Properties

Label 117.10.a.e.1.4
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-24.3176\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+21.3176 q^{2} -57.5590 q^{4} +1277.14 q^{5} -2277.98 q^{7} -12141.6 q^{8} +O(q^{10})\) \(q+21.3176 q^{2} -57.5590 q^{4} +1277.14 q^{5} -2277.98 q^{7} -12141.6 q^{8} +27225.6 q^{10} +7177.94 q^{11} +28561.0 q^{13} -48561.1 q^{14} -229361. q^{16} +447890. q^{17} -528333. q^{19} -73510.8 q^{20} +153017. q^{22} -2.24354e6 q^{23} -322041. q^{25} +608853. q^{26} +131118. q^{28} -5.98542e6 q^{29} +169630. q^{31} +1.32709e6 q^{32} +9.54795e6 q^{34} -2.90930e6 q^{35} +1.26336e7 q^{37} -1.12628e7 q^{38} -1.55066e7 q^{40} +2.76549e7 q^{41} -2.27606e7 q^{43} -413155. q^{44} -4.78270e7 q^{46} -5.32103e7 q^{47} -3.51644e7 q^{49} -6.86516e6 q^{50} -1.64394e6 q^{52} -3.18756e7 q^{53} +9.16722e6 q^{55} +2.76584e7 q^{56} -1.27595e8 q^{58} -1.14800e8 q^{59} -7.80352e7 q^{61} +3.61610e6 q^{62} +1.45723e8 q^{64} +3.64764e7 q^{65} +8.40538e7 q^{67} -2.57801e7 q^{68} -6.20193e7 q^{70} -1.25752e8 q^{71} -1.88250e8 q^{73} +2.69318e8 q^{74} +3.04103e7 q^{76} -1.63512e7 q^{77} -4.28673e8 q^{79} -2.92926e8 q^{80} +5.89536e8 q^{82} -2.43067e8 q^{83} +5.72018e8 q^{85} -4.85202e8 q^{86} -8.71520e7 q^{88} -2.92716e8 q^{89} -6.50614e7 q^{91} +1.29136e8 q^{92} -1.13432e9 q^{94} -6.74754e8 q^{95} +1.14275e9 q^{97} -7.49622e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22} + 592152 q^{23} + 1670362 q^{25} - 428415 q^{26} + 2587955 q^{28} - 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 9934079 q^{34} - 8380731 q^{35} + 7171823 q^{37} + 25568814 q^{38} - 54359445 q^{40} - 9294012 q^{41} + 12831975 q^{43} + 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 25249488 q^{49} + 16270770 q^{50} + 10310521 q^{52} - 93231780 q^{53} + 99448846 q^{55} - 199599225 q^{56} + 151020970 q^{58} - 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 91019105 q^{64} - 51495483 q^{65} - 369388534 q^{67} - 238172073 q^{68} - 144857425 q^{70} - 212150457 q^{71} - 252729806 q^{73} - 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 1247271728 q^{79} - 900649725 q^{80} + 169559388 q^{82} - 1696894296 q^{83} - 775363765 q^{85} - 3291621459 q^{86} - 220227222 q^{88} + 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 272071215 q^{94} - 1442632962 q^{95} + 3824606 q^{97} - 1570614816 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 21.3176 0.942115 0.471057 0.882103i \(-0.343872\pi\)
0.471057 + 0.882103i \(0.343872\pi\)
\(3\) 0 0
\(4\) −57.5590 −0.112420
\(5\) 1277.14 0.913846 0.456923 0.889506i \(-0.348951\pi\)
0.456923 + 0.889506i \(0.348951\pi\)
\(6\) 0 0
\(7\) −2277.98 −0.358599 −0.179299 0.983795i \(-0.557383\pi\)
−0.179299 + 0.983795i \(0.557383\pi\)
\(8\) −12141.6 −1.04803
\(9\) 0 0
\(10\) 27225.6 0.860948
\(11\) 7177.94 0.147820 0.0739099 0.997265i \(-0.476452\pi\)
0.0739099 + 0.997265i \(0.476452\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) −48561.1 −0.337841
\(15\) 0 0
\(16\) −229361. −0.874942
\(17\) 447890. 1.30062 0.650311 0.759668i \(-0.274639\pi\)
0.650311 + 0.759668i \(0.274639\pi\)
\(18\) 0 0
\(19\) −528333. −0.930071 −0.465036 0.885292i \(-0.653959\pi\)
−0.465036 + 0.885292i \(0.653959\pi\)
\(20\) −73510.8 −0.102734
\(21\) 0 0
\(22\) 153017. 0.139263
\(23\) −2.24354e6 −1.67170 −0.835851 0.548957i \(-0.815025\pi\)
−0.835851 + 0.548957i \(0.815025\pi\)
\(24\) 0 0
\(25\) −322041. −0.164885
\(26\) 608853. 0.261296
\(27\) 0 0
\(28\) 131118. 0.0403136
\(29\) −5.98542e6 −1.57146 −0.785730 0.618569i \(-0.787713\pi\)
−0.785730 + 0.618569i \(0.787713\pi\)
\(30\) 0 0
\(31\) 169630. 0.0329894 0.0164947 0.999864i \(-0.494749\pi\)
0.0164947 + 0.999864i \(0.494749\pi\)
\(32\) 1.32709e6 0.223731
\(33\) 0 0
\(34\) 9.54795e6 1.22534
\(35\) −2.90930e6 −0.327704
\(36\) 0 0
\(37\) 1.26336e7 1.10820 0.554100 0.832450i \(-0.313062\pi\)
0.554100 + 0.832450i \(0.313062\pi\)
\(38\) −1.12628e7 −0.876234
\(39\) 0 0
\(40\) −1.55066e7 −0.957736
\(41\) 2.76549e7 1.52843 0.764213 0.644964i \(-0.223128\pi\)
0.764213 + 0.644964i \(0.223128\pi\)
\(42\) 0 0
\(43\) −2.27606e7 −1.01526 −0.507628 0.861576i \(-0.669478\pi\)
−0.507628 + 0.861576i \(0.669478\pi\)
\(44\) −413155. −0.0166179
\(45\) 0 0
\(46\) −4.78270e7 −1.57493
\(47\) −5.32103e7 −1.59058 −0.795289 0.606230i \(-0.792681\pi\)
−0.795289 + 0.606230i \(0.792681\pi\)
\(48\) 0 0
\(49\) −3.51644e7 −0.871407
\(50\) −6.86516e6 −0.155341
\(51\) 0 0
\(52\) −1.64394e6 −0.0311797
\(53\) −3.18756e7 −0.554904 −0.277452 0.960740i \(-0.589490\pi\)
−0.277452 + 0.960740i \(0.589490\pi\)
\(54\) 0 0
\(55\) 9.16722e6 0.135085
\(56\) 2.76584e7 0.375821
\(57\) 0 0
\(58\) −1.27595e8 −1.48050
\(59\) −1.14800e8 −1.23341 −0.616705 0.787194i \(-0.711533\pi\)
−0.616705 + 0.787194i \(0.711533\pi\)
\(60\) 0 0
