −2.34262e15 −0.622899
\(680\) 3.54495e14 0.0935000
\(681\) 0 0
\(682\) 5.24981e15i 1.36248i
\(683\) 1.25630e15i 0.323431i 0.986837 + 0.161715i \(0.0517026\pi\)
−0.986837 + 0.161715i \(0.948297\pi\)
\(684\) 0 0
\(685\) −1.00997e15 −0.255864
\(686\) −3.93988e15 −0.990149
\(687\) 0 0
\(688\) −1.18182e15 −0.292290
\(689\) −1.70459e15 + 1.42177e15i −0.418229 + 0.348838i
\(690\) 0 0
\(691\) 2.40753e15i 0.581357i 0.956821 + 0.290678i \(0.0938810\pi\)
−0.956821 + 0.290678i \(0.906119\pi\)
\(692\) 1.46538e15 0.351048
\(693\) 0 0
\(694\) 1.21516e15i 0.286522i
\(695\) 1.12100e15i 0.262235i
\(696\) 0 0
\(697\) 2.29630e14i 0.0528747i
\(698\) −1.62825e15 −0.371978
\(699\) 0 0
\(700\) 1.93294e15i 0.434689i
\(701\) 7.44821e14 0.166189 0.0830946 0.996542i \(-0.473520\pi\)
0.0830946 + 0.996542i \(0.473520\pi\)
\(702\) 0 0
\(703\) 4.96617e15 1.09086
\(704\) 9.05462e15i 1.97343i
\(705\) 0 0
\(706\) 4.48343e15 0.962020
\(707\) 8.06353e15i 1.71680i
\(708\) 0 0
\(709\) 1.01890e15i 0.213588i 0.994281 + 0.106794i \(0.0340585\pi\)
−0.994281 + 0.106794i \(0.965941\pi\)
\(710\) 5.21954e14i 0.108570i
\(711\) 0 0
\(712\) 2.58164e14 0.0528756
\(713\) 7.92349e15i 1.61036i
\(714\) 0 0
\(715\) −1.17326e15 + 9.78595e14i −0.234806 + 0.195848i
\(716\) 1.30772e15 0.259712
\(717\) 0 0
\(718\) −3.73757e15 −0.730978
\(719\) 6.45032e15 1.25191 0.625954 0.779860i \(-0.284710\pi\)
0.625954 + 0.779860i \(0.284710\pi\)
\(720\) 0 0
\(721\) 1.42375e15i 0.272137i
\(722\) 2.32789e14i 0.0441579i
\(723\) 0 0
\(724\) −6.59702e14 −0.123250
\(725\) 2.13464e15 0.395790
\(726\) 0 0
\(727\) 1.04558e16 1.90948 0.954742 0.297434i \(-0.0961309\pi\)
0.954742 + 0.297434i \(0.0961309\pi\)
\(728\) −7.56388e15 + 6.30892e15i −1.37095 + 1.14349i
\(729\) 0 0
\(730\) 4.68894e14i 0.0837142i
\(731\) 1.27113e15 0.225239
\(732\) 0 0
\(733\) 3.93592e15i 0.687028i 0.939148 + 0.343514i \(0.111617\pi\)
−0.939148 + 0.343514i \(0.888383\pi\)
\(734\) 3.23149e15i 0.559853i
\(735\) 0 0
\(736\) 5.57342e15i 0.951249i
\(737\) −1.32623e16 −2.24672
\(738\) 0 0
\(739\) 8.65402e15i 1.44435i −0.691708 0.722177i \(-0.743142\pi\)
0.691708 0.722177i \(-0.256858\pi\)
\(740\) 3.14839e14 0.0521573
\(741\) 0 0
\(742\) 4.68209e15 0.764220
\(743\) 7.58900e15i 1.22955i 0.788702 + 0.614775i \(0.210753\pi\)
−0.788702 + 0.614775i \(0.789247\pi\)
\(744\) 0 0
\(745\) 1.36633e15 0.218121
