Properties

Label 117.10.a.e.1.3
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.150341\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.15034 q^{2} -502.075 q^{4} -2554.62 q^{5} +9399.91 q^{7} +3194.68 q^{8} +O(q^{10})\) \(q-3.15034 q^{2} -502.075 q^{4} -2554.62 q^{5} +9399.91 q^{7} +3194.68 q^{8} +8047.92 q^{10} -44094.1 q^{11} +28561.0 q^{13} -29612.9 q^{14} +246998. q^{16} -28289.4 q^{17} +273836. q^{19} +1.28261e6 q^{20} +138911. q^{22} +1.12921e6 q^{23} +4.57295e6 q^{25} -89976.9 q^{26} -4.71947e6 q^{28} +1.63691e6 q^{29} +6.65402e6 q^{31} -2.41381e6 q^{32} +89121.2 q^{34} -2.40132e7 q^{35} -1.71193e7 q^{37} -862677. q^{38} -8.16119e6 q^{40} +5.15179e6 q^{41} -1.97275e7 q^{43} +2.21386e7 q^{44} -3.55739e6 q^{46} -4.82947e7 q^{47} +4.80048e7 q^{49} -1.44063e7 q^{50} -1.43398e7 q^{52} +3.06731e7 q^{53} +1.12644e8 q^{55} +3.00298e7 q^{56} -5.15683e6 q^{58} +1.15154e7 q^{59} -3.62567e7 q^{61} -2.09624e7 q^{62} -1.18859e8 q^{64} -7.29624e7 q^{65} -6.48390e7 q^{67} +1.42034e7 q^{68} +7.56497e7 q^{70} +1.47071e8 q^{71} -3.37321e8 q^{73} +5.39317e7 q^{74} -1.37486e8 q^{76} -4.14481e8 q^{77} -2.04060e8 q^{79} -6.30986e8 q^{80} -1.62299e7 q^{82} -7.61700e8 q^{83} +7.22685e7 q^{85} +6.21484e7 q^{86} -1.40867e8 q^{88} +8.29058e8 q^{89} +2.68471e8 q^{91} -5.66948e8 q^{92} +1.52145e8 q^{94} -6.99547e8 q^{95} +1.00647e9 q^{97} -1.51231e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22} + 592152 q^{23} + 1670362 q^{25} - 428415 q^{26} + 2587955 q^{28} - 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 9934079 q^{34} - 8380731 q^{35} + 7171823 q^{37} + 25568814 q^{38} - 54359445 q^{40} - 9294012 q^{41} + 12831975 q^{43} + 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 25249488 q^{49} + 16270770 q^{50} + 10310521 q^{52} - 93231780 q^{53} + 99448846 q^{55} - 199599225 q^{56} + 151020970 q^{58} - 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 91019105 q^{64} - 51495483 q^{65} - 369388534 q^{67} - 238172073 q^{68} - 144857425 q^{70} - 212150457 q^{71} - 252729806 q^{73} - 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 1247271728 q^{79} - 900649725 q^{80} + 169559388 q^{82} - 1696894296 q^{83} - 775363765 q^{85} - 3291621459 q^{86} - 220227222 q^{88} + 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 272071215 q^{94} - 1442632962 q^{95} + 3824606 q^{97} - 1570614816 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.15034 −0.139227 −0.0696134 0.997574i \(-0.522177\pi\)
−0.0696134 + 0.997574i \(0.522177\pi\)
\(3\) 0 0
\(4\) −502.075 −0.980616
\(5\) −2554.62 −1.82794 −0.913968 0.405787i \(-0.866998\pi\)
−0.913968 + 0.405787i \(0.866998\pi\)
\(6\) 0 0
\(7\) 9399.91 1.47973 0.739865 0.672755i \(-0.234889\pi\)
0.739865 + 0.672755i \(0.234889\pi\)
\(8\) 3194.68 0.275755
\(9\) 0 0
\(10\) 8047.92 0.254498
\(11\) −44094.1 −0.908058 −0.454029 0.890987i \(-0.650014\pi\)
−0.454029 + 0.890987i \(0.650014\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) −29612.9 −0.206018