\(61\) −7.80352e7 −0.721616 −0.360808 0.932640i \(-0.617499\pi\)
−0.360808 + 0.932640i \(0.617499\pi\)
\(62\) 3.61610e6 0.0310798
\(63\) 0 0
\(64\) 1.45723e8 1.08572
\(65\) 3.64764e7 0.253455
\(66\) 0 0
\(67\) 8.40538e7 0.509590 0.254795 0.966995i \(-0.417992\pi\)
0.254795 + 0.966995i \(0.417992\pi\)
\(68\) −2.57801e7 −0.146216
\(69\) 0 0
\(70\) −6.20193e7 −0.308735
\(71\) −1.25752e8 −0.587288 −0.293644 0.955915i \(-0.594868\pi\)
−0.293644 + 0.955915i \(0.594868\pi\)
\(72\) 0 0
\(73\) −1.88250e8 −0.775859 −0.387929 0.921689i \(-0.626810\pi\)
−0.387929 + 0.921689i \(0.626810\pi\)
\(74\) 2.69318e8 1.04405
\(75\) 0 0
\(76\) 3.04103e7 0.104558
\(77\) −1.63512e7 −0.0530080
\(78\) 0 0
\(79\) −4.28673e8 −1.23824 −0.619120 0.785297i \(-0.712510\pi\)
−0.619120 + 0.785297i \(0.712510\pi\)
\(80\) −2.92926e8 −0.799562
\(81\) 0 0
\(82\) 5.89536e8 1.43995
\(83\) −2.43067e8 −0.562180 −0.281090 0.959681i \(-0.590696\pi\)
−0.281090 + 0.959681i \(0.590696\pi\)
\(84\) 0 0
\(85\) 5.72018e8 1.18857
\(86\) −4.85202e8 −0.956488
\(87\) 0 0
\(88\) −8.71520e7 −0.154919
\(89\) −2.92716e8 −0.494529 −0.247265 0.968948i \(-0.579532\pi\)
−0.247265 + 0.968948i \(0.579532\pi\)
\(90\) 0 0
\(91\) −6.50614e7 −0.0994573
\(92\) 1.29136e8 0.187932
\(93\) 0 0
\(94\) −1.13432e9 −1.49851
\(95\) −6.74754e8 −0.849942
\(96\) 0 0
\(97\) 1.14275e9 1.31063 0.655313 0.755358i \(-0.272537\pi\)
0.655313 + 0.755358i \(0.272537\pi\)
\(98\) −7.49622e8 −0.820965
\(99\) 0 0
\(100\) 1.85364e7 0.0185364
\(101\) 8.98629e8 0.859279 0.429640 0.903000i \(-0.358641\pi\)
0.429640 + 0.903000i \(0.358641\pi\)
\(102\) 0 0
\(103\) 6.13518e8 0.537106 0.268553 0.963265i \(-0.413455\pi\)
0.268553 + 0.963265i \(0.413455\pi\)
\(104\) −3.46777e8 −0.290670
\(105\) 0 0
\(106\) −6.79513e8 −0.522783
\(107\) −1.46257e9 −1.07868 −0.539338 0.842090i \(-0.681325\pi\)
−0.539338 + 0.842090i \(0.681325\pi\)
\(108\) 0 0
\(109\) 7.17715e8 0.487005 0.243502 0.969900i \(-0.421704\pi\)
0.243502 + 0.969900i \(0.421704\pi\)
\(110\) 1.95423e8 0.127265
\(111\) 0 0
\(112\) 5.22479e8 0.313753
\(113\) −9.27444e7 −0.0535099 −0.0267550 0.999642i \(-0.508517\pi\)
−0.0267550 + 0.999642i \(0.508517\pi\)
\(114\) 0 0
\(115\) −2.86531e9 −1.52768
\(116\) 3.44514e8 0.176663
\(117\) 0 0
\(118\) −2.44726e9 −1.16201
\(119\) −1.02028e9 −0.466401
\(120\) 0 0
\(121\) −2.30642e9 −0.978149
\(122\) −1.66352e9 −0.679845
\(123\) 0 0
\(124\) −9.76371e6 −0.00370866
\(125\) −2.90570e9 −1.06453
\(126\) 0 0
\(127\) 4.40060e9 1.50105 0.750524 0.660843i \(-0.229801\pi\)
0.750524 + 0.660843i \(0.229801\pi\)
\(128\) 2.42700e9 0.799144
\(129\) 0 0
\(130\) 7.77589e8 0.238784
\(131\) 1.21951e9 0.361798 0.180899 0.983502i \(-0.442099\pi\)
0.180899 + 0.983502i \(0.442099\pi\)
\(132\) 0 0
\(133\) 1.20353e9 0.333522
\(134\) 1.79183e9 0.480092
\(135\) 0 0
\(136\) −5.43812e9 −1.36309
\(137\) 6.73258e9 1.63282 0.816411 0.577472i \(-0.195961\pi\)
0.816411 + 0.577472i \(0.195961\pi\)
\(138\) 0 0
\(139\) 4.12694e8 0.0937695 0.0468847 0.998900i \(-0.485071\pi\)
0.0468847 + 0.998900i \(0.485071\pi\)
\(140\) 1.67456e8 0.0368404
\(141\) 0 0
\(142\) −2.68073e9 −0.553293
\(143\) 2.05009e8 0.0409978
\(144\) 0 0
\(145\) −7.64421e9 −1.43607
\(146\) −4.01305e9 −0.730948
\(147\) 0 0
\(148\) −7.27175e8 −0.124584
\(149\) −7.17339e9 −1.19230 −0.596151 0.802872i \(-0.703304\pi\)
−0.596151 + 0.802872i \(0.703304\pi\)
\(150\) 0 0
\(151\) 9.30445e9 1.45645 0.728223 0.685340i \(-0.240346\pi\)
0.728223 + 0.685340i \(0.240346\pi\)
\(152\) 6.41483e9 0.974740
\(153\) 0 0
\(154\) −3.48569e8 −0.0499396
\(155\) 2.16641e8 0.0301472
\(156\) 0 0
\(157\) −5.86131e9 −0.769921 −0.384961 0.922933i \(-0.625785\pi\)
−0.384961 + 0.922933i \(0.625785\pi\)
\(158\) −9.13830e9 −1.16656
\(159\) 0 0
\(160\) 1.69488e9 0.204456
\(161\) 5.11074e9 0.599470
\(162\) 0 0
\(163\) 1.60676e10 1.78282 0.891409 0.453199i \(-0.149717\pi\)
0.891409 + 0.453199i \(0.149717\pi\)
\(164\) −1.59179e9 −0.171825
\(165\) 0 0
\(166\) −5.18162e9 −0.529638
\(167\) 1.49042e9 0.148281 0.0741404 0.997248i \(-0.476379\pi\)
0.0741404 + 0.997248i \(0.476379\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 1.21941e10 1.11977
\(171\) 0 0
\(172\) 1.31008e9 0.114135
\(173\) 6.62250e9 0.562101 0.281050 0.959693i \(-0.409317\pi\)
0.281050 + 0.959693i \(0.409317\pi\)
\(174\) 0 0
\(175\) 7.33604e8 0.0591276
\(176\) −1.64634e9 −0.129334
\(177\) 0 0
\(178\) −6.24002e9 −0.465903
\(179\) −1.41019e10 −1.02669 −0.513344 0.858183i \(-0.671594\pi\)
−0.513344 + 0.858183i \(0.671594\pi\)
\(180\) 0 0
\(181\) 2.38898e10 1.65447 0.827234 0.561857i \(-0.189913\pi\)
0.827234 + 0.561857i \(0.189913\pi\)
\(182\) −1.38695e9 −0.0937002
\(183\) 0 0
\(184\) 2.72403e10 1.75199
\(185\) 1.61348e10 1.01272
\(186\) 0 0
\(187\) 3.21493e9 0.192258
\(188\) 3.06273e9 0.178813
\(189\) 0 0
\(190\) −1.43842e10 −0.800743
