Properties

Label 117.10.a.e.1.5
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-27.7188\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.7188 q^{2} +99.0182 q^{4} +920.299 q^{5} +5359.02 q^{7} -10208.4 q^{8} +O(q^{10})\) \(q+24.7188 q^{2} +99.0182 q^{4} +920.299 q^{5} +5359.02 q^{7} -10208.4 q^{8} +22748.7 q^{10} -79284.0 q^{11} +28561.0 q^{13} +132468. q^{14} -303037. q^{16} -452068. q^{17} +212533. q^{19} +91126.3 q^{20} -1.95980e6 q^{22} +759566. q^{23} -1.10618e6 q^{25} +705993. q^{26} +530640. q^{28} +900101. q^{29} +2.27141e6 q^{31} -2.26400e6 q^{32} -1.11746e7 q^{34} +4.93189e6 q^{35} -4.70433e6 q^{37} +5.25355e6 q^{38} -9.39478e6 q^{40} -3.39775e7 q^{41} -2.33244e7 q^{43} -7.85057e6 q^{44} +1.87755e7 q^{46} +5.14121e7 q^{47} -1.16346e7 q^{49} -2.73433e7 q^{50} +2.82806e6 q^{52} -1.01005e8 q^{53} -7.29650e7 q^{55} -5.47070e7 q^{56} +2.22494e7 q^{58} -1.32234e8 q^{59} -1.23648e8 q^{61} +5.61465e7 q^{62} +9.91916e7 q^{64} +2.62846e7 q^{65} -2.15282e8 q^{67} -4.47630e7 q^{68} +1.21910e8 q^{70} +2.06198e8 q^{71} +3.44444e8 q^{73} -1.16285e8 q^{74} +2.10446e7 q^{76} -4.24884e8 q^{77} +5.03324e7 q^{79} -2.78884e8 q^{80} -8.39883e8 q^{82} -8.20266e7 q^{83} -4.16038e8 q^{85} -5.76552e8 q^{86} +8.09364e8 q^{88} +6.17891e8 q^{89} +1.53059e8 q^{91} +7.52109e7 q^{92} +1.27084e9 q^{94} +1.95594e8 q^{95} -9.91253e8 q^{97} -2.87592e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22} + 592152 q^{23} + 1670362 q^{25} - 428415 q^{26} + 2587955 q^{28} - 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 9934079 q^{34} - 8380731 q^{35} + 7171823 q^{37} + 25568814 q^{38} - 54359445 q^{40} - 9294012 q^{41} + 12831975 q^{43} + 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 25249488 q^{49} + 16270770 q^{50} + 10310521 q^{52} - 93231780 q^{53} + 99448846 q^{55} - 199599225 q^{56} + 151020970 q^{58} - 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 91019105 q^{64} - 51495483 q^{65} - 369388534 q^{67} - 238172073 q^{68} - 144857425 q^{70} - 212150457 q^{71} - 252729806 q^{73} - 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 1247271728 q^{79} - 900649725 q^{80} + 169559388 q^{82} - 1696894296 q^{83} - 775363765 q^{85} - 3291621459 q^{86} - 220227222 q^{88} + 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 272071215 q^{94} - 1442632962 q^{95} + 3824606 q^{97} - 1570614816 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 24.7188 1.09243 0.546213 0.837646i \(-0.316069\pi\)
0.546213 + 0.837646i \(0.316069\pi\)
\(3\) 0 0
\(4\) 99.0182 0.193395
\(5\) 920.299 0.658512 0.329256 0.944241i \(-0.393202\pi\)
0.329256 + 0.944241i \(0.393202\pi\)
\(6\) 0 0
\(7\) 5359.02 0.843614 0.421807 0.906686i \(-0.361396\pi\)
0.421807 + 0.906686i \(0.361396\pi\)
\(8\) −10208.4 −0.881156
\(9\) 0 0
\(10\) 22748.7 0.719376
\(11\) −79284.0 −1.63275 −0.816373 0.577525i \(-0.804019\pi\)
−0.816373 + 0.577525i \(0.804019\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 132468. 0.921586
\(15\) 0 0
\(16\) −303037. −1.15599
\(17\) −452068. −1.31276 −0.656378 0.754432i \(-0.727912\pi\)
−0.656378 + 0.754432i \(0.727912\pi\)
\(18\) 0 0
\(19\) 212533. 0.374141 0.187070 0.982347i \(-0.440101\pi\)
0.187070 + 0.982347i \(0.440101\pi\)
\(20\) 91126.3 0.127353
\(21\) 0 0
\(22\) −1.95980e6 −1.78365
\(23\) 759566. 0.565966 0.282983 0.959125i \(-0.408676\pi\)
0.282983 + 0.959125i \(0.408676\pi\)
\(24\) 0 0
\(25\) −1.10618e6 −0.566362
\(26\) 705993. 0.302985
\(27\) 0 0
\(28\) 530640. 0.163151
\(29\) 900101. 0.236320 0.118160 0.992995i \(-0.462300\pi\)
0.118160 + 0.992995i \(0.462300\pi\)
\(30\) 0 0
\(31\) 2.27141e6 0.441742 0.220871 0.975303i \(-0.429110\pi\)
0.220871 + 0.975303i \(0.429110\pi\)
\(32\) −2.26400e6 −0.381681
\(33\) 0 0
\(34\) −1.11746e7 −1.43409
\(35\) 4.93189e6 0.555530
\(36\) 0 0
\(37\) −4.70433e6 −0.412658 −0.206329 0.978483i \(-0.566152\pi\)
−0.206329 + 0.978483i \(0.566152\pi\)
\(38\) 5.25355e6 0.408721
\(39\) 0 0
\(40\) −9.39478e6 −0.580252
\(41\) −3.39775e7 −1.87786 −0.938932 0.344102i \(-0.888183\pi\)
−0.938932 + 0.344102i \(0.888183\pi\)
\(42\) 0 0
\(43\) −2.33244e7 −1.04041 −0.520203 0.854042i \(-0.674144\pi\)
−0.520203 + 0.854042i \(0.674144\pi\)
\(44\) −7.85057e6 −0.315765
\(45\) 0 0
\(46\) 1.87755e7 0.618276
\(47\) 5.14121e7 1.53683 0.768413 0.639954i \(-0.221046\pi\)
0.768413 + 0.639954i \(0.221046\pi\)
\(48\) 0 0
\(49\) −1.16346e7 −0.288315
\(50\) −2.73433e7 −0.618709
\(51\) 0 0
\(52\) 2.82806e6 0.0536381
\(53\) −1.01005e8 −1.75834 −0.879170 0.476509i \(-0.841902\pi\)
−0.879170 + 0.476509i \(0.841902\pi\)
\(54\) 0 0
\(55\) −7.29650e7 −1.07518
\(56\) −5.47070e7 −0.743356
\(57\) 0 0
\(58\) 2.22494e7 0.258162
\(59\) −1.32234e8 −1.42073 −0.710363 0.703836i \(-0.751469\pi\)
−0.710363 + 0.703836i \(0.751469\pi\)
\(60\) 0 0