\(15\) 0 0
\(16\) 246998. 0.942223
\(17\) −28289.4 −0.0821492 −0.0410746 0.999156i \(-0.513078\pi\)
−0.0410746 + 0.999156i \(0.513078\pi\)
\(18\) 0 0
\(19\) 273836. 0.482058 0.241029 0.970518i \(-0.422515\pi\)
0.241029 + 0.970518i \(0.422515\pi\)
\(20\) 1.28261e6 1.79250
\(21\) 0 0
\(22\) 138911. 0.126426
\(23\) 1.12921e6 0.841393 0.420697 0.907201i \(-0.361786\pi\)
0.420697 + 0.907201i \(0.361786\pi\)
\(24\) 0 0
\(25\) 4.57295e6 2.34135
\(26\) −89976.9 −0.0386145
\(27\) 0 0
\(28\) −4.71947e6 −1.45105
\(29\) 1.63691e6 0.429768 0.214884 0.976640i \(-0.431063\pi\)
0.214884 + 0.976640i \(0.431063\pi\)
\(30\) 0 0
\(31\) 6.65402e6 1.29407 0.647033 0.762462i \(-0.276009\pi\)
0.647033 + 0.762462i \(0.276009\pi\)
\(32\) −2.41381e6 −0.406937
\(33\) 0 0
\(34\) 89121.2 0.0114374
\(35\) −2.40132e7 −2.70485
\(36\) 0 0
\(37\) −1.71193e7 −1.50169 −0.750843 0.660481i \(-0.770352\pi\)
−0.750843 + 0.660481i \(0.770352\pi\)
\(38\) −862677. −0.0671154
\(39\) 0 0
\(40\) −8.16119e6 −0.504062
\(41\) 5.15179e6 0.284728 0.142364 0.989814i \(-0.454530\pi\)
0.142364 + 0.989814i \(0.454530\pi\)
\(42\) 0 0
\(43\) −1.97275e7 −0.879962 −0.439981 0.898007i \(-0.645015\pi\)
−0.439981 + 0.898007i \(0.645015\pi\)
\(44\) 2.21386e7 0.890456
\(45\) 0 0
\(46\) −3.55739e6 −0.117144
\(47\) −4.82947e7 −1.44364 −0.721821 0.692080i \(-0.756695\pi\)
−0.721821 + 0.692080i \(0.756695\pi\)
\(48\) 0 0
\(49\) 4.80048e7 1.18960
\(50\) −1.44063e7 −0.325978
\(51\) 0 0
\(52\) −1.43398e7 −0.271974
\(53\) 3.06731e7 0.533970 0.266985 0.963701i \(-0.413973\pi\)
0.266985 + 0.963701i \(0.413973\pi\)
\(54\) 0 0
\(55\) 1.12644e8 1.65987
\(56\) 3.00298e7 0.408043
\(57\) 0 0
\(58\) −5.15683e6 −0.0598352
\(59\) 1.15154e7 0.123722 0.0618609 0.998085i \(-0.480296\pi\)
0.0618609 + 0.998085i \(0.480296\pi\)
\(60\) 0 0
\(61\) −3.62567e7 −0.335277 −0.167639 0.985849i \(-0.553614\pi\)
−0.167639 + 0.985849i \(0.553614\pi\)
\(62\) −2.09624e7 −0.180169
\(63\) 0 0
\(64\) −1.18859e8 −0.885567
\(65\) −7.29624e7 −0.506978
\(66\) 0 0
\(67\) −6.48390e7 −0.393097 −0.196548 0.980494i \(-0.562973\pi\)
−0.196548 + 0.980494i \(0.562973\pi\)
\(68\) 1.42034e7 0.0805568
\(69\) 0 0
\(70\) 7.56497e7 0.376588
\(71\) 1.47071e8 0.686853 0.343427 0.939180i \(-0.388412\pi\)
0.343427 + 0.939180i \(0.388412\pi\)
\(72\) 0 0
\(73\) −3.37321e8 −1.39024 −0.695122 0.718892i \(-0.744650\pi\)
−0.695122 + 0.718892i \(0.744650\pi\)
\(74\) 5.39317e7 0.209075
\(75\) 0 0
\(76\) −1.37486e8 −0.472714
\(77\) −4.14481e8 −1.34368
\(78\) 0 0
\(79\) −2.04060e8 −0.589436 −0.294718 0.955584i \(-0.595226\pi\)
−0.294718 + 0.955584i \(0.595226\pi\)
\(80\) −6.30986e8 −1.72232
\(81\) 0 0
\(82\) −1.62299e7 −0.0396418
\(83\) −7.61700e8 −1.76170 −0.880851 0.473394i \(-0.843029\pi\)
−0.880851 + 0.473394i \(0.843029\pi\)
\(84\) 0 0
\(85\) 7.22685e7 0.150163
\(86\) 6.21484e7 0.122514
\(87\) 0 0
\(88\) −1.40867e8 −0.250401
\(89\) 8.29058e8 1.40065 0.700326 0.713823i \(-0.253038\pi\)
0.700326 + 0.713823i \(0.253038\pi\)