\(191\) 2.32674e10 1.26502 0.632509 0.774553i \(-0.282025\pi\)
0.632509 + 0.774553i \(0.282025\pi\)
\(192\) 0 0
\(193\) 8.87539e9 0.460447 0.230224 0.973138i \(-0.426054\pi\)
0.230224 + 0.973138i \(0.426054\pi\)
\(194\) 2.43607e10 1.23476
\(195\) 0 0
\(196\) 2.02403e9 0.0979634
\(197\) 9.96936e9 0.471595 0.235798 0.971802i \(-0.424230\pi\)
0.235798 + 0.971802i \(0.424230\pi\)
\(198\) 0 0
\(199\) −5.92044e9 −0.267618 −0.133809 0.991007i \(-0.542721\pi\)
−0.133809 + 0.991007i \(0.542721\pi\)
\(200\) 3.91011e9 0.172804
\(201\) 0 0
\(202\) 1.91566e10 0.809540
\(203\) 1.36347e10 0.563524
\(204\) 0 0
\(205\) 3.53191e10 1.39675
\(206\) 1.30787e10 0.506015
\(207\) 0 0
\(208\) −6.55077e9 −0.242665
\(209\) −3.79234e9 −0.137483
\(210\) 0 0
\(211\) −3.18290e10 −1.10548 −0.552741 0.833353i \(-0.686418\pi\)
−0.552741 + 0.833353i \(0.686418\pi\)
\(212\) 1.83473e9 0.0623822
\(213\) 0 0
\(214\) −3.11786e10 −1.01624
\(215\) −2.90685e10 −0.927788
\(216\) 0 0
\(217\) −3.86413e8 −0.0118300
\(218\) 1.53000e10 0.458814
\(219\) 0 0
\(220\) −5.27656e8 −0.0151862
\(221\) 1.27922e10 0.360728
\(222\) 0 0
\(223\) −2.33567e10 −0.632470 −0.316235 0.948681i \(-0.602419\pi\)
−0.316235 + 0.948681i \(0.602419\pi\)
\(224\) −3.02309e9 −0.0802298
\(225\) 0 0
\(226\) −1.97709e9 −0.0504125
\(227\) −2.96928e10 −0.742223 −0.371112 0.928588i \(-0.621023\pi\)
−0.371112 + 0.928588i \(0.621023\pi\)
\(228\) 0 0
\(229\) 4.24937e10 1.02109 0.510546 0.859850i \(-0.329443\pi\)
0.510546 + 0.859850i \(0.329443\pi\)
\(230\) −6.10817e10 −1.43925
\(231\) 0 0
\(232\) 7.26728e10 1.64693
\(233\) 3.84693e10 0.855092 0.427546 0.903994i \(-0.359378\pi\)
0.427546 + 0.903994i \(0.359378\pi\)
\(234\) 0 0
\(235\) −6.79569e10 −1.45354
\(236\) 6.60776e9 0.138660
\(237\) 0 0
\(238\) −2.17500e10 −0.439403
\(239\) 1.98946e10 0.394407 0.197203 0.980363i \(-0.436814\pi\)
0.197203 + 0.980363i \(0.436814\pi\)
\(240\) 0 0
\(241\) −5.31240e10 −1.01441 −0.507206 0.861825i \(-0.669322\pi\)
−0.507206 + 0.861825i \(0.669322\pi\)
\(242\) −4.91675e10 −0.921529
\(243\) 0 0
\(244\) 4.49162e9 0.0811240
\(245\) −4.49098e10 −0.796332
\(246\) 0 0
\(247\) −1.50897e10 −0.257955
\(248\) −2.05958e9 −0.0345738
\(249\) 0 0
\(250\) −6.19427e10 −1.00291
\(251\) −1.26269e10 −0.200801 −0.100400 0.994947i \(-0.532012\pi\)
−0.100400 + 0.994947i \(0.532012\pi\)
\(252\) 0 0
\(253\) −1.61040e10 −0.247111
\(254\) 9.38102e10 1.41416
\(255\) 0 0
\(256\) −2.28724e10 −0.332837
\(257\) −1.11000e11 −1.58717 −0.793583 0.608461i \(-0.791787\pi\)
−0.793583 + 0.608461i \(0.791787\pi\)
\(258\) 0 0
\(259\) −2.87790e10 −0.397399
\(260\) −2.09954e9 −0.0284934
\(261\) 0 0
\(262\) 2.59971e10 0.340855
\(263\) −7.01020e10 −0.903503 −0.451752 0.892144i \(-0.649201\pi\)
−0.451752 + 0.892144i \(0.649201\pi\)
\(264\) 0 0
\(265\) −4.07096e10 −0.507097
\(266\) 2.56564e10 0.314216
\(267\) 0 0
\(268\) −4.83805e9 −0.0572880
\(269\) −7.41364e10 −0.863269 −0.431635 0.902049i \(-0.642063\pi\)
−0.431635 + 0.902049i \(0.642063\pi\)
\(270\) 0 0
\(271\) 8.92477e10 1.00516 0.502580 0.864531i \(-0.332384\pi\)
0.502580 + 0.864531i \(0.332384\pi\)
\(272\) −1.02728e11 −1.13797
\(273\) 0 0
\(274\) 1.43523e11 1.53831
\(275\) −2.31159e9 −0.0243733
\(276\) 0 0
\(277\) −6.68313e10 −0.682057 −0.341028 0.940053i \(-0.610775\pi\)
−0.341028 + 0.940053i \(0.610775\pi\)
\(278\) 8.79765e9 0.0883416
\(279\) 0 0
\(280\) 3.53236e10 0.343443
\(281\) 8.13670e10 0.778520 0.389260 0.921128i \(-0.372731\pi\)
0.389260 + 0.921128i \(0.372731\pi\)
\(282\) 0 0
\(283\) −1.19236e11 −1.10502 −0.552508 0.833507i \(-0.686329\pi\)
−0.552508 + 0.833507i \(0.686329\pi\)
\(284\) 7.23814e9 0.0660229
\(285\) 0 0
\(286\) 4.37031e9 0.0386247
\(287\) −6.29972e10 −0.548091
\(288\) 0 0
\(289\) 8.20174e10 0.691617
\(290\) −1.62956e11 −1.35295
\(291\) 0 0
\(292\) 1.08355e10 0.0872219
\(293\) 6.95594e10 0.551381 0.275690 0.961246i \(-0.411094\pi\)
0.275690 + 0.961246i \(0.411094\pi\)
\(294\) 0 0
\(295\) −1.46615e11 −1.12715
\(296\) −1.53392e11 −1.16142
\(297\) 0 0
\(298\) −1.52920e11 −1.12328
\(299\) −6.40778e10 −0.463647
\(300\) 0 0
\(301\) 5.18482e10 0.364069
\(302\) 1.98349e11 1.37214
\(303\) 0 0
\(304\) 1.21179e11 0.813759
\(305\) −9.96618e10 −0.659446
\(306\) 0 0
\(307\) −4.02660e10 −0.258711 −0.129356 0.991598i \(-0.541291\pi\)
−0.129356 + 0.991598i \(0.541291\pi\)
\(308\) 9.41157e8 0.00595915
\(309\) 0 0
\(310\) 4.61827e9 0.0284022
\(311\) 1.78556e11 1.08231 0.541157 0.840921i \(-0.317986\pi\)
0.541157 + 0.840921i \(0.317986\pi\)
\(312\) 0 0
\(313\) 9.44550e9 0.0556257 0.0278128 0.999613i \(-0.491146\pi\)
0.0278128 + 0.999613i \(0.491146\pi\)
\(314\) −1.24949e11 −0.725354
\(315\) 0 0
\(316\) 2.46740e10 0.139203
\(317\) −5.42593e10 −0.301792 −0.150896 0.988550i \(-0.548216\pi\)
−0.150896 + 0.988550i \(0.548216\pi\)
\(318\) 0 0
\(319\) −4.29630e10 −0.232293