\(61\) −1.23648e8 −1.14341 −0.571706 0.820459i \(-0.693718\pi\)
−0.571706 + 0.820459i \(0.693718\pi\)
\(62\) 5.61465e7 0.482570
\(63\) 0 0
\(64\) 9.91916e7 0.739035
\(65\) 2.62846e7 0.182638
\(66\) 0 0
\(67\) −2.15282e8 −1.30518 −0.652592 0.757710i \(-0.726318\pi\)
−0.652592 + 0.757710i \(0.726318\pi\)
\(68\) −4.47630e7 −0.253880
\(69\) 0 0
\(70\) 1.21910e8 0.606876
\(71\) 2.06198e8 0.962992 0.481496 0.876448i \(-0.340094\pi\)
0.481496 + 0.876448i \(0.340094\pi\)
\(72\) 0 0
\(73\) 3.44444e8 1.41960 0.709800 0.704403i \(-0.248785\pi\)
0.709800 + 0.704403i \(0.248785\pi\)
\(74\) −1.16285e8 −0.450799
\(75\) 0 0
\(76\) 2.10446e7 0.0723569
\(77\) −4.24884e8 −1.37741
\(78\) 0 0
\(79\) 5.03324e7 0.145387 0.0726935 0.997354i \(-0.476841\pi\)
0.0726935 + 0.997354i \(0.476841\pi\)
\(80\) −2.78884e8 −0.761236
\(81\) 0 0
\(82\) −8.39883e8 −2.05143
\(83\) −8.20266e7 −0.189716 −0.0948579 0.995491i \(-0.530240\pi\)
−0.0948579 + 0.995491i \(0.530240\pi\)
\(84\) 0 0
\(85\) −4.16038e8 −0.864465
\(86\) −5.76552e8 −1.13657
\(87\) 0 0
\(88\) 8.09364e8 1.43870
\(89\) 6.17891e8 1.04390 0.521948 0.852977i \(-0.325206\pi\)
0.521948 + 0.852977i \(0.325206\pi\)
\(90\) 0 0
\(91\) 1.53059e8 0.233976
\(92\) 7.52109e7 0.109455
\(93\) 0 0
\(94\) 1.27084e9 1.67887
\(95\) 1.95594e8 0.246376
\(96\) 0 0
\(97\) −9.91253e8 −1.13687 −0.568436 0.822727i \(-0.692451\pi\)
−0.568436 + 0.822727i \(0.692451\pi\)
\(98\) −2.87592e8 −0.314963
\(99\) 0 0
\(100\) −1.09532e8 −0.109532
\(101\) 1.15157e9 1.10115 0.550573 0.834787i \(-0.314409\pi\)
0.550573 + 0.834787i \(0.314409\pi\)
\(102\) 0 0
\(103\) 1.28814e9 1.12770 0.563852 0.825876i \(-0.309319\pi\)
0.563852 + 0.825876i \(0.309319\pi\)
\(104\) −2.91562e8 −0.244389
\(105\) 0 0
\(106\) −2.49673e9 −1.92086
\(107\) −7.90577e8 −0.583065 −0.291533 0.956561i \(-0.594165\pi\)
−0.291533 + 0.956561i \(0.594165\pi\)
\(108\) 0 0
\(109\) −4.40070e8 −0.298609 −0.149304 0.988791i \(-0.547703\pi\)
−0.149304 + 0.988791i \(0.547703\pi\)
\(110\) −1.80361e9 −1.17456
\(111\) 0 0
\(112\) −1.62398e9 −0.975212
\(113\) 8.28687e8 0.478121 0.239060 0.971005i \(-0.423161\pi\)
0.239060 + 0.971005i \(0.423161\pi\)
\(114\) 0 0
\(115\) 6.99027e8 0.372695
\(116\) 8.91264e7 0.0457031
\(117\) 0 0
\(118\) −3.26867e9 −1.55204
\(119\) −2.42264e9 −1.10746
\(120\) 0 0
\(121\) 3.92801e9 1.66586
\(122\) −3.05643e9 −1.24909
\(123\) 0 0
\(124\) 2.24911e8 0.0854306
\(125\) −2.81547e9 −1.03147
\(126\) 0 0
\(127\) −2.09036e9 −0.713025 −0.356513 0.934291i \(-0.616034\pi\)
−0.356513 + 0.934291i \(0.616034\pi\)
\(128\) 3.61106e9 1.18902
\(129\) 0 0
\(130\) 6.49724e8 0.199519
\(131\) −1.23787e8 −0.0367243 −0.0183621 0.999831i \(-0.505845\pi\)
−0.0183621 + 0.999831i \(0.505845\pi\)
\(132\) 0 0
\(133\) 1.13897e9 0.315630
\(134\) −5.32152e9 −1.42582
\(135\) 0 0
\(136\) 4.61490e9 1.15674
\(137\) 1.31278e9 0.318383 0.159192 0.987248i \(-0.449111\pi\)
0.159192 + 0.987248i \(0.449111\pi\)
\(138\) 0 0
\(139\) −4.82994e9 −1.09743 −0.548713 0.836011i \(-0.684882\pi\)
−0.548713 + 0.836011i \(0.684882\pi\)
\(140\) 4.88348e8 0.107437
\(141\) 0 0
\(142\) 5.09697e9 1.05200
\(143\) −2.26443e9 −0.452842
\(144\) 0 0
\(145\) 8.28361e8 0.155619
\(146\) 8.51424e9 1.55081
\(147\) 0 0
\(148\) −4.65815e8 −0.0798060
\(149\) 4.39244e9 0.730075 0.365037 0.930993i \(-0.381056\pi\)
0.365037 + 0.930993i \(0.381056\pi\)
\(150\) 0 0
\(151\) −4.70301e9 −0.736172 −0.368086 0.929792i \(-0.619987\pi\)
−0.368086 + 0.929792i \(0.619987\pi\)
\(152\) −2.16962e9 −0.329676
\(153\) 0 0
\(154\) −1.05026e10 −1.50472
\(155\) 2.09038e9 0.290892
\(156\) 0 0
\(157\) −5.28793e9 −0.694605 −0.347302 0.937753i \(-0.612902\pi\)
−0.347302 + 0.937753i \(0.612902\pi\)
\(158\) 1.24416e9 0.158825
\(159\) 0 0
\(160\) −2.08355e9 −0.251342
\(161\) 4.07052e9 0.477457
\(162\) 0 0
\(163\) 6.72980e9 0.746721 0.373360 0.927686i \(-0.378206\pi\)
0.373360 + 0.927686i \(0.378206\pi\)
\(164\) −3.36439e9 −0.363170
\(165\) 0 0
\(166\) −2.02760e9 −0.207251
\(167\) −5.87782e9 −0.584780 −0.292390 0.956299i \(-0.594450\pi\)
−0.292390 + 0.956299i \(0.594450\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) −1.02839e10 −0.944365
\(171\) 0 0
\(172\) −2.30954e9 −0.201209
\(173\) 1.40328e10 1.19107 0.595534 0.803330i \(-0.296941\pi\)
0.595534 + 0.803330i \(0.296941\pi\)
\(174\) 0 0
\(175\) −5.92801e9 −0.477791
\(176\) 2.40260e10 1.88744
\(177\) 0 0
\(178\) 1.52735e10 1.14038
\(179\) 2.48592e10 1.80987 0.904936 0.425548i \(-0.139919\pi\)
0.904936 + 0.425548i \(0.139919\pi\)
\(180\) 0 0
\(181\) 1.35989e10 0.941784 0.470892 0.882191i \(-0.343932\pi\)
0.470892 + 0.882191i \(0.343932\pi\)
\(182\) 3.78343e9 0.255602
\(183\) 0 0
\(184\) −7.75396e9 −0.498704
\(185\) −4.32939e9 −0.271740
\(186\) 0 0
\(187\) 3.58418e10 2.14340
\(188\) 5.09074e9 0.297215
\(189\) 0 0
\(190\) 4.83484e9 0.269148