\(90\) 0 0
\(91\) 2.68471e8 0.410403
\(92\) −5.66948e8 −0.825084
\(93\) 0 0
\(94\) 1.52145e8 0.200994
\(95\) −6.99547e8 −0.881172
\(96\) 0 0
\(97\) 1.00647e9 1.15432 0.577161 0.816631i \(-0.304161\pi\)
0.577161 + 0.816631i \(0.304161\pi\)
\(98\) −1.51231e8 −0.165625
\(99\) 0 0
\(100\) −2.29596e9 −2.29596
\(101\) −1.59054e9 −1.52089 −0.760446 0.649401i \(-0.775020\pi\)
−0.760446 + 0.649401i \(0.775020\pi\)
\(102\) 0 0
\(103\) 1.13889e9 0.997040 0.498520 0.866878i \(-0.333877\pi\)
0.498520 + 0.866878i \(0.333877\pi\)
\(104\) 9.12434e7 0.0764806
\(105\) 0 0
\(106\) −9.66309e7 −0.0743429
\(107\) 7.21432e8 0.532069 0.266035 0.963963i \(-0.414286\pi\)
0.266035 + 0.963963i \(0.414286\pi\)
\(108\) 0 0
\(109\) −6.86462e8 −0.465798 −0.232899 0.972501i \(-0.574821\pi\)
−0.232899 + 0.972501i \(0.574821\pi\)
\(110\) −3.54866e8 −0.231098
\(111\) 0 0
\(112\) 2.32176e9 1.39424
\(113\) 8.33795e8 0.481068 0.240534 0.970641i \(-0.422677\pi\)
0.240534 + 0.970641i \(0.422677\pi\)
\(114\) 0 0
\(115\) −2.88470e9 −1.53801
\(116\) −8.21852e8 −0.421437
\(117\) 0 0
\(118\) −3.62775e7 −0.0172254
\(119\) −2.65918e8 −0.121559
\(120\) 0 0
\(121\) −4.13658e8 −0.175431
\(122\) 1.14221e8 0.0466796
\(123\) 0 0
\(124\) −3.34082e9 −1.26898
\(125\) −6.69264e9 −2.45190
\(126\) 0 0
\(127\) −4.01307e8 −0.136886 −0.0684431 0.997655i \(-0.521803\pi\)
−0.0684431 + 0.997655i \(0.521803\pi\)
\(128\) 1.61031e9 0.530232
\(129\) 0 0
\(130\) 2.29857e8 0.0705849
\(131\) 3.78377e9 1.12255 0.561273 0.827631i \(-0.310312\pi\)
0.561273 + 0.827631i \(0.310312\pi\)
\(132\) 0 0
\(133\) 2.57404e9 0.713317
\(134\) 2.04265e8 0.0547296
\(135\) 0 0
\(136\) −9.03756e7 −0.0226530
\(137\) −1.45518e9 −0.352919 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(138\) 0 0
\(139\) 1.50381e9 0.341685 0.170842 0.985298i \(-0.445351\pi\)
0.170842 + 0.985298i \(0.445351\pi\)
\(140\) 1.20564e10 2.65242
\(141\) 0 0
\(142\) −4.63323e8 −0.0956283
\(143\) −1.25937e9 −0.251850
\(144\) 0 0
\(145\) −4.18168e9 −0.785588
\(146\) 1.06268e9 0.193559
\(147\) 0 0
\(148\) 8.59520e9 1.47258
\(149\) 4.28624e9 0.712423 0.356212 0.934405i \(-0.384068\pi\)
0.356212 + 0.934405i \(0.384068\pi\)
\(150\) 0 0
\(151\) 4.79918e8 0.0751226 0.0375613 0.999294i \(-0.488041\pi\)
0.0375613 + 0.999294i \(0.488041\pi\)
\(152\) 8.74820e8 0.132930
\(153\) 0 0
\(154\) 1.30576e9 0.187076
\(155\) −1.69985e10 −2.36547
\(156\) 0 0
\(157\) −8.24624e9 −1.08320 −0.541598 0.840637i \(-0.682181\pi\)
−0.541598 + 0.840637i \(0.682181\pi\)
\(158\) 6.42860e8 0.0820652
\(159\) 0 0
\(160\) 6.16635e9 0.743855
\(161\) 1.06145e10 1.24504
\(162\) 0 0
\(163\) −5.93537e9 −0.658573 −0.329286 0.944230i \(-0.606808\pi\)
−0.329286 + 0.944230i \(0.606808\pi\)
\(164\) −2.58659e9 −0.279209
\(165\) 0 0
\(166\) 2.39961e9 0.245276
\(167\) 7.41172e9 0.737386 0.368693 0.929551i \(-0.379805\pi\)
0.368693 + 0.929551i \(0.379805\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) −2.27671e8 −0.0209068
\(171\) 0 0