\(746\) 7.59422e14i 0.120343i
\(747\) 0 0
\(748\) 1.56998e15i 0.245152i
\(749\) 1.56208e16i 2.42133i
\(750\) 0 0
\(751\) 1.56895e15 0.239656 0.119828 0.992795i \(-0.461766\pi\)
0.119828 + 0.992795i \(0.461766\pi\)
\(752\) 1.54376e15i 0.234089i
\(753\) 0 0
\(754\) 1.49085e15 + 1.78740e15i 0.222787 + 0.267104i
\(755\) 1.36229e14 0.0202098
\(756\) 0 0
\(757\) 5.35536e15 0.783000 0.391500 0.920178i \(-0.371956\pi\)
0.391500 + 0.920178i \(0.371956\pi\)
\(758\) −7.10837e15 −1.03179
\(759\) 0 0
\(760\) 1.26347e15i 0.180755i
\(761\) 8.40352e14i 0.119356i 0.998218 + 0.0596782i \(0.0190074\pi\)
−0.998218 + 0.0596782i \(0.980993\pi\)
\(762\) 0 0
\(763\) 1.79067e16 2.50686
\(764\) −2.68763e15 −0.373556
\(765\) 0 0
\(766\) −3.98110e15 −0.545437
\(767\) 3.32679e15 + 3.98854e15i 0.452533 + 0.542550i
\(768\) 0 0
\(769\) 9.57018e15i 1.28329i 0.767001 + 0.641646i \(0.221748\pi\)
−0.767001 + 0.641646i \(0.778252\pi\)
\(770\) 3.22265e15 0.429056
\(771\) 0 0
\(772\) 1.23521e15i 0.162123i
\(773\) 7.42721e15i 0.967918i 0.875091 + 0.483959i \(0.160802\pi\)
−0.875091 + 0.483959i \(0.839198\pi\)
\(774\) 0 0
\(775\) 6.74968e15i 0.867210i
\(776\) 3.22171e15 0.411005
\(777\) 0 0
\(778\) 9.28313e15i 1.16763i
\(779\) 8.18430e14 0.102218
\(780\) 0 0
\(781\) −1.08030e16 −1.33034
\(782\) 6.33464e15i 0.774613i
\(783\) 0 0
\(784\) 9.24638e15 1.11489
\(785\) 5.60229e13i 0.00670784i
\(786\) 0 0
\(787\) 7.03450e15i 0.830563i 0.909693 + 0.415281i \(0.136317\pi\)
−0.909693 + 0.415281i \(0.863683\pi\)
\(788\) 3.06375e15i 0.359219i
\(789\) 0 0
\(790\) −1.28137e14 −0.0148159
\(791\) 1.58558e16i 1.82061i
\(792\) 0 0
\(793\) −1.06948e16 + 8.92037e15i −1.21107 + 1.01014i
\(794\) 2.78904e15 0.313647
\(795\) 0 0
\(796\) 1.43247e15 0.158878
\(797\) 3.04148e15 0.335015 0.167508 0.985871i \(-0.446428\pi\)
0.167508 + 0.985871i \(0.446428\pi\)
\(798\) 0 0
\(799\) 1.66042e15i 0.180390i
\(800\) 4.74776e15i 0.512264i
\(801\) 0 0
\(802\) 9.02689e15 0.960681
\(803\) −9.70479e15 −1.02577
\(804\) 0 0
\(805\) 4.86391e15 0.507117
\(806\) 5.65174e15 4.71403e15i 0.585247 0.488146i
\(807\) 0 0
\(808\) 1.10895e16i 1.13279i
\(809\) −7.49530e15 −0.760452 −0.380226 0.924894i \(-0.624154\pi\)
−0.380226 + 0.924894i \(0.624154\pi\)
\(810\) 0 0
\(811\) 6.73584e15i 0.674181i 0.941472 + 0.337091i \(0.109443\pi\)
−0.941472 + 0.337091i \(0.890557\pi\)
\(812\) 1.83648e15i 0.182570i