\(191\) 1.65985e9 0.0902440 0.0451220 0.998981i \(-0.485632\pi\)
0.0451220 + 0.998981i \(0.485632\pi\)
\(192\) 0 0
\(193\) 3.09499e10 1.60565 0.802827 0.596212i \(-0.203328\pi\)
0.802827 + 0.596212i \(0.203328\pi\)
\(194\) −2.45026e10 −1.24195
\(195\) 0 0
\(196\) −1.15203e9 −0.0557587
\(197\) 3.04341e10 1.43967 0.719835 0.694145i \(-0.244217\pi\)
0.719835 + 0.694145i \(0.244217\pi\)
\(198\) 0 0
\(199\) 4.44812e8 0.0201066 0.0100533 0.999949i \(-0.496800\pi\)
0.0100533 + 0.999949i \(0.496800\pi\)
\(200\) 1.12923e10 0.499053
\(201\) 0 0
\(202\) 2.84655e10 1.20292
\(203\) 4.82365e9 0.199363
\(204\) 0 0
\(205\) −3.12695e10 −1.23660
\(206\) 3.18412e10 1.23193
\(207\) 0 0
\(208\) −8.65503e9 −0.320615
\(209\) −1.68505e10 −0.610877
\(210\) 0 0
\(211\) 4.88078e9 0.169519 0.0847595 0.996401i \(-0.472988\pi\)
0.0847595 + 0.996401i \(0.472988\pi\)
\(212\) −1.00014e10 −0.340054
\(213\) 0 0
\(214\) −1.95421e10 −0.636956
\(215\) −2.14654e10 −0.685120
\(216\) 0 0
\(217\) 1.21725e10 0.372660
\(218\) −1.08780e10 −0.326208
\(219\) 0 0
\(220\) −7.22486e9 −0.207935
\(221\) −1.29115e10 −0.364093
\(222\) 0 0
\(223\) 2.47486e10 0.670162 0.335081 0.942189i \(-0.391236\pi\)
0.335081 + 0.942189i \(0.391236\pi\)
\(224\) −1.21328e10 −0.321992
\(225\) 0 0
\(226\) 2.04841e10 0.522312
\(227\) −2.62443e10 −0.656022 −0.328011 0.944674i \(-0.606378\pi\)
−0.328011 + 0.944674i \(0.606378\pi\)
\(228\) 0 0
\(229\) −4.15262e10 −0.997844 −0.498922 0.866647i \(-0.666271\pi\)
−0.498922 + 0.866647i \(0.666271\pi\)
\(230\) 1.72791e10 0.407142
\(231\) 0 0
\(232\) −9.18859e9 −0.208235
\(233\) −3.67402e10 −0.816657 −0.408329 0.912835i \(-0.633888\pi\)
−0.408329 + 0.912835i \(0.633888\pi\)
\(234\) 0 0
\(235\) 4.73145e10 1.01202
\(236\) −1.30936e10 −0.274761
\(237\) 0 0
\(238\) −5.98847e10 −1.20982
\(239\) 4.35921e10 0.864206 0.432103 0.901824i \(-0.357772\pi\)
0.432103 + 0.901824i \(0.357772\pi\)
\(240\) 0 0
\(241\) −1.04473e10 −0.199493 −0.0997464 0.995013i \(-0.531803\pi\)
−0.0997464 + 0.995013i \(0.531803\pi\)
\(242\) 9.70956e10 1.81983
\(243\) 0 0
\(244\) −1.22434e10 −0.221130
\(245\) −1.07073e10 −0.189859
\(246\) 0 0
\(247\) 6.07015e9 0.103768
\(248\) −2.31875e10 −0.389243
\(249\) 0 0
\(250\) −6.95950e10 −1.12680
\(251\) −8.69402e10 −1.38258 −0.691288 0.722580i \(-0.742956\pi\)
−0.691288 + 0.722580i \(0.742956\pi\)
\(252\) 0 0
\(253\) −6.02214e10 −0.924078
\(254\) −5.16712e10 −0.778927
\(255\) 0 0
\(256\) 3.84749e10 0.559884
\(257\) −4.05492e10 −0.579807 −0.289903 0.957056i \(-0.593623\pi\)
−0.289903 + 0.957056i \(0.593623\pi\)
\(258\) 0 0
\(259\) −2.52106e10 −0.348124
\(260\) 2.60266e9 0.0353213
\(261\) 0 0
\(262\) −3.05986e9 −0.0401185
\(263\) −1.55920e10 −0.200956 −0.100478 0.994939i \(-0.532037\pi\)
−0.100478 + 0.994939i \(0.532037\pi\)
\(264\) 0 0
\(265\) −9.29550e10 −1.15789
\(266\) 2.81539e10 0.344803
\(267\) 0 0
\(268\) −2.13169e10 −0.252416
\(269\) −1.34814e11 −1.56982 −0.784911 0.619608i \(-0.787292\pi\)
−0.784911 + 0.619608i \(0.787292\pi\)
\(270\) 0 0
\(271\) 1.08155e10 0.121810 0.0609052 0.998144i \(-0.480601\pi\)
0.0609052 + 0.998144i \(0.480601\pi\)
\(272\) 1.36993e11 1.51754
\(273\) 0 0
\(274\) 3.24504e10 0.347810
\(275\) 8.77021e10 0.924725
\(276\) 0 0
\(277\) 1.05265e11 1.07429 0.537147 0.843488i \(-0.319502\pi\)
0.537147 + 0.843488i \(0.319502\pi\)
\(278\) −1.19390e11 −1.19886
\(279\) 0 0
\(280\) −5.03468e10 −0.489509
\(281\) −5.90656e10 −0.565140 −0.282570 0.959247i \(-0.591187\pi\)
−0.282570 + 0.959247i \(0.591187\pi\)
\(282\) 0 0
\(283\) −1.45893e11 −1.35206 −0.676030 0.736875i \(-0.736301\pi\)
−0.676030 + 0.736875i \(0.736301\pi\)
\(284\) 2.04174e10 0.186238
\(285\) 0 0
\(286\) −5.59740e10 −0.494697
\(287\) −1.82086e11 −1.58419
\(288\) 0 0
\(289\) 8.57779e10 0.723328
\(290\) 2.04761e10 0.170003
\(291\) 0 0
\(292\) 3.41063e10 0.274544
\(293\) 7.69633e9 0.0610070 0.0305035 0.999535i \(-0.490289\pi\)
0.0305035 + 0.999535i \(0.490289\pi\)
\(294\) 0 0
\(295\) −1.21695e11 −0.935565
\(296\) 4.80238e10 0.363616
\(297\) 0 0
\(298\) 1.08576e11 0.797553
\(299\) 2.16940e10 0.156971
\(300\) 0 0
\(301\) −1.24996e11 −0.877702
\(302\) −1.16253e11 −0.804214
\(303\) 0 0
\(304\) −6.44053e10 −0.432504
\(305\) −1.13793e11 −0.752950
\(306\) 0 0
\(307\) 7.83929e10 0.503679 0.251839 0.967769i \(-0.418965\pi\)
0.251839 + 0.967769i \(0.418965\pi\)
\(308\) −4.20713e10 −0.266384
\(309\) 0 0
\(310\) 5.16716e10 0.317778
\(311\) 2.02455e11 1.22717 0.613587 0.789627i \(-0.289726\pi\)
0.613587 + 0.789627i \(0.289726\pi\)
\(312\) 0 0
\(313\) 4.65893e10 0.274370 0.137185 0.990545i \(-0.456195\pi\)
0.137185 + 0.990545i \(0.456195\pi\)
\(314\) −1.30711e11 −0.758804
\(315\) 0 0
\(316\) 4.98383e9 0.0281171
\(317\) 1.19232e10 0.0663170 0.0331585 0.999450i \(-0.489443\pi\)
0.0331585 + 0.999450i \(0.489443\pi\)
\(318\) 0 0
\(319\) −7.13636e10 −0.385850