\(172\) 9.90469e9 0.862905
\(173\) −5.63923e9 −0.478643 −0.239322 0.970940i \(-0.576925\pi\)
−0.239322 + 0.970940i \(0.576925\pi\)
\(174\) 0 0
\(175\) 4.29853e10 3.46457
\(176\) −1.08912e10 −0.855593
\(177\) 0 0
\(178\) −2.61182e9 −0.195008
\(179\) −1.23881e10 −0.901916 −0.450958 0.892545i \(-0.648918\pi\)
−0.450958 + 0.892545i \(0.648918\pi\)
\(180\) 0 0
\(181\) −2.45852e10 −1.70263 −0.851314 0.524657i \(-0.824194\pi\)
−0.851314 + 0.524657i \(0.824194\pi\)
\(182\) −8.45775e8 −0.0571391
\(183\) 0 0
\(184\) 3.60746e9 0.232018
\(185\) 4.37334e10 2.74499
\(186\) 0 0
\(187\) 1.24739e9 0.0745962
\(188\) 2.42476e10 1.41566
\(189\) 0 0
\(190\) 2.20381e9 0.122683
\(191\) 1.06604e10 0.579592 0.289796 0.957088i \(-0.406413\pi\)
0.289796 + 0.957088i \(0.406413\pi\)
\(192\) 0 0
\(193\) −2.09640e10 −1.08759 −0.543797 0.839217i \(-0.683014\pi\)
−0.543797 + 0.839217i \(0.683014\pi\)
\(194\) −3.17071e9 −0.160712
\(195\) 0 0
\(196\) −2.41020e10 −1.16654
\(197\) −1.27051e10 −0.601009 −0.300504 0.953780i \(-0.597155\pi\)
−0.300504 + 0.953780i \(0.597155\pi\)
\(198\) 0 0
\(199\) 2.57825e9 0.116543 0.0582715 0.998301i \(-0.481441\pi\)
0.0582715 + 0.998301i \(0.481441\pi\)
\(200\) 1.46091e10 0.645638
\(201\) 0 0
\(202\) 5.01075e9 0.211749
\(203\) 1.53868e10 0.635941
\(204\) 0 0
\(205\) −1.31608e10 −0.520465
\(206\) −3.58788e9 −0.138815
\(207\) 0 0
\(208\) 7.05452e9 0.261326
\(209\) −1.20746e10 −0.437737
\(210\) 0 0
\(211\) 1.94301e10 0.674846 0.337423 0.941353i \(-0.390445\pi\)
0.337423 + 0.941353i \(0.390445\pi\)
\(212\) −1.54002e10 −0.523620
\(213\) 0 0
\(214\) −2.27276e9 −0.0740783
\(215\) 5.03962e10 1.60851
\(216\) 0 0
\(217\) 6.25472e10 1.91487
\(218\) 2.16259e9 0.0648515
\(219\) 0 0
\(220\) −5.65556e10 −1.62770
\(221\) −8.07973e8 −0.0227841
\(222\) 0 0
\(223\) 9.56077e9 0.258893 0.129447 0.991586i \(-0.458680\pi\)
0.129447 + 0.991586i \(0.458680\pi\)
\(224\) −2.26896e10 −0.602158
\(225\) 0 0
\(226\) −2.62674e9 −0.0669775
\(227\) 2.02032e10 0.505015 0.252507 0.967595i \(-0.418745\pi\)
0.252507 + 0.967595i \(0.418745\pi\)
\(228\) 0 0
\(229\) −2.45816e10 −0.590678 −0.295339 0.955392i \(-0.595433\pi\)
−0.295339 + 0.955392i \(0.595433\pi\)
\(230\) 9.08778e9 0.214132
\(231\) 0 0
\(232\) 5.22941e9 0.118510
\(233\) −7.93260e10 −1.76325 −0.881625 0.471951i \(-0.843550\pi\)
−0.881625 + 0.471951i \(0.843550\pi\)
\(234\) 0 0
\(235\) 1.23375e11 2.63888
\(236\) −5.78161e9 −0.121324
\(237\) 0 0
\(238\) 8.37732e8 0.0169242
\(239\) 2.62515e10 0.520431 0.260215 0.965551i \(-0.416206\pi\)
0.260215 + 0.965551i \(0.416206\pi\)
\(240\) 0 0
\(241\) −1.00766e11 −1.92415 −0.962074 0.272787i \(-0.912055\pi\)
−0.962074 + 0.272787i \(0.912055\pi\)
\(242\) 1.30316e9 0.0244247
\(243\) 0 0
\(244\) 1.82036e10 0.328778
\(245\) −1.22634e11 −2.17452
\(246\) 0 0
\(247\) 7.82103e9 0.133699
\(248\) 2.12575e10 0.356845
\(249\) 0 0
\(250\) 2.10841e10 0.341370
\(251\) 8.72780e10 1.38795 0.693973 0.720001i \(-0.255858\pi\)
0.693973 + 0.720001i \(0.255858\pi\)