\(320\) 1.86109e11 0.992183
\(321\) 0 0
\(322\) 1.08949e11 0.564769
\(323\) −2.36635e11 −1.20967
\(324\) 0 0
\(325\) −9.19783e9 −0.0457309
\(326\) 3.42523e11 1.67962
\(327\) 0 0
\(328\) −3.35776e11 −1.60183
\(329\) 1.21212e11 0.570379
\(330\) 0 0
\(331\) 6.66790e10 0.305325 0.152663 0.988278i \(-0.451215\pi\)
0.152663 + 0.988278i \(0.451215\pi\)
\(332\) 1.39907e10 0.0632001
\(333\) 0 0
\(334\) 3.17722e10 0.139697
\(335\) 1.07348e11 0.465687
\(336\) 0 0
\(337\) 2.13457e11 0.901522 0.450761 0.892645i \(-0.351153\pi\)
0.450761 + 0.892645i \(0.351153\pi\)
\(338\) 1.73894e10 0.0724704
\(339\) 0 0
\(340\) −3.29247e10 −0.133619
\(341\) 1.21759e9 0.00487649
\(342\) 0 0
\(343\) 1.72028e11 0.671084
\(344\) 2.76351e11 1.06402
\(345\) 0 0
\(346\) 1.41176e11 0.529564
\(347\) 9.49978e10 0.351748 0.175874 0.984413i \(-0.443725\pi\)
0.175874 + 0.984413i \(0.443725\pi\)
\(348\) 0 0
\(349\) 2.52647e11 0.911590 0.455795 0.890085i \(-0.349355\pi\)
0.455795 + 0.890085i \(0.349355\pi\)
\(350\) 1.56387e10 0.0557050
\(351\) 0 0
\(352\) 9.52580e9 0.0330719
\(353\) −4.50376e11 −1.54379 −0.771896 0.635749i \(-0.780691\pi\)
−0.771896 + 0.635749i \(0.780691\pi\)
\(354\) 0 0
\(355\) −1.60602e11 −0.536691
\(356\) 1.68485e10 0.0555949
\(357\) 0 0
\(358\) −3.00619e11 −0.967258
\(359\) −3.93740e11 −1.25108 −0.625539 0.780193i \(-0.715121\pi\)
−0.625539 + 0.780193i \(0.715121\pi\)
\(360\) 0 0
\(361\) −4.35522e10 −0.134967
\(362\) 5.09273e11 1.55870
\(363\) 0 0
\(364\) 3.74486e9 0.0111810
\(365\) −2.40422e11 −0.709015
\(366\) 0 0
\(367\) −2.26305e11 −0.651173 −0.325586 0.945512i \(-0.605562\pi\)
−0.325586 + 0.945512i \(0.605562\pi\)
\(368\) 5.14580e11 1.46264
\(369\) 0 0
\(370\) 3.43956e11 0.954103
\(371\) 7.26120e10 0.198988
\(372\) 0 0
\(373\) 4.75023e11 1.27065 0.635323 0.772246i \(-0.280867\pi\)
0.635323 + 0.772246i \(0.280867\pi\)
\(374\) 6.85346e10 0.181129
\(375\) 0 0
\(376\) 6.46060e11 1.66697
\(377\) −1.70950e11 −0.435845
\(378\) 0 0
\(379\) −1.67293e11 −0.416486 −0.208243 0.978077i \(-0.566775\pi\)
−0.208243 + 0.978077i \(0.566775\pi\)
\(380\) 3.88381e10 0.0955504
\(381\) 0 0
\(382\) 4.96005e11 1.19179
\(383\) 5.36589e11 1.27423 0.637114 0.770769i \(-0.280128\pi\)
0.637114 + 0.770769i \(0.280128\pi\)
\(384\) 0 0
\(385\) −2.08827e10 −0.0484411
\(386\) 1.89202e11 0.433794
\(387\) 0 0
\(388\) −6.57755e10 −0.147340
\(389\) −5.95613e11 −1.31884 −0.659418 0.751776i \(-0.729197\pi\)
−0.659418 + 0.751776i \(0.729197\pi\)
\(390\) 0 0
\(391\) −1.00486e12 −2.17425
\(392\) 4.26954e11 0.913258
\(393\) 0 0
\(394\) 2.12523e11 0.444297
\(395\) −5.47475e11 −1.13156
\(396\) 0 0
\(397\) −6.68797e11 −1.35125 −0.675627 0.737243i \(-0.736127\pi\)
−0.675627 + 0.737243i \(0.736127\pi\)
\(398\) −1.26210e11 −0.252127
\(399\) 0 0
\(400\) 7.38637e10 0.144265
\(401\) −4.27579e11 −0.825785 −0.412892 0.910780i \(-0.635481\pi\)
−0.412892 + 0.910780i \(0.635481\pi\)
\(402\) 0 0
\(403\) 4.84480e9 0.00914962
\(404\) −5.17241e10 −0.0966000
\(405\) 0 0
\(406\) 2.90658e11 0.530904
\(407\) 9.06830e10 0.163814
\(408\) 0 0
\(409\) −4.37893e10 −0.0773772 −0.0386886 0.999251i \(-0.512318\pi\)
−0.0386886 + 0.999251i \(0.512318\pi\)
\(410\) 7.52919e11 1.31589
\(411\) 0 0
\(412\) −3.53135e10 −0.0603813
\(413\) 2.61512e11 0.442299
\(414\) 0 0
\(415\) −3.10431e11 −0.513746
\(416\) 3.79031e10 0.0620519
\(417\) 0 0
\(418\) −8.08437e10 −0.129525
\(419\) 1.14243e11 0.181079 0.0905395 0.995893i \(-0.471141\pi\)
0.0905395 + 0.995893i \(0.471141\pi\)
\(420\) 0 0
\(421\) −5.06520e11 −0.785828 −0.392914 0.919575i \(-0.628533\pi\)
−0.392914 + 0.919575i \(0.628533\pi\)
\(422\) −6.78518e11 −1.04149
\(423\) 0 0
\(424\) 3.87023e11 0.581554
\(425\) −1.44239e11 −0.214453
\(426\) 0 0
\(427\) 1.77763e11 0.258770
\(428\) 8.41842e10 0.121264
\(429\) 0 0
\(430\) −6.19670e11 −0.874083
\(431\) 1.32605e11 0.185103 0.0925513 0.995708i \(-0.470498\pi\)
0.0925513 + 0.995708i \(0.470498\pi\)
\(432\) 0 0
\(433\) 1.21346e12 1.65894 0.829469 0.558553i \(-0.188643\pi\)
0.829469 + 0.558553i \(0.188643\pi\)
\(434\) −8.23741e9 −0.0111452
\(435\) 0 0
\(436\) −4.13110e10 −0.0547490
\(437\) 1.18534e12 1.55480
\(438\) 0 0
\(439\) −7.26961e11 −0.934159 −0.467079 0.884215i \(-0.654694\pi\)
−0.467079 + 0.884215i \(0.654694\pi\)
\(440\) −1.11305e11 −0.141572
\(441\) 0 0
\(442\) 2.72699e11 0.339847
\(443\) 1.02161e12 1.26028 0.630142 0.776480i \(-0.282997\pi\)
0.630142 + 0.776480i \(0.282997\pi\)
\(444\) 0 0
\(445\) −3.73840e11 −0.451924
\(446\) −4.97910e11 −0.595859
\(447\) 0 0
\(448\) −3.31954e11 −0.389339
\(449\) −5.91722e11 −0.687083 −0.343542 0.939137i \(-0.611627\pi\)
−0.343542 + 0.939137i \(0.611627\pi\)
\(450\) 0 0
\(451\) 1.98505e11 0.225932
\(452\) 5.33827e9 0.00601558
\(453\) 0 0
\(454\) −6.32979e11 −0.699259
\(455\) −8.30924e10 −0.0908887
\(456\) 0 0