\(320\) 9.12859e10 0.486663
\(321\) 0 0
\(322\) 1.00618e11 0.521586
\(323\) −9.60794e10 −0.491155
\(324\) 0 0
\(325\) −3.15935e10 −0.157081
\(326\) 1.66353e11 0.815737
\(327\) 0 0
\(328\) 3.46856e11 1.65469
\(329\) 2.75518e11 1.29649
\(330\) 0 0
\(331\) 1.99404e11 0.913076 0.456538 0.889704i \(-0.349089\pi\)
0.456538 + 0.889704i \(0.349089\pi\)
\(332\) −8.12213e9 −0.0366901
\(333\) 0 0
\(334\) −1.45293e11 −0.638829
\(335\) −1.98124e11 −0.859479
\(336\) 0 0
\(337\) 3.29370e11 1.39107 0.695536 0.718491i \(-0.255167\pi\)
0.695536 + 0.718491i \(0.255167\pi\)
\(338\) 2.01639e10 0.0840328
\(339\) 0 0
\(340\) −4.11953e10 −0.167183
\(341\) −1.80087e11 −0.721252
\(342\) 0 0
\(343\) −2.78605e11 −1.08684
\(344\) 2.38105e11 0.916761
\(345\) 0 0
\(346\) 3.46873e11 1.30115
\(347\) 2.16834e10 0.0802868 0.0401434 0.999194i \(-0.487219\pi\)
0.0401434 + 0.999194i \(0.487219\pi\)
\(348\) 0 0
\(349\) 1.43336e11 0.517178 0.258589 0.965987i \(-0.416742\pi\)
0.258589 + 0.965987i \(0.416742\pi\)
\(350\) −1.46533e11 −0.521951
\(351\) 0 0
\(352\) 1.79499e11 0.623188
\(353\) 8.38423e10 0.287393 0.143697 0.989622i \(-0.454101\pi\)
0.143697 + 0.989622i \(0.454101\pi\)
\(354\) 0 0
\(355\) 1.89764e11 0.634142
\(356\) 6.11825e10 0.201884
\(357\) 0 0
\(358\) 6.14488e11 1.97715
\(359\) −1.26213e11 −0.401033 −0.200516 0.979690i \(-0.564262\pi\)
−0.200516 + 0.979690i \(0.564262\pi\)
\(360\) 0 0
\(361\) −2.77517e11 −0.860019
\(362\) 3.36149e11 1.02883
\(363\) 0 0
\(364\) 1.51556e10 0.0452499
\(365\) 3.16992e11 0.934824
\(366\) 0 0
\(367\) −6.56218e11 −1.88821 −0.944106 0.329642i \(-0.893072\pi\)
−0.944106 + 0.329642i \(0.893072\pi\)
\(368\) −2.30176e11 −0.654253
\(369\) 0 0
\(370\) −1.07017e11 −0.296856
\(371\) −5.41289e11 −1.48336
\(372\) 0 0
\(373\) −5.52730e11 −1.47851 −0.739253 0.673428i \(-0.764821\pi\)
−0.739253 + 0.673428i \(0.764821\pi\)
\(374\) 8.85966e11 2.34150
\(375\) 0 0
\(376\) −5.24836e11 −1.35418
\(377\) 2.57078e10 0.0655433
\(378\) 0 0
\(379\) −3.07664e11 −0.765950 −0.382975 0.923759i \(-0.625100\pi\)
−0.382975 + 0.923759i \(0.625100\pi\)
\(380\) 1.93673e10 0.0476479
\(381\) 0 0
\(382\) 4.10295e10 0.0985849
\(383\) −1.31812e11 −0.313012 −0.156506 0.987677i \(-0.550023\pi\)
−0.156506 + 0.987677i \(0.550023\pi\)
\(384\) 0 0
\(385\) −3.91021e11 −0.907040
\(386\) 7.65045e11 1.75406
\(387\) 0 0
\(388\) −9.81521e10 −0.219865
\(389\) −1.31742e11 −0.291709 −0.145855 0.989306i \(-0.546593\pi\)
−0.145855 + 0.989306i \(0.546593\pi\)
\(390\) 0 0
\(391\) −3.43376e11 −0.742975
\(392\) 1.18770e11 0.254051
\(393\) 0 0
\(394\) 7.52295e11 1.57273
\(395\) 4.63208e10 0.0957391
\(396\) 0 0
\(397\) 4.44767e11 0.898619 0.449309 0.893376i \(-0.351670\pi\)
0.449309 + 0.893376i \(0.351670\pi\)
\(398\) 1.09952e10 0.0219649
\(399\) 0 0
\(400\) 3.35212e11 0.654711
\(401\) 8.36539e11 1.61561 0.807805 0.589450i \(-0.200655\pi\)
0.807805 + 0.589450i \(0.200655\pi\)
\(402\) 0 0
\(403\) 6.48738e10 0.122517
\(404\) 1.14027e11 0.212956
\(405\) 0 0
\(406\) 1.19235e11 0.217789
\(407\) 3.72979e11 0.673766
\(408\) 0 0
\(409\) 2.11826e11 0.374304 0.187152 0.982331i \(-0.440074\pi\)
0.187152 + 0.982331i \(0.440074\pi\)
\(410\) −7.72943e11 −1.35089
\(411\) 0 0
\(412\) 1.27549e11 0.218092
\(413\) −7.08646e11 −1.19854
\(414\) 0 0
\(415\) −7.54890e10 −0.124930
\(416\) −6.46620e10 −0.105859
\(417\) 0 0
\(418\) −4.16523e11 −0.667338
\(419\) −5.30153e11 −0.840308 −0.420154 0.907453i \(-0.638024\pi\)
−0.420154 + 0.907453i \(0.638024\pi\)
\(420\) 0 0
\(421\) 3.41563e10 0.0529909 0.0264955 0.999649i \(-0.491565\pi\)
0.0264955 + 0.999649i \(0.491565\pi\)
\(422\) 1.20647e11 0.185187
\(423\) 0 0
\(424\) 1.03110e12 1.54937
\(425\) 5.00067e11 0.743495
\(426\) 0 0
\(427\) −6.62631e11 −0.964598
\(428\) −7.82815e10 −0.112762
\(429\) 0 0
\(430\) −5.30600e11 −0.748443
\(431\) −8.63019e11 −1.20468 −0.602342 0.798238i \(-0.705765\pi\)
−0.602342 + 0.798238i \(0.705765\pi\)
\(432\) 0 0
\(433\) −3.23681e11 −0.442509 −0.221254 0.975216i \(-0.571015\pi\)
−0.221254 + 0.975216i \(0.571015\pi\)
\(434\) 3.00890e11 0.407103
\(435\) 0 0
\(436\) −4.35749e10 −0.0577494
\(437\) 1.61433e11 0.211751
\(438\) 0 0
\(439\) −1.45809e12 −1.87368 −0.936838 0.349763i \(-0.886262\pi\)
−0.936838 + 0.349763i \(0.886262\pi\)
\(440\) 7.44856e11 0.947404
\(441\) 0 0
\(442\) −3.19157e11 −0.397745
\(443\) −1.49027e12 −1.83844 −0.919219 0.393748i \(-0.871178\pi\)
−0.919219 + 0.393748i \(0.871178\pi\)
\(444\) 0 0
\(445\) 5.68645e11 0.687418
\(446\) 6.11756e11 0.732102
\(447\) 0 0
\(448\) 5.31569e11 0.623460
\(449\) −3.04750e11 −0.353862 −0.176931 0.984223i \(-0.556617\pi\)
−0.176931 + 0.984223i \(0.556617\pi\)
\(450\) 0 0
\(451\) 2.69387e12 3.06608
\(452\) 8.20551e10 0.0924661
\(453\) 0 0
\(454\) −6.48727e11 −0.716656
\(455\) 1.40860e11 0.154076
\(456\) 0 0