\(252\) 0 0
\(253\) −4.97914e10 −0.764034
\(254\) 1.26425e9 0.0190582
\(255\) 0 0
\(256\) 5.57827e10 0.811744
\(257\) −4.84205e10 −0.692358 −0.346179 0.938169i \(-0.612521\pi\)
−0.346179 + 0.938169i \(0.612521\pi\)
\(258\) 0 0
\(259\) −1.60920e11 −2.22209
\(260\) 3.66326e10 0.497151
\(261\) 0 0
\(262\) −1.19202e10 −0.156288
\(263\) 4.40656e9 0.0567935 0.0283968 0.999597i \(-0.490960\pi\)
0.0283968 + 0.999597i \(0.490960\pi\)
\(264\) 0 0
\(265\) −7.83582e10 −0.976063
\(266\) −8.10909e9 −0.0993127
\(267\) 0 0
\(268\) 3.25540e10 0.385477
\(269\) −1.41879e11 −1.65209 −0.826045 0.563604i \(-0.809414\pi\)
−0.826045 + 0.563604i \(0.809414\pi\)
\(270\) 0 0
\(271\) −7.09707e10 −0.799313 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(272\) −6.98743e9 −0.0774029
\(273\) 0 0
\(274\) 4.58432e9 0.0491357
\(275\) −2.01640e11 −2.12608
\(276\) 0 0
\(277\) 1.22293e11 1.24808 0.624039 0.781393i \(-0.285491\pi\)
0.624039 + 0.781393i \(0.285491\pi\)
\(278\) −4.73751e9 −0.0475717
\(279\) 0 0
\(280\) −7.67145e10 −0.745876
\(281\) 9.91936e10 0.949085 0.474543 0.880233i \(-0.342613\pi\)
0.474543 + 0.880233i \(0.342613\pi\)
\(282\) 0 0
\(283\) 1.89673e11 1.75779 0.878893 0.477019i \(-0.158283\pi\)
0.878893 + 0.477019i \(0.158283\pi\)
\(284\) −7.38406e10 −0.673539
\(285\) 0 0
\(286\) 3.96745e9 0.0350642
\(287\) 4.84264e10 0.421321
\(288\) 0 0
\(289\) −1.17788e11 −0.993252
\(290\) 1.31737e10 0.109375
\(291\) 0 0
\(292\) 1.69361e11 1.36329
\(293\) −1.95772e11 −1.55183 −0.775917 0.630835i \(-0.782713\pi\)
−0.775917 + 0.630835i \(0.782713\pi\)
\(294\) 0 0
\(295\) −2.94175e10 −0.226155
\(296\) −5.46908e10 −0.414097
\(297\) 0 0
\(298\) −1.35031e10 −0.0991884
\(299\) 3.22513e10 0.233360
\(300\) 0 0
\(301\) −1.85437e11 −1.30211
\(302\) −1.51190e9 −0.0104591
\(303\) 0 0
\(304\) 6.76370e10 0.454207
\(305\) 9.26220e10 0.612865
\(306\) 0 0
\(307\) −7.17504e10 −0.461001 −0.230500 0.973072i \(-0.574036\pi\)
−0.230500 + 0.973072i \(0.574036\pi\)
\(308\) 2.08101e11 1.31763
\(309\) 0 0
\(310\) 5.35510e10 0.329337
\(311\) −2.11023e10 −0.127911 −0.0639554 0.997953i \(-0.520372\pi\)
−0.0639554 + 0.997953i \(0.520372\pi\)
\(312\) 0 0
\(313\) −1.44667e11 −0.851963 −0.425982 0.904732i \(-0.640071\pi\)
−0.425982 + 0.904732i \(0.640071\pi\)
\(314\) 2.59785e10 0.150810
\(315\) 0 0
\(316\) 1.02454e11 0.578010
\(317\) −5.78709e10 −0.321880 −0.160940 0.986964i \(-0.551453\pi\)
−0.160940 + 0.986964i \(0.551453\pi\)
\(318\) 0 0
\(319\) −7.21781e10 −0.390254
\(320\) 3.03639e11 1.61876
\(321\) 0 0
\(322\) −3.34392e10 −0.173342
\(323\) −7.74665e9 −0.0396007
\(324\) 0 0
\(325\) 1.30608e11 0.649373
\(326\) 1.86984e10 0.0916909
\(327\) 0 0
\(328\) 1.64583e10 0.0785151
\(329\) −4.53966e11 −2.13620
\(330\) 0 0
\(331\) −1.00283e11 −0.459199 −0.229600 0.973285i \(-0.573742\pi\)
−0.229600 + 0.973285i \(0.573742\pi\)
\(332\) 3.82431e11 1.72755
\(333\) 0 0
\(334\) −2.33495e10 −0.102664
\(335\) 1.65639e11 0.718555
\(336\) 0 0