\(457\) −8.30664e11 −0.890845 −0.445423 0.895320i \(-0.646947\pi\)
−0.445423 + 0.895320i \(0.646947\pi\)
\(458\) 9.05865e11 0.961986
\(459\) 0 0
\(460\) 1.64924e11 0.171741
\(461\) −8.73246e11 −0.900497 −0.450249 0.892903i \(-0.648665\pi\)
−0.450249 + 0.892903i \(0.648665\pi\)
\(462\) 0 0
\(463\) 7.70415e11 0.779130 0.389565 0.920999i \(-0.372625\pi\)
0.389565 + 0.920999i \(0.372625\pi\)
\(464\) 1.37282e12 1.37494
\(465\) 0 0
\(466\) 8.20074e11 0.805595
\(467\) −4.50995e11 −0.438779 −0.219390 0.975637i \(-0.570407\pi\)
−0.219390 + 0.975637i \(0.570407\pi\)
\(468\) 0 0
\(469\) −1.91473e11 −0.182738
\(470\) −1.44868e12 −1.36940
\(471\) 0 0
\(472\) 1.39386e12 1.29265
\(473\) −1.63374e11 −0.150075
\(474\) 0 0
\(475\) 1.70145e11 0.153355
\(476\) 5.87265e10 0.0524327
\(477\) 0 0
\(478\) 4.24105e11 0.371576
\(479\) 5.26966e11 0.457376 0.228688 0.973500i \(-0.426556\pi\)
0.228688 + 0.973500i \(0.426556\pi\)
\(480\) 0 0
\(481\) 3.60827e11 0.307360
\(482\) −1.13248e12 −0.955692
\(483\) 0 0
\(484\) 1.32755e11 0.109963
\(485\) 1.45945e12 1.19771
\(486\) 0 0
\(487\) 1.88076e12 1.51514 0.757570 0.652754i \(-0.226386\pi\)
0.757570 + 0.652754i \(0.226386\pi\)
\(488\) 9.47475e11 0.756273
\(489\) 0 0
\(490\) −9.57371e11 −0.750236
\(491\) −1.68889e12 −1.31140 −0.655699 0.755022i \(-0.727626\pi\)
−0.655699 + 0.755022i \(0.727626\pi\)
\(492\) 0 0
\(493\) −2.68081e12 −2.04388
\(494\) −3.21677e11 −0.243024
\(495\) 0 0
\(496\) −3.89064e10 −0.0288638
\(497\) 2.86460e11 0.210601
\(498\) 0 0
\(499\) 1.60699e12 1.16027 0.580137 0.814519i \(-0.302999\pi\)
0.580137 + 0.814519i \(0.302999\pi\)
\(500\) 1.67249e11 0.119674
\(501\) 0 0
\(502\) −2.69176e11 −0.189177
\(503\) −2.73565e12 −1.90548 −0.952740 0.303786i \(-0.901749\pi\)
−0.952740 + 0.303786i \(0.901749\pi\)
\(504\) 0 0
\(505\) 1.14767e12 0.785249
\(506\) −3.43299e11 −0.232807
\(507\) 0 0
\(508\) −2.53294e11 −0.168748
\(509\) −7.49256e11 −0.494766 −0.247383 0.968918i \(-0.579571\pi\)
−0.247383 + 0.968918i \(0.579571\pi\)
\(510\) 0 0
\(511\) 4.28830e11 0.278222
\(512\) −1.73021e12 −1.11271
\(513\) 0 0
\(514\) −2.36625e12 −1.49529
\(515\) 7.83548e11 0.490832
\(516\) 0 0
\(517\) −3.81940e11 −0.235119
\(518\) −6.13500e11 −0.374396
\(519\) 0 0
\(520\) −4.42883e11 −0.265628
\(521\) −1.07862e12 −0.641355 −0.320678 0.947188i \(-0.603911\pi\)
−0.320678 + 0.947188i \(0.603911\pi\)
\(522\) 0 0
\(523\) −2.69236e12 −1.57353 −0.786765 0.617253i \(-0.788246\pi\)
−0.786765 + 0.617253i \(0.788246\pi\)
\(524\) −7.01939e10 −0.0406732
\(525\) 0 0
\(526\) −1.49441e12 −0.851204
\(527\) 7.59755e10 0.0429067
\(528\) 0 0
\(529\) 3.23232e12 1.79459
\(530\) −8.67832e11 −0.477743
\(531\) 0 0
\(532\) −6.92740e10 −0.0374945
\(533\) 7.89851e11 0.423909
\(534\) 0 0
\(535\) −1.86791e12 −0.985743
\(536\) −1.02055e12 −0.534064
\(537\) 0 0
\(538\) −1.58041e12 −0.813299
\(539\) −2.52408e11 −0.128811
\(540\) 0 0
\(541\) 1.94584e12 0.976604 0.488302 0.872675i \(-0.337616\pi\)
0.488302 + 0.872675i \(0.337616\pi\)
\(542\) 1.90255e12 0.946976
\(543\) 0 0
\(544\) 5.94392e11 0.290990
\(545\) 9.16622e11 0.445047
\(546\) 0 0
\(547\) −7.49274e11 −0.357847 −0.178924 0.983863i \(-0.557261\pi\)
−0.178924 + 0.983863i \(0.557261\pi\)
\(548\) −3.87520e11 −0.183562
\(549\) 0 0
\(550\) −4.92777e10 −0.0229625
\(551\) 3.16229e12 1.46157
\(552\) 0 0
\(553\) 9.76509e11 0.444031
\(554\) −1.42468e12 −0.642576
\(555\) 0 0
\(556\) −2.37542e10 −0.0105415
\(557\) −2.43252e12 −1.07080 −0.535399 0.844599i \(-0.679839\pi\)
−0.535399 + 0.844599i \(0.679839\pi\)
\(558\) 0 0
\(559\) −6.50066e11 −0.281581
\(560\) 6.67278e11 0.286722
\(561\) 0 0
\(562\) 1.73455e12 0.733455
\(563\) 2.26566e12 0.950401 0.475200 0.879878i \(-0.342376\pi\)
0.475200 + 0.879878i \(0.342376\pi\)
\(564\) 0 0
\(565\) −1.18447e11 −0.0488999
\(566\) −2.54183e12 −1.04105
\(567\) 0 0
\(568\) 1.52683e12 0.615494
\(569\) −4.39567e12 −1.75800 −0.879002 0.476817i \(-0.841790\pi\)
−0.879002 + 0.476817i \(0.841790\pi\)
\(570\) 0 0
\(571\) 2.81010e12 1.10626 0.553132 0.833094i \(-0.313433\pi\)
0.553132 + 0.833094i \(0.313433\pi\)
\(572\) −1.18001e10 −0.00460897
\(573\) 0 0
\(574\) −1.34295e12 −0.516365
\(575\) 7.22513e11 0.275639
\(576\) 0 0
\(577\) −3.06576e12 −1.15146 −0.575728 0.817642i \(-0.695281\pi\)
−0.575728 + 0.817642i \(0.695281\pi\)
\(578\) 1.74842e12 0.651583
\(579\) 0 0
\(580\) 4.39993e11 0.161443
\(581\) 5.53702e11 0.201597
\(582\) 0 0
\(583\) −2.28801e11 −0.0820257
\(584\) 2.28567e12 0.813121
\(585\) 0 0
\(586\) 1.48284e12 0.519464
\(587\) −1.53677e12 −0.534240 −0.267120 0.963663i \(-0.586072\pi\)
−0.267120 + 0.963663i \(0.586072\pi\)
\(588\) 0 0
\(589\) −8.96210e10 −0.0306825
\(590\) −3.12549e12 −1.06190
\(591\) 0 0
\(592\) −2.89765e12 −0.969611
\(593\) 3.34336e12 1.11029 0.555146 0.831753i \(-0.312662\pi\)
0.555146 + 0.831753i \(0.312662\pi\)