\(813\) 0 0
\(814\) 1.74203e16i 1.70853i
\(815\) 1.02770e15 0.100115
\(816\) 0 0
\(817\) 4.53046e15i 0.435433i
\(818\) −9.28055e15 −0.885994
\(819\) 0 0
\(820\) 5.18858e13 0.00488734
\(821\) 2.93109e15i 0.274246i −0.990554 0.137123i \(-0.956214\pi\)
0.990554 0.137123i \(-0.0437856\pi\)
\(822\) 0 0
\(823\) −1.35274e16 −1.24887 −0.624433 0.781078i \(-0.714670\pi\)
−0.624433 + 0.781078i \(0.714670\pi\)
\(824\) 1.95802e15i 0.179563i
\(825\) 0 0
\(826\) 1.09556e16i 0.991389i
\(827\) 1.95134e16i 1.75409i −0.480404 0.877047i \(-0.659510\pi\)
0.480404 0.877047i \(-0.340490\pi\)
\(828\) 0 0
\(829\) 6.36321e15 0.564451 0.282226 0.959348i \(-0.408927\pi\)
0.282226 + 0.959348i \(0.408927\pi\)
\(830\) 1.79349e15i 0.158041i
\(831\) 0 0
\(832\) 9.74785e15 8.13054e15i 0.847677 0.707035i
\(833\) −9.94513e15 −0.859138
\(834\) 0 0
\(835\) 1.34142e15 0.114364
\(836\) 5.59560e15 0.473928
\(837\) 0 0
\(838\) 1.55518e16i 1.29998i
\(839\) 1.96609e16i 1.63272i −0.577543 0.816360i \(-0.695989\pi\)
0.577543 0.816360i \(-0.304011\pi\)
\(840\) 0 0
\(841\) −1.01724e16 −0.833768
\(842\) 1.23877e16 1.00873
\(843\) 0 0
\(844\) 4.58743e15 0.368711
\(845\) 2.10703e15 + 3.84358e14i 0.168252 + 0.0306920i
\(846\) 0 0
\(847\) 4.58312e16i 3.61245i
\(848\) −4.54587e15 −0.355991
\(849\) 0 0
\(850\) 5.39621e15i 0.417143i
\(851\) 2.62923e16i 2.01937i
\(852\) 0 0
\(853\) 6.46765e15i 0.490373i −0.969476 0.245187i \(-0.921151\pi\)
0.969476 0.245187i \(-0.0788493\pi\)
\(854\) 2.93760e16 2.21296
\(855\) 0 0
\(856\) 2.14827e16i 1.59766i
\(857\) 2.12502e16 1.57025 0.785125 0.619337i \(-0.212599\pi\)
0.785125 + 0.619337i \(0.212599\pi\)
\(858\) 0 0
\(859\) −9.52147e15 −0.694611 −0.347305 0.937752i \(-0.612903\pi\)
−0.347305 + 0.937752i \(0.612903\pi\)
\(860\) 2.87216e14i 0.0208194i
\(861\) 0 0
\(862\) 8.57891e15 0.613963
\(863\) 1.71361e15i 0.121858i 0.998142 + 0.0609288i \(0.0194063\pi\)
−0.998142 + 0.0609288i \(0.980594\pi\)
\(864\) 0 0
\(865\) 3.14112e15i 0.220544i
\(866\) 7.53005e15i 0.525351i
\(867\) 0 0
\(868\) 5.80693e15 0.400026
\(869\) 2.65208e15i 0.181543i
\(870\) 0 0
\(871\) 1.19088e16 + 1.42777e16i 0.804949 + 0.965068i
\(872\) −2.46264e16 −1.65409
\(873\) 0 0
\(874\) −2.25775e16 −1.49748
\(875\) −8.41157e15 −0.554412
\(876\) 0 0
\(877\) 2.10433e16i 1.36967i −0.728698 0.684835i \(-0.759874\pi\)
0.728698 0.684835i \(-0.240126\pi\)