\(457\) −1.23809e11 −0.132779 −0.0663896 0.997794i \(-0.521148\pi\)
−0.0663896 + 0.997794i \(0.521148\pi\)
\(458\) −1.02648e12 −1.09007
\(459\) 0 0
\(460\) 6.92164e10 0.0720774
\(461\) −3.16152e11 −0.326018 −0.163009 0.986625i \(-0.552120\pi\)
−0.163009 + 0.986625i \(0.552120\pi\)
\(462\) 0 0
\(463\) 1.73371e12 1.75332 0.876659 0.481112i \(-0.159767\pi\)
0.876659 + 0.481112i \(0.159767\pi\)
\(464\) −2.72764e11 −0.273184
\(465\) 0 0
\(466\) −9.08173e11 −0.892138
\(467\) 5.67889e11 0.552506 0.276253 0.961085i \(-0.410907\pi\)
0.276253 + 0.961085i \(0.410907\pi\)
\(468\) 0 0
\(469\) −1.15370e12 −1.10107
\(470\) 1.16956e12 1.10556
\(471\) 0 0
\(472\) 1.34990e12 1.25188
\(473\) 1.84926e12 1.69872
\(474\) 0 0
\(475\) −2.35099e11 −0.211899
\(476\) −2.39886e11 −0.214177
\(477\) 0 0
\(478\) 1.07754e12 0.944081
\(479\) −9.31010e11 −0.808062 −0.404031 0.914745i \(-0.632391\pi\)
−0.404031 + 0.914745i \(0.632391\pi\)
\(480\) 0 0
\(481\) −1.34360e11 −0.114451
\(482\) −2.58244e11 −0.217931
\(483\) 0 0
\(484\) 3.88945e11 0.322169
\(485\) −9.12249e11 −0.748644
\(486\) 0 0
\(487\) −4.49592e10 −0.0362192 −0.0181096 0.999836i \(-0.505765\pi\)
−0.0181096 + 0.999836i \(0.505765\pi\)
\(488\) 1.26225e12 1.00752
\(489\) 0 0
\(490\) −2.64671e11 −0.207407
\(491\) −4.47956e11 −0.347831 −0.173916 0.984761i \(-0.555642\pi\)
−0.173916 + 0.984761i \(0.555642\pi\)
\(492\) 0 0
\(493\) −4.06907e11 −0.310230
\(494\) 1.50047e11 0.113359
\(495\) 0 0
\(496\) −6.88321e11 −0.510650
\(497\) 1.10502e12 0.812394
\(498\) 0 0
\(499\) 7.27774e11 0.525465 0.262733 0.964869i \(-0.415376\pi\)
0.262733 + 0.964869i \(0.415376\pi\)
\(500\) −2.78783e11 −0.199481
\(501\) 0 0
\(502\) −2.14906e12 −1.51036
\(503\) −6.23613e11 −0.434369 −0.217185 0.976131i \(-0.569687\pi\)
−0.217185 + 0.976131i \(0.569687\pi\)
\(504\) 0 0
\(505\) 1.05979e12 0.725118
\(506\) −1.48860e12 −1.00949
\(507\) 0 0
\(508\) −2.06984e11 −0.137896
\(509\) −1.18958e12 −0.785534 −0.392767 0.919638i \(-0.628482\pi\)
−0.392767 + 0.919638i \(0.628482\pi\)
\(510\) 0 0
\(511\) 1.84588e12 1.19760
\(512\) −8.97810e11 −0.577390
\(513\) 0 0
\(514\) −1.00233e12 −0.633396
\(515\) 1.18547e12 0.742607
\(516\) 0 0
\(517\) −4.07616e12 −2.50925
\(518\) −6.23175e11 −0.380300
\(519\) 0 0
\(520\) −2.68324e11 −0.160933
\(521\) −2.26245e12 −1.34527 −0.672635 0.739974i \(-0.734838\pi\)
−0.672635 + 0.739974i \(0.734838\pi\)
\(522\) 0 0
\(523\) 1.15246e12 0.673549 0.336775 0.941585i \(-0.390664\pi\)
0.336775 + 0.941585i \(0.390664\pi\)
\(524\) −1.22571e10 −0.00710229
\(525\) 0 0
\(526\) −3.85415e11 −0.219530
\(527\) −1.02683e12 −0.579899
\(528\) 0 0
\(529\) −1.22421e12 −0.679683
\(530\) −2.29773e12 −1.26491
\(531\) 0 0
\(532\) 1.12778e11 0.0610413
\(533\) −9.70432e11 −0.520826
\(534\) 0 0
\(535\) −7.27567e11 −0.383955
\(536\) 2.19769e12 1.15007
\(537\) 0 0
\(538\) −3.33244e12 −1.71492
\(539\) 9.22434e11 0.470745
\(540\) 0 0
\(541\) 1.31455e12 0.659766 0.329883 0.944022i \(-0.392991\pi\)
0.329883 + 0.944022i \(0.392991\pi\)
\(542\) 2.67346e11 0.133069
\(543\) 0 0
\(544\) 1.02348e12 0.501054
\(545\) −4.04995e11 −0.196637
\(546\) 0 0
\(547\) 1.63148e12 0.779182 0.389591 0.920988i \(-0.372616\pi\)
0.389591 + 0.920988i \(0.372616\pi\)
\(548\) 1.29989e11 0.0615738
\(549\) 0 0
\(550\) 2.16789e12 1.01019
\(551\) 1.91301e11 0.0884168
\(552\) 0 0
\(553\) 2.69732e11 0.122651
\(554\) 2.60201e12 1.17359
\(555\) 0 0
\(556\) −4.78252e11 −0.212237
\(557\) 2.20811e12 0.972013 0.486007 0.873955i \(-0.338453\pi\)
0.486007 + 0.873955i \(0.338453\pi\)
\(558\) 0 0
\(559\) −6.66169e11 −0.288557
\(560\) −1.49455e12 −0.642189
\(561\) 0 0
\(562\) −1.46003e12 −0.617374
\(563\) 1.16602e12 0.489125 0.244563 0.969634i \(-0.421356\pi\)
0.244563 + 0.969634i \(0.421356\pi\)
\(564\) 0 0
\(565\) 7.62639e11 0.314848
\(566\) −3.60630e12 −1.47702
\(567\) 0 0
\(568\) −2.10496e12 −0.848547
\(569\) 2.63455e12 1.05366 0.526831 0.849970i \(-0.323380\pi\)
0.526831 + 0.849970i \(0.323380\pi\)
\(570\) 0 0
\(571\) −1.65379e12 −0.651055 −0.325527 0.945533i \(-0.605542\pi\)
−0.325527 + 0.945533i \(0.605542\pi\)
\(572\) −2.24220e11 −0.0875774
\(573\) 0 0
\(574\) −4.50094e12 −1.73061
\(575\) −8.40213e11 −0.320541
\(576\) 0 0
\(577\) 1.77685e12 0.667358 0.333679 0.942687i \(-0.391710\pi\)
0.333679 + 0.942687i \(0.391710\pi\)
\(578\) 2.12033e12 0.790182
\(579\) 0 0
\(580\) 8.20229e10 0.0300960
\(581\) −4.39582e11 −0.160047
\(582\) 0 0
\(583\) 8.00811e12 2.87092
\(584\) −3.51623e12 −1.25089
\(585\) 0 0
\(586\) 1.90244e11 0.0666456
\(587\) −4.61417e12 −1.60406 −0.802032 0.597281i \(-0.796248\pi\)
−0.802032 + 0.597281i \(0.796248\pi\)
\(588\) 0 0
\(589\) 4.82750e11 0.165273
\(590\) −3.00815e12 −1.02204
\(591\) 0 0
\(592\) 1.42559e12 0.477030
\(593\) 1.60396e12 0.532655 0.266328 0.963883i \(-0.414190\pi\)
0.266328 + 0.963883i \(0.414190\pi\)