\(594\) 0 0
\(595\) −1.30304e12 −0.426219
\(596\) 4.12893e11 0.134038
\(597\) 0 0
\(598\) −1.36599e12 −0.436808
\(599\) 9.97101e11 0.316460 0.158230 0.987402i \(-0.449421\pi\)
0.158230 + 0.987402i \(0.449421\pi\)
\(600\) 0 0
\(601\) −2.24332e12 −0.701386 −0.350693 0.936491i \(-0.614054\pi\)
−0.350693 + 0.936491i \(0.614054\pi\)
\(602\) 1.10528e12 0.342995
\(603\) 0 0
\(604\) −5.35555e11 −0.163733
\(605\) −2.94562e12 −0.893878
\(606\) 0 0
\(607\) −5.75690e12 −1.72123 −0.860617 0.509253i \(-0.829922\pi\)
−0.860617 + 0.509253i \(0.829922\pi\)
\(608\) −7.01147e11 −0.208086
\(609\) 0 0
\(610\) −2.12455e12 −0.621274
\(611\) −1.51974e12 −0.441147
\(612\) 0 0
\(613\) 3.44873e12 0.986479 0.493239 0.869894i \(-0.335813\pi\)
0.493239 + 0.869894i \(0.335813\pi\)
\(614\) −8.58375e11 −0.243736
\(615\) 0 0
\(616\) 1.98530e11 0.0555538
\(617\) 5.13402e12 1.42618 0.713089 0.701073i \(-0.247295\pi\)
0.713089 + 0.701073i \(0.247295\pi\)
\(618\) 0 0
\(619\) 1.83851e12 0.503336 0.251668 0.967814i \(-0.419021\pi\)
0.251668 + 0.967814i \(0.419021\pi\)
\(620\) −1.24696e10 −0.00338915
\(621\) 0 0
\(622\) 3.80640e12 1.01966
\(623\) 6.66802e11 0.177338
\(624\) 0 0
\(625\) −3.08200e12 −0.807928
\(626\) 2.01356e11 0.0524058
\(627\) 0 0
\(628\) 3.37371e11 0.0865544
\(629\) 5.65845e12 1.44135
\(630\) 0 0
\(631\) 3.01780e12 0.757805 0.378903 0.925437i \(-0.376301\pi\)
0.378903 + 0.925437i \(0.376301\pi\)
\(632\) 5.20480e12 1.29771
\(633\) 0 0
\(634\) −1.15668e12 −0.284322
\(635\) 5.62017e12 1.37173
\(636\) 0 0
\(637\) −1.00433e12 −0.241685
\(638\) −9.15868e11 −0.218847
\(639\) 0 0
\(640\) 3.09962e12 0.730295
\(641\) −2.47728e12 −0.579580 −0.289790 0.957090i \(-0.593585\pi\)
−0.289790 + 0.957090i \(0.593585\pi\)
\(642\) 0 0
\(643\) 5.96725e12 1.37665 0.688327 0.725401i \(-0.258346\pi\)
0.688327 + 0.725401i \(0.258346\pi\)
\(644\) −2.94169e11 −0.0673923
\(645\) 0 0
\(646\) −5.04449e12 −1.13965
\(647\) 4.85153e12 1.08845 0.544227 0.838938i \(-0.316823\pi\)
0.544227 + 0.838938i \(0.316823\pi\)
\(648\) 0 0
\(649\) −8.24027e11 −0.182322
\(650\) −1.96076e11 −0.0430838
\(651\) 0 0
\(652\) −9.24835e11 −0.200424
\(653\) 1.50523e12 0.323961 0.161980 0.986794i \(-0.448212\pi\)
0.161980 + 0.986794i \(0.448212\pi\)
\(654\) 0 0
\(655\) 1.55749e12 0.330628
\(656\) −6.34294e12 −1.33728
\(657\) 0 0
\(658\) 2.58395e12 0.537362
\(659\) 3.29009e12 0.679552 0.339776 0.940506i \(-0.389649\pi\)
0.339776 + 0.940506i \(0.389649\pi\)
\(660\) 0 0
\(661\) 7.79224e12 1.58765 0.793827 0.608144i \(-0.208086\pi\)
0.793827 + 0.608144i \(0.208086\pi\)
\(662\) 1.42144e12 0.287652
\(663\) 0 0
\(664\) 2.95124e12 0.589179
\(665\) 1.53708e12 0.304788
\(666\) 0 0
\(667\) 1.34285e13 2.62701
\(668\) −8.57871e10 −0.0166697
\(669\) 0 0
\(670\) 2.28841e12 0.438730
\(671\) −5.60132e11 −0.106669
\(672\) 0 0
\(673\) −6.76161e12 −1.27052 −0.635261 0.772297i \(-0.719108\pi\)
−0.635261 + 0.772297i \(0.719108\pi\)
\(674\) 4.55040e12 0.849337
\(675\) 0 0
\(676\) −4.69526e10 −0.00864768
\(677\) −6.04459e12 −1.10590 −0.552952 0.833213i \(-0.686499\pi\)
−0.552952 + 0.833213i \(0.686499\pi\)
\(678\) 0 0
\(679\) −2.60316e12 −0.469988
\(680\) −6.94523e12 −1.24565
\(681\) 0 0
\(682\) 2.59562e10 0.00459421
\(683\) −3.24587e12 −0.570740 −0.285370 0.958417i \(-0.592116\pi\)
−0.285370 + 0.958417i \(0.592116\pi\)
\(684\) 0 0
\(685\) 8.59843e12 1.49215
\(686\) 3.66724e12 0.632238
\(687\) 0 0
\(688\) 5.22039e12 0.888290
\(689\) −9.10400e11 −0.153903
\(690\) 0 0
\(691\) −4.14584e12 −0.691769 −0.345885 0.938277i \(-0.612421\pi\)
−0.345885 + 0.938277i \(0.612421\pi\)
\(692\) −3.81184e11 −0.0631913
\(693\) 0 0
\(694\) 2.02513e12 0.331387
\(695\) 5.27067e11 0.0856908
\(696\) 0 0
\(697\) 1.23863e13 1.98790
\(698\) 5.38583e12 0.858822
\(699\) 0 0
\(700\) −4.22255e10 −0.00664711
\(701\) 5.47240e12 0.855947 0.427974 0.903791i \(-0.359228\pi\)
0.427974 + 0.903791i \(0.359228\pi\)
\(702\) 0 0
\(703\) −6.67473e12 −1.03071
\(704\) 1.04599e12 0.160491
\(705\) 0 0
\(706\) −9.60094e12 −1.45443
\(707\) −2.04706e12 −0.308136
\(708\) 0 0
\(709\) 1.68810e12 0.250895 0.125447 0.992100i \(-0.459963\pi\)
0.125447 + 0.992100i \(0.459963\pi\)
\(710\) −3.42366e12 −0.505625
\(711\) 0 0
\(712\) 3.55406e12 0.518280
\(713\) −3.80571e11 −0.0551484
\(714\) 0 0
\(715\) 2.61825e11 0.0374657
\(716\) 8.11690e11 0.115420
\(717\) 0 0
\(718\) −8.39360e12 −1.17866
\(719\) 3.99409e12 0.557363 0.278681 0.960384i \(-0.410103\pi\)
0.278681 + 0.960384i \(0.410103\pi\)
\(720\) 0 0
\(721\) −1.39758e12 −0.192605
\(722\) −9.28430e11 −0.127154
\(723\) 0 0
\(724\) −1.37507e12 −0.185995
\(725\) 1.92755e12 0.259111
\(726\) 0 0
\(727\) −1.96928e12 −0.261459 −0.130730 0.991418i \(-0.541732\pi\)
−0.130730 + 0.991418i \(0.541732\pi\)
\(728\) 7.89952e11 0.104234
\(729\) 0 0
\(730\) −5.12522e12 −0.667974