\(337\) −5.73297e10 −0.242128 −0.121064 0.992645i \(-0.538631\pi\)
−0.121064 + 0.992645i \(0.538631\pi\)
\(338\) −2.56983e9 −0.0107097
\(339\) 0 0
\(340\) −3.62843e10 −0.147253
\(341\) −2.93403e11 −1.17509
\(342\) 0 0
\(343\) 7.19204e10 0.280562
\(344\) −6.30231e10 −0.242654
\(345\) 0 0
\(346\) 1.77655e10 0.0666399
\(347\) 2.34072e10 0.0866695 0.0433347 0.999061i \(-0.486202\pi\)
0.0433347 + 0.999061i \(0.486202\pi\)
\(348\) 0 0
\(349\) 3.92804e11 1.41730 0.708649 0.705562i \(-0.249305\pi\)
0.708649 + 0.705562i \(0.249305\pi\)
\(350\) −1.35418e11 −0.482360
\(351\) 0 0
\(352\) 1.06435e11 0.369523
\(353\) −2.16422e11 −0.741849 −0.370925 0.928663i \(-0.620959\pi\)
−0.370925 + 0.928663i \(0.620959\pi\)
\(354\) 0 0
\(355\) −3.75710e11 −1.25552
\(356\) −4.16250e11 −1.37350
\(357\) 0 0
\(358\) 3.90267e10 0.125571
\(359\) −3.49576e11 −1.11075 −0.555376 0.831600i \(-0.687426\pi\)
−0.555376 + 0.831600i \(0.687426\pi\)
\(360\) 0 0
\(361\) −2.47701e11 −0.767620
\(362\) 7.74517e10 0.237051
\(363\) 0 0
\(364\) −1.34793e11 −0.402448
\(365\) 8.61727e11 2.54128
\(366\) 0 0
\(367\) −1.83237e9 −0.00527248 −0.00263624 0.999997i \(-0.500839\pi\)
−0.00263624 + 0.999997i \(0.500839\pi\)
\(368\) 2.78913e11 0.792780
\(369\) 0 0
\(370\) −1.37775e11 −0.382175
\(371\) 2.88325e11 0.790132
\(372\) 0 0
\(373\) 5.52030e10 0.147663 0.0738317 0.997271i \(-0.476477\pi\)
0.0738317 + 0.997271i \(0.476477\pi\)
\(374\) −3.92972e9 −0.0103858
\(375\) 0 0
\(376\) −1.54286e11 −0.398091
\(377\) 4.67518e10 0.119196
\(378\) 0 0
\(379\) 2.25258e11 0.560795 0.280397 0.959884i \(-0.409534\pi\)
0.280397 + 0.959884i \(0.409534\pi\)
\(380\) 3.51225e11 0.864091
\(381\) 0 0
\(382\) −3.35838e10 −0.0806947
\(383\) −4.64079e11 −1.10204 −0.551020 0.834492i \(-0.685761\pi\)
−0.551020 + 0.834492i \(0.685761\pi\)
\(384\) 0 0
\(385\) 1.05884e12 2.45616
\(386\) 6.60438e10 0.151422
\(387\) 0 0
\(388\) −5.05322e11 −1.13195
\(389\) 2.63061e11 0.582482 0.291241 0.956650i \(-0.405932\pi\)
0.291241 + 0.956650i \(0.405932\pi\)
\(390\) 0 0
\(391\) −3.19446e10 −0.0691198
\(392\) 1.53360e11 0.328039
\(393\) 0 0
\(394\) 4.00255e10 0.0836765
\(395\) 5.21296e11 1.07745
\(396\) 0 0
\(397\) −1.80382e10 −0.0364449 −0.0182224 0.999834i \(-0.505801\pi\)
−0.0182224 + 0.999834i \(0.505801\pi\)
\(398\) −8.12236e9 −0.0162259
\(399\) 0 0
\(400\) 1.12951e12 2.20607
\(401\) −7.18792e10 −0.138821 −0.0694103 0.997588i \(-0.522112\pi\)
−0.0694103 + 0.997588i \(0.522112\pi\)
\(402\) 0 0
\(403\) 1.90046e11 0.358910
\(404\) 7.98571e11 1.49141
\(405\) 0 0
\(406\) −4.84737e10 −0.0885399
\(407\) 7.54862e11 1.36362
\(408\) 0 0
\(409\) 5.31862e11 0.939819 0.469910 0.882715i \(-0.344287\pi\)
0.469910 + 0.882715i \(0.344287\pi\)
\(410\) 4.14612e10 0.0724626
\(411\) 0 0
\(412\) −5.71806e11 −0.977713
\(413\) 1.08244e11 0.183075
\(414\) 0 0
\(415\) 1.94585e12 3.22028
\(416\) −6.89407e10 −0.112864
\(417\) 0 0
\(418\) 3.80390e10 0.0609446
\(419\) −1.45942e11 −0.231322 −0.115661 0.993289i \(-0.536899\pi\)