\(594\) 0 0
\(595\) −2.22955e12 −0.729275
\(596\) 4.34931e11 0.141193
\(597\) 0 0
\(598\) 5.36248e11 0.171479
\(599\) 3.56445e12 1.13128 0.565642 0.824651i \(-0.308628\pi\)
0.565642 + 0.824651i \(0.308628\pi\)
\(600\) 0 0
\(601\) −4.23106e12 −1.32286 −0.661431 0.750006i \(-0.730051\pi\)
−0.661431 + 0.750006i \(0.730051\pi\)
\(602\) −3.08975e12 −0.958824
\(603\) 0 0
\(604\) −4.65683e11 −0.142372
\(605\) 3.61494e12 1.09699
\(606\) 0 0
\(607\) 2.69700e12 0.806366 0.403183 0.915119i \(-0.367904\pi\)
0.403183 + 0.915119i \(0.367904\pi\)
\(608\) −4.81173e11 −0.142802
\(609\) 0 0
\(610\) −2.81282e12 −0.822542
\(611\) 1.46838e12 0.426239
\(612\) 0 0
\(613\) −4.29368e12 −1.22817 −0.614084 0.789240i \(-0.710475\pi\)
−0.614084 + 0.789240i \(0.710475\pi\)
\(614\) 1.93778e12 0.550232
\(615\) 0 0
\(616\) 4.33739e12 1.21371
\(617\) −2.63888e12 −0.733054 −0.366527 0.930407i \(-0.619453\pi\)
−0.366527 + 0.930407i \(0.619453\pi\)
\(618\) 0 0
\(619\) −2.36449e12 −0.647335 −0.323667 0.946171i \(-0.604916\pi\)
−0.323667 + 0.946171i \(0.604916\pi\)
\(620\) 2.06985e11 0.0562571
\(621\) 0 0
\(622\) 5.00444e12 1.34060
\(623\) 3.31129e12 0.880645
\(624\) 0 0
\(625\) −4.30574e11 −0.112872
\(626\) 1.15163e12 0.299729
\(627\) 0 0
\(628\) −5.23602e11 −0.134333
\(629\) 2.12668e12 0.541719
\(630\) 0 0
\(631\) −4.08896e12 −1.02679 −0.513393 0.858153i \(-0.671612\pi\)
−0.513393 + 0.858153i \(0.671612\pi\)
\(632\) −5.13814e11 −0.128109
\(633\) 0 0
\(634\) 2.94726e11 0.0724464
\(635\) −1.92376e12 −0.469536
\(636\) 0 0
\(637\) −3.32295e11 −0.0799642
\(638\) −1.76402e12 −0.421513
\(639\) 0 0
\(640\) 3.32325e12 0.782985
\(641\) 3.55153e12 0.830911 0.415456 0.909613i \(-0.363622\pi\)
0.415456 + 0.909613i \(0.363622\pi\)
\(642\) 0 0
\(643\) 6.85000e12 1.58031 0.790153 0.612910i \(-0.210001\pi\)
0.790153 + 0.612910i \(0.210001\pi\)
\(644\) 4.03056e11 0.0923377
\(645\) 0 0
\(646\) −2.37496e12 −0.536551
\(647\) 4.28931e12 0.962317 0.481159 0.876634i \(-0.340216\pi\)
0.481159 + 0.876634i \(0.340216\pi\)
\(648\) 0 0
\(649\) 1.04841e13 2.31968
\(650\) −7.80952e11 −0.171599
\(651\) 0 0
\(652\) 6.66373e11 0.144412
\(653\) −8.81913e12 −1.89809 −0.949045 0.315142i \(-0.897948\pi\)
−0.949045 + 0.315142i \(0.897948\pi\)
\(654\) 0 0
\(655\) −1.13921e11 −0.0241834
\(656\) 1.02964e13 2.17080
\(657\) 0 0
\(658\) 6.81048e12 1.41632
\(659\) −5.76538e12 −1.19081 −0.595406 0.803425i \(-0.703009\pi\)
−0.595406 + 0.803425i \(0.703009\pi\)
\(660\) 0 0
\(661\) −4.77184e12 −0.972254 −0.486127 0.873888i \(-0.661591\pi\)
−0.486127 + 0.873888i \(0.661591\pi\)
\(662\) 4.92901e12 0.997468
\(663\) 0 0
\(664\) 8.37361e11 0.167169
\(665\) 1.04819e12 0.207846
\(666\) 0 0
\(667\) 6.83686e11 0.133749
\(668\) −5.82012e11 −0.113093
\(669\) 0 0
\(670\) −4.89738e12 −0.938918
\(671\) 9.80330e12 1.86690
\(672\) 0 0
\(673\) 1.38206e10 0.00259692 0.00129846 0.999999i \(-0.499587\pi\)
0.00129846 + 0.999999i \(0.499587\pi\)
\(674\) 8.14163e12 1.51964
\(675\) 0 0
\(676\) 8.07722e10 0.0148765
\(677\) 2.70699e12 0.495265 0.247633 0.968854i \(-0.420347\pi\)
0.247633 + 0.968854i \(0.420347\pi\)
\(678\) 0 0
\(679\) −5.31214e12 −0.959082
\(680\) 4.24708e12 0.761729
\(681\) 0 0
\(682\) −4.45152e12 −0.787915
\(683\) 3.77305e12 0.663436 0.331718 0.943379i \(-0.392372\pi\)
0.331718 + 0.943379i \(0.392372\pi\)
\(684\) 0 0
\(685\) 1.20815e12 0.209659
\(686\) −6.88679e12 −1.18729
\(687\) 0 0
\(688\) 7.06816e12 1.20270
\(689\) −2.88481e12 −0.487676
\(690\) 0 0
\(691\) −1.42326e12 −0.237484 −0.118742 0.992925i \(-0.537886\pi\)
−0.118742 + 0.992925i \(0.537886\pi\)
\(692\) 1.38950e12 0.230346
\(693\) 0 0
\(694\) 5.35986e11 0.0877074
\(695\) −4.44499e12 −0.722668
\(696\) 0 0
\(697\) 1.53602e13 2.46518
\(698\) 3.54309e12 0.564979
\(699\) 0 0
\(700\) −5.86981e11 −0.0924024
\(701\) 4.18953e12 0.655291 0.327645 0.944801i \(-0.393745\pi\)
0.327645 + 0.944801i \(0.393745\pi\)
\(702\) 0 0
\(703\) −9.99825e11 −0.154392
\(704\) −7.86431e12 −1.20666
\(705\) 0 0
\(706\) 2.07248e12 0.313956
\(707\) 6.17129e12 0.928942
\(708\) 0 0
\(709\) −5.30584e12 −0.788580 −0.394290 0.918986i \(-0.629009\pi\)
−0.394290 + 0.918986i \(0.629009\pi\)
\(710\) 4.69074e12 0.692753
\(711\) 0 0
\(712\) −6.30769e12 −0.919836
\(713\) 1.72529e12 0.250011
\(714\) 0 0
\(715\) −2.08395e12 −0.298202
\(716\) 2.46151e12 0.350020
\(717\) 0 0
\(718\) −3.11984e12 −0.438099
\(719\) −2.67496e12 −0.373282 −0.186641 0.982428i \(-0.559760\pi\)
−0.186641 + 0.982428i \(0.559760\pi\)
\(720\) 0 0
\(721\) 6.90316e12 0.951347
\(722\) −6.85989e12 −0.939507
\(723\) 0 0
\(724\) 1.34654e12 0.182136
\(725\) −9.95669e11 −0.133843
\(726\) 0 0
\(727\) −8.33355e12 −1.10643 −0.553217 0.833037i \(-0.686600\pi\)
−0.553217 + 0.833037i \(0.686600\pi\)
\(728\) −1.56249e12 −0.206170
\(729\) 0 0
\(730\) 7.83565e12 1.02123