\(731\) −1.01942e13 −1.32046
\(732\) 0 0
\(733\) 2.48265e12 0.317649 0.158825 0.987307i \(-0.449230\pi\)
0.158825 + 0.987307i \(0.449230\pi\)
\(734\) −4.82428e12 −0.613479
\(735\) 0 0
\(736\) −2.97739e12 −0.374012
\(737\) 6.03333e11 0.0753275
\(738\) 0 0
\(739\) −8.83198e12 −1.08933 −0.544664 0.838655i \(-0.683343\pi\)
−0.544664 + 0.838655i \(0.683343\pi\)
\(740\) −9.28704e11 −0.113850
\(741\) 0 0
\(742\) 1.54792e12 0.187469
\(743\) −5.88065e12 −0.707906 −0.353953 0.935263i \(-0.615163\pi\)
−0.353953 + 0.935263i \(0.615163\pi\)
\(744\) 0 0
\(745\) −9.16141e12 −1.08958
\(746\) 1.01264e13 1.19710
\(747\) 0 0
\(748\) −1.85048e11 −0.0216136
\(749\) 3.33171e12 0.386811
\(750\) 0 0
\(751\) −9.39265e12 −1.07748 −0.538739 0.842473i \(-0.681099\pi\)
−0.538739 + 0.842473i \(0.681099\pi\)
\(752\) 1.22043e13 1.39166
\(753\) 0 0
\(754\) −3.64424e12 −0.410616
\(755\) 1.18831e13 1.33097
\(756\) 0 0
\(757\) 1.20690e13 1.33579 0.667897 0.744254i \(-0.267195\pi\)
0.667897 + 0.744254i \(0.267195\pi\)
\(758\) −3.56628e12 −0.392378
\(759\) 0 0
\(760\) 8.19263e12 0.890762
\(761\) −1.73414e12 −0.187436 −0.0937182 0.995599i \(-0.529875\pi\)
−0.0937182 + 0.995599i \(0.529875\pi\)
\(762\) 0 0
\(763\) −1.63494e12 −0.174639
\(764\) −1.33924e12 −0.142213
\(765\) 0 0
\(766\) 1.14388e13 1.20047
\(767\) −3.27880e12 −0.342086
\(768\) 0 0
\(769\) −1.87490e13 −1.93335 −0.966675 0.256006i \(-0.917593\pi\)
−0.966675 + 0.256006i \(0.917593\pi\)
\(770\) −4.45170e11 −0.0456371
\(771\) 0 0
\(772\) −5.10858e11 −0.0517634
\(773\) 2.23308e12 0.224956 0.112478 0.993654i \(-0.464121\pi\)
0.112478 + 0.993654i \(0.464121\pi\)
\(774\) 0 0
\(775\) −5.46278e10 −0.00543947
\(776\) −1.38749e13 −1.37357
\(777\) 0 0
\(778\) −1.26971e13 −1.24250
\(779\) −1.46110e13 −1.42154
\(780\) 0 0
\(781\) −9.02638e11 −0.0868129
\(782\) −2.14212e13 −2.04839
\(783\) 0 0
\(784\) 8.06534e12 0.762431
\(785\) −7.48571e12 −0.703590
\(786\) 0 0
\(787\) 7.05497e12 0.655555 0.327777 0.944755i \(-0.393700\pi\)
0.327777 + 0.944755i \(0.393700\pi\)
\(788\) −5.73826e11 −0.0530166
\(789\) 0 0
\(790\) −1.16709e13 −1.06606
\(791\) 2.11270e11 0.0191886
\(792\) 0 0
\(793\) −2.22876e12 −0.200140
\(794\) −1.42572e13 −1.27304
\(795\) 0 0
\(796\) 3.40774e11 0.0300855
\(797\) −1.16654e13 −1.02409 −0.512045 0.858959i \(-0.671112\pi\)
−0.512045 + 0.858959i \(0.671112\pi\)
\(798\) 0 0
\(799\) −2.38323e13 −2.06874
\(800\) −4.27379e11 −0.0368900
\(801\) 0 0
\(802\) −9.11497e12 −0.777984
\(803\) −1.35125e12 −0.114687
\(804\) 0 0
\(805\) 6.52712e12 0.547823
\(806\) 1.03280e11 0.00861999
\(807\) 0 0
\(808\) −1.09108e13 −0.900548
\(809\) 1.37043e13 1.12483 0.562415 0.826855i \(-0.309872\pi\)
0.562415 + 0.826855i \(0.309872\pi\)
\(810\) 0 0
\(811\) 2.07440e12 0.168383 0.0841917 0.996450i \(-0.473169\pi\)
0.0841917 + 0.996450i \(0.473169\pi\)
\(812\) −7.84797e11 −0.0633512
\(813\) 0 0
\(814\) 1.93315e12 0.154332
\(815\) 2.05206e13 1.62922
\(816\) 0 0
\(817\) 1.20252e13 0.944261
\(818\) −9.33483e11 −0.0728982
\(819\) 0 0
\(820\) −2.03293e12 −0.157022
\(821\) 1.51952e13 1.16724 0.583622 0.812026i \(-0.301635\pi\)
0.583622 + 0.812026i \(0.301635\pi\)
\(822\) 0 0
\(823\) 8.32881e12 0.632825 0.316412 0.948622i \(-0.397522\pi\)
0.316412 + 0.948622i \(0.397522\pi\)
\(824\) −7.44912e12 −0.562901
\(825\) 0 0
\(826\) 5.57481e12 0.416697
\(827\) 1.50997e13 1.12252 0.561258 0.827641i \(-0.310317\pi\)
0.561258 + 0.827641i \(0.310317\pi\)
\(828\) 0 0
\(829\) −9.65383e12 −0.709912 −0.354956 0.934883i \(-0.615504\pi\)
−0.354956 + 0.934883i \(0.615504\pi\)
\(830\) −6.61764e12 −0.484007
\(831\) 0 0
\(832\) 4.16200e12 0.301125
\(833\) −1.57498e13 −1.13337
\(834\) 0 0
\(835\) 1.90347e12 0.135506
\(836\) 2.18283e11 0.0154558
\(837\) 0 0
\(838\) 2.43540e12 0.170597
\(839\) −1.96235e13 −1.36725 −0.683623 0.729835i \(-0.739597\pi\)
−0.683623 + 0.729835i \(0.739597\pi\)
\(840\) 0 0
\(841\) 2.13181e13 1.46949
\(842\) −1.07978e13 −0.740340
\(843\) 0 0
\(844\) 1.83204e12 0.124278
\(845\) 1.04180e12 0.0702959
\(846\) 0 0
\(847\) 5.25399e12 0.350763
\(848\) 7.31102e12 0.485508
\(849\) 0 0
\(850\) −3.07483e12 −0.202040
\(851\) −2.83439e13 −1.85258
\(852\) 0 0
\(853\) −1.66671e13 −1.07793 −0.538963 0.842329i \(-0.681184\pi\)
−0.538963 + 0.842329i \(0.681184\pi\)
\(854\) 3.78947e12 0.243791
\(855\) 0 0
\(856\) 1.77580e13 1.13048
\(857\) 8.56434e12 0.542351 0.271175 0.962530i \(-0.412588\pi\)
0.271175 + 0.962530i \(0.412588\pi\)
\(858\) 0 0
\(859\) 1.87649e12 0.117592 0.0587958 0.998270i \(-0.481274\pi\)
0.0587958 + 0.998270i \(0.481274\pi\)
\(860\) 1.67315e12 0.104302
\(861\) 0 0
\(862\) 2.82683e12 0.174388
\(863\) −2.54184e11 −0.0155991 −0.00779956 0.999970i \(-0.502483\pi\)
−0.00779956 + 0.999970i \(0.502483\pi\)
\(864\) 0 0
\(865\) 8.45785e12 0.513674
\(866\) 2.58681e13 1.56291
\(867\) 0 0