−0.115661 + 0.993289i \(0.536899\pi\)
\(420\) 0 0
\(421\) 3.66247e11 0.568204 0.284102 0.958794i \(-0.408305\pi\)
0.284102 + 0.958794i \(0.408305\pi\)
\(422\) −6.12115e10 −0.0939565
\(423\) 0 0
\(424\) 9.79910e10 0.147245
\(425\) −1.29366e11 −0.192340
\(426\) 0 0
\(427\) −3.40810e11 −0.496120
\(428\) −3.62213e11 −0.521756
\(429\) 0 0
\(430\) −1.58765e11 −0.223948
\(431\) −7.66389e11 −1.06980 −0.534899 0.844916i \(-0.679650\pi\)
−0.534899 + 0.844916i \(0.679650\pi\)
\(432\) 0 0
\(433\) −1.24176e12 −1.69763 −0.848813 0.528694i \(-0.822682\pi\)
−0.848813 + 0.528694i \(0.822682\pi\)
\(434\) −1.97045e11 −0.266601
\(435\) 0 0
\(436\) 3.44656e11 0.456769
\(437\) 3.09218e11 0.405601
\(438\) 0 0
\(439\) −1.48429e12 −1.90734 −0.953671 0.300852i \(-0.902729\pi\)
−0.953671 + 0.300852i \(0.902729\pi\)
\(440\) 3.59861e11 0.457717
\(441\) 0 0
\(442\) 2.54539e9 0.00317215
\(443\) −1.03343e12 −1.27487 −0.637433 0.770506i \(-0.720004\pi\)
−0.637433 + 0.770506i \(0.720004\pi\)
\(444\) 0 0
\(445\) −2.11793e12 −2.56030
\(446\) −3.01197e10 −0.0360449
\(447\) 0 0
\(448\) −1.11726e12 −1.31040
\(449\) 5.83072e11 0.677039 0.338519 0.940959i \(-0.390074\pi\)
0.338519 + 0.940959i \(0.390074\pi\)
\(450\) 0 0
\(451\) −2.27163e11 −0.258550
\(452\) −4.18628e11 −0.471743
\(453\) 0 0
\(454\) −6.36470e10 −0.0703116
\(455\) −6.85841e11 −0.750191
\(456\) 0 0
\(457\) 7.39681e11 0.793271 0.396635 0.917976i \(-0.370178\pi\)
0.396635 + 0.917976i \(0.370178\pi\)
\(458\) 7.74405e10 0.0822382
\(459\) 0 0
\(460\) 1.44834e12 1.50820
\(461\) −1.45843e12 −1.50394 −0.751971 0.659197i \(-0.770896\pi\)
−0.751971 + 0.659197i \(0.770896\pi\)
\(462\) 0 0
\(463\) −1.63194e12 −1.65040 −0.825200 0.564841i \(-0.808937\pi\)
−0.825200 + 0.564841i \(0.808937\pi\)
\(464\) 4.04314e11 0.404937
\(465\) 0 0
\(466\) 2.49904e11 0.245492
\(467\) 8.24440e11 0.802109 0.401054 0.916054i \(-0.368644\pi\)
0.401054 + 0.916054i \(0.368644\pi\)
\(468\) 0 0
\(469\) −6.09481e11 −0.581677
\(470\) −3.88672e11 −0.367403
\(471\) 0 0
\(472\) 3.67882e10 0.0341169
\(473\) 8.69866e11 0.799056
\(474\) 0 0
\(475\) 1.25224e12 1.12867
\(476\) 1.33511e11 0.119202
\(477\) 0 0
\(478\) −8.27011e10 −0.0724579
\(479\) 1.80073e11 0.156293 0.0781463 0.996942i \(-0.475100\pi\)
0.0781463 + 0.996942i \(0.475100\pi\)
\(480\) 0 0
\(481\) −4.88945e11 −0.416493
\(482\) 3.17448e11 0.267893
\(483\) 0 0
\(484\) 2.07688e11 0.172031
\(485\) −2.57114e12 −2.11003
\(486\) 0 0
\(487\) −7.22045e11 −0.581680 −0.290840 0.956772i \(-0.593935\pi\)
−0.290840 + 0.956772i \(0.593935\pi\)
\(488\) −1.15829e11 −0.0924543
\(489\) 0 0
\(490\) 3.86339e11 0.302751
\(491\) −1.98313e12 −1.53987 −0.769937 0.638119i \(-0.779713\pi\)
−0.769937 + 0.638119i \(0.779713\pi\)
\(492\) 0 0
\(493\) −4.63072e10 −0.0353051
\(494\) −2.46389e10 −0.0186145
\(495\) 0 0
\(496\) 1.64353e12 1.21930
\(497\) 1.38245e12 1.01636
\(498\) 0 0
\(499\) −8.27327e11 −0.597344 −0.298672 0.954356i \(-0.596544\pi\)
−0.298672 + 0.954356i \(0.596544\pi\)