\(878\) 1.77132e16i 1.14571i
\(879\) 0 0
\(880\) −3.12889e15 −0.199864
\(881\) 2.15127e16 1.36561 0.682805 0.730600i \(-0.260760\pi\)
0.682805 + 0.730600i \(0.260760\pi\)
\(882\) 0 0
\(883\) −1.10643e16 −0.693646 −0.346823 0.937931i \(-0.612740\pi\)
−0.346823 + 0.937931i \(0.612740\pi\)
\(884\) −1.69018e15 + 1.40975e15i −0.105304 + 0.0878324i
\(885\) 0 0
\(886\) 6.01521e15i 0.370139i
\(887\) −1.92655e16 −1.17815 −0.589074 0.808079i \(-0.700507\pi\)
−0.589074 + 0.808079i \(0.700507\pi\)
\(888\) 0 0
\(889\) 2.70157e16i 1.63176i
\(890\) 1.18414e14i 0.00710816i
\(891\) 0 0
\(892\) 3.74798e15i 0.222224i
\(893\) 5.91796e15 0.348730
\(894\) 0 0
\(895\) 2.80316e15i 0.163163i
\(896\) −1.17707e16 −0.680940
\(897\) 0 0
\(898\) 1.94478e16 1.11135
\(899\) 6.41288e15i 0.364229i
\(900\) 0 0
\(901\) 4.88940e15 0.274327
\(902\) 2.87088e15i 0.160096i
\(903\) 0 0
\(904\) 2.18059e16i 1.20129i
\(905\) 1.41411e15i 0.0774311i
\(906\) 0 0
\(907\) −2.07996e16 −1.12516 −0.562579 0.826743i \(-0.690191\pi\)
−0.562579 + 0.826743i \(0.690191\pi\)
\(908\) 5.70122e15i 0.306546i
\(909\) 0 0
\(910\) −2.89375e15 3.46938e15i −0.153721 0.184299i
\(911\) 2.26315e16 1.19499 0.597493 0.801874i \(-0.296164\pi\)
0.597493 + 0.801874i \(0.296164\pi\)
\(912\) 0 0
\(913\) −3.71203e16 −1.93652
\(914\) −3.34798e15 −0.173612
\(915\) 0 0
\(916\) 6.48170e14i 0.0332096i
\(917\) 4.82000e16i 2.45480i
\(918\) 0 0
\(919\) −3.68428e16 −1.85403 −0.927016 0.375021i \(-0.877636\pi\)
−0.927016 + 0.375021i \(0.877636\pi\)
\(920\) −6.68915e15 −0.334609
\(921\) 0 0
\(922\) 3.90670e15 0.193103
\(923\) 9.70046e15 + 1.16301e16i 0.476632 + 0.571443i
\(924\) 0 0
\(925\) 2.23973e16i 1.08747i
\(926\) 1.64114e16 0.792110
\(927\) 0 0
\(928\) 4.51085e15i 0.215152i
\(929\) 3.26468e16i 1.54794i 0.633222 + 0.773971i \(0.281732\pi\)
−0.633222 + 0.773971i \(0.718268\pi\)
\(930\) 0 0
\(931\) 3.54457e16i 1.66089i
\(932\) −7.61697e15 −0.354809
\(933\) 0 0
\(934\) 3.48603e16i 1.60481i
\(935\) 3.36534e15 0.154016
\(936\) 0 0
\(937\) −3.37155e16 −1.52497 −0.762485 0.647005i \(-0.776021\pi\)
−0.762485 + 0.647005i \(0.776021\pi\)
\(938\) 3.92173e16i 1.76345i
\(939\) 0 0
\(940\) 3.75180e14 0.0166739
\(941\) 1.00494e16i 0.444017i −0.975045 0.222008i \(-0.928739\pi\)
0.975045 0.222008i \(-0.0712612\pi\)
\(942\) 0 0
\(943\) 4.33299e15i 0.189223i
\(944\) 1.06368e16i 0.461812i