\(731\) 1.05442e13 1.36580
\(732\) 0 0
\(733\) 1.11038e11 0.0142071 0.00710355 0.999975i \(-0.497739\pi\)
0.00710355 + 0.999975i \(0.497739\pi\)
\(734\) −1.62209e13 −2.06273
\(735\) 0 0
\(736\) −1.71965e12 −0.216018
\(737\) 1.70684e13 2.13103
\(738\) 0 0
\(739\) 1.02565e13 1.26502 0.632511 0.774551i \(-0.282024\pi\)
0.632511 + 0.774551i \(0.282024\pi\)
\(740\) −4.28689e11 −0.0525532
\(741\) 0 0
\(742\) −1.33800e13 −1.62046
\(743\) −3.90792e12 −0.470431 −0.235215 0.971943i \(-0.575580\pi\)
−0.235215 + 0.971943i \(0.575580\pi\)
\(744\) 0 0
\(745\) 4.04235e12 0.480763
\(746\) −1.36628e13 −1.61516
\(747\) 0 0
\(748\) 3.54899e12 0.414522
\(749\) −4.23671e12 −0.491882
\(750\) 0 0
\(751\) −2.63552e12 −0.302333 −0.151167 0.988508i \(-0.548303\pi\)
−0.151167 + 0.988508i \(0.548303\pi\)
\(752\) −1.55798e13 −1.77656
\(753\) 0 0
\(754\) 6.35465e11 0.0716012
\(755\) −4.32817e12 −0.484778
\(756\) 0 0
\(757\) −1.02796e13 −1.13774 −0.568870 0.822428i \(-0.692619\pi\)
−0.568870 + 0.822428i \(0.692619\pi\)
\(758\) −7.60508e12 −0.836744
\(759\) 0 0
\(760\) −1.99670e12 −0.217096
\(761\) −1.47695e12 −0.159638 −0.0798190 0.996809i \(-0.525434\pi\)
−0.0798190 + 0.996809i \(0.525434\pi\)
\(762\) 0 0
\(763\) −2.35834e12 −0.251910
\(764\) 1.64355e11 0.0174527
\(765\) 0 0
\(766\) −3.25823e12 −0.341942
\(767\) −3.77674e12 −0.394038
\(768\) 0 0
\(769\) −3.06990e12 −0.316560 −0.158280 0.987394i \(-0.550595\pi\)
−0.158280 + 0.987394i \(0.550595\pi\)
\(770\) −9.66555e12 −0.990874
\(771\) 0 0
\(772\) 3.06461e12 0.310526
\(773\) −1.22536e13 −1.23440 −0.617200 0.786807i \(-0.711733\pi\)
−0.617200 + 0.786807i \(0.711733\pi\)
\(774\) 0 0
\(775\) −2.51258e12 −0.250186
\(776\) 1.01191e13 1.00176
\(777\) 0 0
\(778\) −3.25650e12 −0.318671
\(779\) −7.22134e12 −0.702585
\(780\) 0 0
\(781\) −1.63482e13 −1.57232
\(782\) −8.48783e12 −0.811645
\(783\) 0 0
\(784\) 3.52570e12 0.333290
\(785\) −4.86648e12 −0.457405
\(786\) 0 0
\(787\) 1.16840e13 1.08569 0.542847 0.839832i \(-0.317347\pi\)
0.542847 + 0.839832i \(0.317347\pi\)
\(788\) 3.01353e12 0.278425
\(789\) 0 0
\(790\) 1.14499e12 0.104588
\(791\) 4.44095e12 0.403349
\(792\) 0 0
\(793\) −3.53151e12 −0.317125
\(794\) 1.09941e13 0.981675
\(795\) 0 0
\(796\) 4.40445e10 0.00388851
\(797\) 1.05711e13 0.928024 0.464012 0.885829i \(-0.346410\pi\)
0.464012 + 0.885829i \(0.346410\pi\)
\(798\) 0 0
\(799\) −2.32418e13 −2.01748
\(800\) 2.50438e12 0.216170
\(801\) 0 0
\(802\) 2.06782e13 1.76494
\(803\) −2.73089e13 −2.31785
\(804\) 0 0
\(805\) 3.74610e12 0.314411
\(806\) 1.60360e12 0.133841
\(807\) 0 0
\(808\) −1.17557e13 −0.970282
\(809\) 9.18043e12 0.753520 0.376760 0.926311i \(-0.377038\pi\)
0.376760 + 0.926311i \(0.377038\pi\)
\(810\) 0 0
\(811\) −1.38738e12 −0.112616 −0.0563081 0.998413i \(-0.517933\pi\)
−0.0563081 + 0.998413i \(0.517933\pi\)
\(812\) 4.77630e11 0.0385558
\(813\) 0 0
\(814\) 9.21958e12 0.736040
\(815\) 6.19343e12 0.491725
\(816\) 0 0
\(817\) −4.95721e12 −0.389258
\(818\) 5.23609e12 0.408900
\(819\) 0 0
\(820\) −3.09625e12 −0.239152
\(821\) −1.09862e12 −0.0843924 −0.0421962 0.999109i \(-0.513435\pi\)
−0.0421962 + 0.999109i \(0.513435\pi\)
\(822\) 0 0
\(823\) −1.94330e13 −1.47653 −0.738263 0.674513i \(-0.764354\pi\)
−0.738263 + 0.674513i \(0.764354\pi\)
\(824\) −1.31498e13 −0.993684
\(825\) 0 0
\(826\) −1.75169e13 −1.30932
\(827\) 2.56778e12 0.190890 0.0954448 0.995435i \(-0.469573\pi\)
0.0954448 + 0.995435i \(0.469573\pi\)
\(828\) 0 0
\(829\) 1.15684e13 0.850703 0.425352 0.905028i \(-0.360150\pi\)
0.425352 + 0.905028i \(0.360150\pi\)
\(830\) −1.86600e12 −0.136477
\(831\) 0 0
\(832\) 2.83301e12 0.204971
\(833\) 5.25961e12 0.378487
\(834\) 0 0
\(835\) −5.40935e12 −0.385085
\(836\) −1.66850e12 −0.118140
\(837\) 0 0
\(838\) −1.31047e13 −0.917974
\(839\) 1.07035e13 0.745754 0.372877 0.927881i \(-0.378371\pi\)
0.372877 + 0.927881i \(0.378371\pi\)
\(840\) 0 0
\(841\) −1.36970e13 −0.944153
\(842\) 8.44302e11 0.0578887
\(843\) 0 0
\(844\) 4.83287e11 0.0327841
\(845\) 7.50716e11 0.0506548
\(846\) 0 0
\(847\) 2.10503e13 1.40534
\(848\) 3.06083e13 2.03263
\(849\) 0 0
\(850\) 1.23610e13 0.812213
\(851\) −3.57325e12 −0.233550
\(852\) 0 0
\(853\) 1.85417e13 1.19917 0.599583 0.800313i \(-0.295333\pi\)
0.599583 + 0.800313i \(0.295333\pi\)
\(854\) −1.63794e13 −1.05375
\(855\) 0 0
\(856\) 8.07053e12 0.513772
\(857\) −8.38633e12 −0.531078 −0.265539 0.964100i \(-0.585550\pi\)
−0.265539 + 0.964100i \(0.585550\pi\)
\(858\) 0 0
\(859\) 2.49383e12 0.156278 0.0781390 0.996942i \(-0.475102\pi\)
0.0781390 + 0.996942i \(0.475102\pi\)
\(860\) −2.12547e12 −0.132499
\(861\) 0 0
\(862\) −2.13328e13 −1.31603
\(863\) 1.05758e12 0.0649029 0.0324515 0.999473i \(-0.489669\pi\)
0.0324515 + 0.999473i \(0.489669\pi\)
\(864\) 0 0
\(865\) 1.29143e13 0.784332
\(866\) −8.00101e12 −0.483408
\(867\) 0 0