\(868\) 2.22415e10 0.00132992
\(869\) −3.07699e12 −0.183036
\(870\) 0 0
\(871\) 2.40066e12 0.141335
\(872\) −8.71425e12 −0.510394
\(873\) 0 0
\(874\) 2.52685e13 1.46480
\(875\) 6.61913e12 0.381737
\(876\) 0 0
\(877\) −2.88730e13 −1.64814 −0.824069 0.566490i \(-0.808301\pi\)
−0.824069 + 0.566490i \(0.808301\pi\)
\(878\) −1.54971e13 −0.880085
\(879\) 0 0
\(880\) −2.10260e12 −0.118191
\(881\) 1.43284e13 0.801317 0.400659 0.916227i \(-0.368781\pi\)
0.400659 + 0.916227i \(0.368781\pi\)
\(882\) 0 0
\(883\) 3.54065e12 0.196001 0.0980007 0.995186i \(-0.468755\pi\)
0.0980007 + 0.995186i \(0.468755\pi\)
\(884\) −7.36305e11 −0.0405529
\(885\) 0 0
\(886\) 2.17783e13 1.18733
\(887\) −1.07018e13 −0.580497 −0.290249 0.956951i \(-0.593738\pi\)
−0.290249 + 0.956951i \(0.593738\pi\)
\(888\) 0 0
\(889\) −1.00245e13 −0.538274
\(890\) −7.96937e12 −0.425764
\(891\) 0 0
\(892\) 1.34439e12 0.0711022
\(893\) 2.81127e13 1.47935
\(894\) 0 0
\(895\) −1.80101e13 −0.938235
\(896\) −5.52866e12 −0.286572
\(897\) 0 0
\(898\) −1.26141e13 −0.647311
\(899\) −1.01531e12 −0.0518416
\(900\) 0 0
\(901\) −1.42768e13 −0.721720
\(902\) 4.23165e12 0.212853
\(903\) 0 0
\(904\) 1.12607e12 0.0560799
\(905\) 3.05106e13 1.51193
\(906\) 0 0
\(907\) 2.74516e13 1.34690 0.673448 0.739234i \(-0.264812\pi\)
0.673448 + 0.739234i \(0.264812\pi\)
\(908\) 1.70909e12 0.0834406
\(909\) 0 0
\(910\) −1.77133e12 −0.0856276
\(911\) −1.57903e13 −0.759550 −0.379775 0.925079i \(-0.623999\pi\)
−0.379775 + 0.925079i \(0.623999\pi\)
\(912\) 0 0
\(913\) −1.74472e12 −0.0831013
\(914\) −1.77078e13 −0.839279
\(915\) 0 0
\(916\) −2.44589e12 −0.114791
\(917\) −2.77803e12 −0.129740
\(918\) 0 0
\(919\) 3.33575e13 1.54267 0.771335 0.636429i \(-0.219589\pi\)
0.771335 + 0.636429i \(0.219589\pi\)
\(920\) 3.47896e13 1.60105
\(921\) 0 0
\(922\) −1.86155e13 −0.848372
\(923\) −3.59160e12 −0.162885
\(924\) 0 0
\(925\) −4.06853e12 −0.182726
\(926\) 1.64234e13 0.734030
\(927\) 0 0
\(928\) −7.94322e12 −0.351585
\(929\) 5.90953e12 0.260305 0.130152 0.991494i \(-0.458453\pi\)
0.130152 + 0.991494i \(0.458453\pi\)
\(930\) 0 0
\(931\) 1.85785e13 0.810471
\(932\) −2.21425e12 −0.0961293
\(933\) 0 0
\(934\) −9.61415e12 −0.413380
\(935\) 4.10591e12 0.175694
\(936\) 0 0
\(937\) 2.94135e13 1.24657 0.623287 0.781993i \(-0.285797\pi\)
0.623287 + 0.781993i \(0.285797\pi\)
\(938\) −4.08175e12 −0.172160
\(939\) 0 0
\(940\) 3.91153e12 0.163407
\(941\) 1.78277e13 0.741212 0.370606 0.928790i \(-0.379150\pi\)
0.370606 + 0.928790i \(0.379150\pi\)
\(942\) 0 0
\(943\) −6.20448e13 −2.55507
\(944\) 2.63306e13 1.07916
\(945\) 0 0
\(946\) −3.48275e12 −0.141388
\(947\) 2.20380e13 0.890427 0.445213 0.895425i \(-0.353128\pi\)
0.445213 + 0.895425i \(0.353128\pi\)
\(948\) 0 0
\(949\) −5.37661e12 −0.215184
\(950\) 3.62709e12 0.144478
\(951\) 0 0
\(952\) 1.23879e13 0.488801
\(953\) −3.10318e13 −1.21868 −0.609340 0.792909i \(-0.708565\pi\)
−0.609340 + 0.792909i \(0.708565\pi\)
\(954\) 0 0
\(955\) 2.97156e13 1.15603
\(956\) −1.14511e12 −0.0443391
\(957\) 0 0
\(958\) 1.12337e13 0.430900
\(959\) −1.53367e13 −0.585527
\(960\) 0 0
\(961\) −2.64108e13 −0.998912
\(962\) 7.69198e12 0.289568
\(963\) 0 0
\(964\) 3.05776e12 0.114040
\(965\) 1.13351e13 0.420778
\(966\) 0 0
\(967\) 3.86641e13 1.42196 0.710982 0.703210i \(-0.248251\pi\)
0.710982 + 0.703210i \(0.248251\pi\)
\(968\) 2.80038e13 1.02513
\(969\) 0 0
\(970\) 3.11120e13 1.12838
\(971\) −2.91204e13 −1.05126 −0.525631 0.850713i \(-0.676171\pi\)
−0.525631 + 0.850713i \(0.676171\pi\)
\(972\) 0 0
\(973\) −9.40108e11 −0.0336256
\(974\) 4.00933e13 1.42744
\(975\) 0 0
\(976\) 1.78982e13 0.631372
\(977\) 2.43957e13 0.856618 0.428309 0.903632i \(-0.359109\pi\)
0.428309 + 0.903632i \(0.359109\pi\)
\(978\) 0 0
\(979\) −2.10110e12 −0.0731012
\(980\) 2.58496e12 0.0895235
\(981\) 0 0
\(982\) −3.60031e13 −1.23549
\(983\) −1.65480e13 −0.565268 −0.282634 0.959228i \(-0.591208\pi\)
−0.282634 + 0.959228i \(0.591208\pi\)
\(984\) 0 0
\(985\) 1.27323e13 0.430965
\(986\) −5.71485e13 −1.92557
\(987\) 0 0
\(988\) 8.68548e11 0.0289993
\(989\) 5.10643e13 1.69721
\(990\) 0 0
\(991\) −6.37548e12 −0.209982 −0.104991 0.994473i \(-0.533481\pi\)
−0.104991 + 0.994473i \(0.533481\pi\)
\(992\) 2.25115e11 0.00738077
\(993\) 0 0
\(994\) 6.10664e12 0.198410
\(995\) −7.56122e12 −0.244561
\(996\) 0 0
\(997\) 1.52049e13 0.487366 0.243683 0.969855i \(-0.421644\pi\)
0.243683 + 0.969855i \(0.421644\pi\)
\(998\) 3.42572e13 1.09311
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.4 5
3.2 odd 2 13.10.a.b.1.2 5
12.11 even 2 208.10.a.h.1.5 5
15.14 odd 2 325.10.a.b.1.4 5
39.38 odd 2 169.10.a.b.1.4 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.2 5 3.2 odd 2
117.10.a.e.1.4 5 1.1 even 1 trivial
169.10.a.b.1.4 5 39.38 odd 2
208.10.a.h.1.5 5 12.11 even 2
325.10.a.b.1.4 5 15.14 odd 2