\(945\) 0 0
\(946\) −1.58919e16 −0.681985
\(947\) 1.95408e16i 0.833714i 0.908972 + 0.416857i \(0.136868\pi\)
−0.908972 + 0.416857i \(0.863132\pi\)
\(948\) 0 0
\(949\) 8.71435e15 + 1.04478e16i 0.367511 + 0.440616i
\(950\) 1.92328e16 0.806422
\(951\) 0 0
\(952\) 2.16960e16 0.899243
\(953\) 1.63671e16 0.674468 0.337234 0.941421i \(-0.390509\pi\)
0.337234 + 0.941421i \(0.390509\pi\)
\(954\) 0 0
\(955\) 5.76108e15i 0.234685i
\(956\) 4.34201e14i 0.0175862i
\(957\) 0 0
\(958\) 2.25921e16 0.904577
\(959\) −6.18125e16 −2.46079
\(960\) 0 0
\(961\) 5.13106e15 0.201943
\(962\) 1.87540e16 1.56425e16i 0.733891 0.612127i
\(963\) 0 0
\(964\) 1.26058e16i 0.487695i
\(965\) 2.64774e15 0.101853
\(966\) 0 0
\(967\) 1.41778e16i 0.539218i −0.962970 0.269609i \(-0.913106\pi\)
0.962970 0.269609i \(-0.0868945\pi\)
\(968\) 6.30298e16i 2.38359i
\(969\) 0 0
\(970\) 1.47773e15i 0.0552522i
\(971\) −4.69091e16 −1.74402 −0.872010 0.489488i \(-0.837184\pi\)
−0.872010 + 0.489488i \(0.837184\pi\)
\(972\) 0 0
\(973\) 6.86084e16i 2.52207i
\(974\) 1.46467e16 0.535386
\(975\) 0 0
\(976\) −2.85213e16 −1.03085
\(977\) 2.72451e16i 0.979194i 0.871949 + 0.489597i \(0.162856\pi\)
−0.871949 + 0.489597i \(0.837144\pi\)
\(978\) 0 0
\(979\) 2.45083e15 0.0870981
\(980\) 2.24715e15i 0.0794123i
\(981\) 0 0
\(982\) 1.60433e16i 0.560634i
\(983\) 9.74058e15i 0.338486i 0.985574 + 0.169243i \(0.0541322\pi\)
−0.985574 + 0.169243i \(0.945868\pi\)
\(984\) 0 0
\(985\) 6.56733e15 0.225678
\(986\) 5.12694e15i 0.175201i
\(987\) 0 0
\(988\) −5.02453e15 6.02401e15i −0.169798 0.203574i
\(989\) −2.39855e16 −0.806063
\(990\) 0 0
\(991\) −2.38400e16 −0.792320 −0.396160 0.918181i \(-0.629657\pi\)
−0.396160 + 0.918181i \(0.629657\pi\)
\(992\) −1.42632e16 −0.471416
\(993\) 0 0
\(994\) 3.19449e16i 1.04418i
\(995\) 3.07058e15i 0.0998146i
\(996\) 0 0
\(997\) 2.99777e16 0.963774 0.481887 0.876233i \(-0.339952\pi\)
0.481887 + 0.876233i \(0.339952\pi\)
\(998\) 2.48587e16 0.794805
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.12.b.e.64.6 yes 20
3.2 odd 2 inner 117.12.b.e.64.16 yes 20
13.12 even 2 inner 117.12.b.e.64.15 yes 20
39.38 odd 2 inner 117.12.b.e.64.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.12.b.e.64.5 20 39.38 odd 2 inner
117.12.b.e.64.6 yes 20 1.1 even 1 trivial
117.12.b.e.64.15 yes 20 13.12 even 2 inner
117.12.b.e.64.16 yes 20 3.2 odd 2 inner