\(868\) 1.20530e12 0.0720705
\(869\) −3.99056e12 −0.237380
\(870\) 0 0
\(871\) −6.14868e12 −0.361993
\(872\) 4.49241e12 0.263121
\(873\) 0 0
\(874\) 3.99042e12 0.231322
\(875\) −1.50881e13 −0.870161
\(876\) 0 0
\(877\) 2.46623e13 1.40778 0.703891 0.710308i \(-0.251444\pi\)
0.703891 + 0.710308i \(0.251444\pi\)
\(878\) −3.60423e13 −2.04685
\(879\) 0 0
\(880\) 2.21111e13 1.24290
\(881\) 7.21428e12 0.403461 0.201731 0.979441i \(-0.435343\pi\)
0.201731 + 0.979441i \(0.435343\pi\)
\(882\) 0 0
\(883\) −5.65890e12 −0.313263 −0.156631 0.987657i \(-0.550063\pi\)
−0.156631 + 0.987657i \(0.550063\pi\)
\(884\) −1.27848e12 −0.0704138
\(885\) 0 0
\(886\) −3.68377e13 −2.00836
\(887\) −1.70857e13 −0.926778 −0.463389 0.886155i \(-0.653367\pi\)
−0.463389 + 0.886155i \(0.653367\pi\)
\(888\) 0 0
\(889\) −1.12023e13 −0.601518
\(890\) 1.40562e13 0.750953
\(891\) 0 0
\(892\) 2.45057e12 0.129606
\(893\) 1.09268e13 0.574989
\(894\) 0 0
\(895\) 2.28779e13 1.19182
\(896\) 1.93517e13 1.00308
\(897\) 0 0
\(898\) −7.53304e12 −0.386569
\(899\) 2.04450e12 0.104392
\(900\) 0 0
\(901\) 4.56613e13 2.30827
\(902\) 6.65893e13 3.34946
\(903\) 0 0
\(904\) −8.45957e12 −0.421299
\(905\) 1.25151e13 0.620176
\(906\) 0 0
\(907\) 4.31310e12 0.211620 0.105810 0.994386i \(-0.466256\pi\)
0.105810 + 0.994386i \(0.466256\pi\)
\(908\) −2.59866e12 −0.126871
\(909\) 0 0
\(910\) 3.48188e12 0.168317
\(911\) −3.59972e13 −1.73155 −0.865777 0.500430i \(-0.833175\pi\)
−0.865777 + 0.500430i \(0.833175\pi\)
\(912\) 0 0
\(913\) 6.50340e12 0.309758
\(914\) −3.06041e12 −0.145051
\(915\) 0 0
\(916\) −4.11185e12 −0.192978
\(917\) −6.63375e11 −0.0309811
\(918\) 0 0
\(919\) −1.78486e13 −0.825437 −0.412719 0.910859i \(-0.635421\pi\)
−0.412719 + 0.910859i \(0.635421\pi\)
\(920\) −7.13595e12 −0.328403
\(921\) 0 0
\(922\) −7.81490e12 −0.356151
\(923\) 5.88923e12 0.267086
\(924\) 0 0
\(925\) 5.20382e12 0.233714
\(926\) 4.28551e13 1.91537
\(927\) 0 0
\(928\) −2.03782e12 −0.0901988
\(929\) 2.28123e13 1.00484 0.502422 0.864622i \(-0.332442\pi\)
0.502422 + 0.864622i \(0.332442\pi\)
\(930\) 0 0
\(931\) −2.47272e12 −0.107870
\(932\) −3.63795e12 −0.157937
\(933\) 0 0
\(934\) 1.40375e13 0.603572
\(935\) 3.29852e13 1.41145
\(936\) 0 0
\(937\) 9.14211e12 0.387452 0.193726 0.981056i \(-0.437943\pi\)
0.193726 + 0.981056i \(0.437943\pi\)
\(938\) −2.85181e13 −1.20284
\(939\) 0 0
\(940\) 4.68500e12 0.195719
\(941\) −2.42073e13 −1.00645 −0.503225 0.864155i \(-0.667853\pi\)
−0.503225 + 0.864155i \(0.667853\pi\)
\(942\) 0 0
\(943\) −2.58082e13 −1.06281
\(944\) 4.00719e13 1.64235
\(945\) 0 0
\(946\) 4.57113e13 1.85573
\(947\) −1.63239e13 −0.659550 −0.329775 0.944060i \(-0.606973\pi\)
−0.329775 + 0.944060i \(0.606973\pi\)
\(948\) 0 0
\(949\) 9.83767e12 0.393726
\(950\) −5.81135e12 −0.231484
\(951\) 0 0
\(952\) 2.47313e13 0.975845
\(953\) −2.42382e13 −0.951880 −0.475940 0.879478i \(-0.657892\pi\)
−0.475940 + 0.879478i \(0.657892\pi\)
\(954\) 0 0
\(955\) 1.52756e12 0.0594268
\(956\) 4.31641e12 0.167133
\(957\) 0 0
\(958\) −2.30134e13 −0.882748
\(959\) 7.03523e12 0.268593
\(960\) 0 0
\(961\) −2.12803e13 −0.804864
\(962\) −3.32123e12 −0.125029
\(963\) 0 0
\(964\) −1.03447e12 −0.0385809
\(965\) 2.84832e13 1.05734
\(966\) 0 0
\(967\) −1.11387e13 −0.409654 −0.204827 0.978798i \(-0.565663\pi\)
−0.204827 + 0.978798i \(0.565663\pi\)
\(968\) −4.00987e13 −1.46788
\(969\) 0 0
\(970\) −2.25497e13 −0.817839
\(971\) 3.10112e13 1.11952 0.559760 0.828655i \(-0.310893\pi\)
0.559760 + 0.828655i \(0.310893\pi\)
\(972\) 0 0
\(973\) −2.58837e13 −0.925804
\(974\) −1.11134e12 −0.0395668
\(975\) 0 0
\(976\) 3.74699e13 1.32178
\(977\) −1.16626e13 −0.409516 −0.204758 0.978813i \(-0.565641\pi\)
−0.204758 + 0.978813i \(0.565641\pi\)
\(978\) 0 0
\(979\) −4.89889e13 −1.70442
\(980\) −1.06021e12 −0.0367178
\(981\) 0 0
\(982\) −1.10729e13 −0.379980
\(983\) 1.20376e13 0.411198 0.205599 0.978636i \(-0.434086\pi\)
0.205599 + 0.978636i \(0.434086\pi\)
\(984\) 0 0
\(985\) 2.80085e13 0.948040
\(986\) −1.00582e13 −0.338904
\(987\) 0 0
\(988\) 6.01056e11 0.0200682
\(989\) −1.77164e13 −0.588834
\(990\) 0 0
\(991\) 4.45908e13 1.46863 0.734317 0.678806i \(-0.237502\pi\)
0.734317 + 0.678806i \(0.237502\pi\)
\(992\) −5.14247e12 −0.168604
\(993\) 0 0
\(994\) 2.73148e13 0.887480
\(995\) 4.09360e11 0.0132404
\(996\) 0 0
\(997\) 5.03829e13 1.61493 0.807467 0.589912i \(-0.200838\pi\)
0.807467 + 0.589912i \(0.200838\pi\)
\(998\) 1.79897e13 0.574032
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.5 5
3.2 odd 2 13.10.a.b.1.1 5
12.11 even 2 208.10.a.h.1.2 5
15.14 odd 2 325.10.a.b.1.5 5
39.38 odd 2 169.10.a.b.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.1 5 3.2 odd 2
117.10.a.e.1.5 5 1.1 even 1 trivial
169.10.a.b.1.5 5 39.38 odd 2
208.10.a.h.1.2 5 12.11 even 2
325.10.a.b.1.5 5 15.14 odd 2