\(500\) 3.36021e12 2.40437
\(501\) 0 0
\(502\) −2.74955e11 −0.193239
\(503\) −4.94554e11 −0.344475 −0.172238 0.985055i \(-0.555100\pi\)
−0.172238 + 0.985055i \(0.555100\pi\)
\(504\) 0 0
\(505\) 4.06322e12 2.78009
\(506\) 1.56860e11 0.106374
\(507\) 0 0
\(508\) 2.01486e11 0.134233
\(509\) 2.31118e12 1.52617 0.763087 0.646296i \(-0.223683\pi\)
0.763087 + 0.646296i \(0.223683\pi\)
\(510\) 0 0
\(511\) −3.17079e12 −2.05719
\(512\) −1.00022e12 −0.643248
\(513\) 0 0
\(514\) 1.52541e11 0.0963947
\(515\) −2.90942e12 −1.82252
\(516\) 0 0
\(517\) 2.12951e12 1.31091
\(518\) 5.06954e11 0.309374
\(519\) 0 0
\(520\) −2.33092e11 −0.139802
\(521\) −2.20997e12 −1.31406 −0.657031 0.753864i \(-0.728188\pi\)
−0.657031 + 0.753864i \(0.728188\pi\)
\(522\) 0 0
\(523\) 2.43867e12 1.42527 0.712633 0.701537i \(-0.247503\pi\)
0.712633 + 0.701537i \(0.247503\pi\)
\(524\) −1.89974e12 −1.10079
\(525\) 0 0
\(526\) −1.38822e10 −0.00790718
\(527\) −1.88238e11 −0.106307
\(528\) 0 0
\(529\) −5.26040e11 −0.292057
\(530\) 2.46855e11 0.135894
\(531\) 0 0
\(532\) −1.29236e12 −0.699490
\(533\) 1.47140e11 0.0789694
\(534\) 0 0
\(535\) −1.84298e12 −0.972588
\(536\) −2.07140e11 −0.108398
\(537\) 0 0
\(538\) 4.46968e11 0.230015
\(539\) −2.11673e12 −1.08023
\(540\) 0 0
\(541\) −1.84418e12 −0.925585 −0.462792 0.886467i \(-0.653152\pi\)
−0.462792 + 0.886467i \(0.653152\pi\)
\(542\) 2.23582e11 0.111286
\(543\) 0 0
\(544\) 6.82851e10 0.0334296
\(545\) 1.75365e12 0.851448
\(546\) 0 0
\(547\) −2.62022e12 −1.25140 −0.625698 0.780065i \(-0.715186\pi\)
−0.625698 + 0.780065i \(0.715186\pi\)
\(548\) 7.30611e11 0.346078
\(549\) 0 0
\(550\) 6.35235e11 0.296007
\(551\) 4.48245e11 0.207173
\(552\) 0 0
\(553\) −1.91815e12 −0.872206
\(554\) −3.85264e11 −0.173766
\(555\) 0 0
\(556\) −7.55025e11 −0.335062
\(557\) −2.45908e12 −1.08249 −0.541245 0.840865i \(-0.682047\pi\)
−0.541245 + 0.840865i \(0.682047\pi\)
\(558\) 0 0
\(559\) −5.63437e11 −0.244058
\(560\) −5.93122e12 −2.54858
\(561\) 0 0
\(562\) −3.12494e11 −0.132138
\(563\) 1.30659e12 0.548091 0.274046 0.961717i \(-0.411638\pi\)
0.274046 + 0.961717i \(0.411638\pi\)
\(564\) 0 0
\(565\) −2.13003e12 −0.879361
\(566\) −5.97534e11 −0.244731
\(567\) 0 0
\(568\) 4.69845e11 0.189403
\(569\) 2.68810e12 1.07508 0.537539 0.843239i \(-0.319354\pi\)
0.537539 + 0.843239i \(0.319354\pi\)
\(570\) 0 0
\(571\) 2.99602e12 1.17946 0.589729 0.807601i \(-0.299235\pi\)
0.589729 + 0.807601i \(0.299235\pi\)
\(572\) 6.32299e11 0.246968
\(573\) 0 0
\(574\) −1.52560e11 −0.0586592
\(575\) 5.16381e12 1.97000
\(576\) 0 0
\(577\) 6.04343e11 0.226982 0.113491 0.993539i \(-0.463797\pi\)
0.113491 + 0.993539i \(0.463797\pi\)
\(578\) 3.71071e11 0.138287
\(579\) 0 0
\(580\) 2.09952e12 0.770360
\(581\) −7.15991e12 −2.60684
\(582\) 0 0
\(583\) −1.35250e12 −0.484876
\(584\) −1.07763e12 −0.383366
\(585\) 0 0
\(586\) 6.16747e11 0.216057
\(587\) 7.41276e11 0.257697 0.128848 0.991664i \(-0.458872\pi\)
0.128848 + 0.991664i \(0.458872\pi\)
\(588\) 0 0
\(589\) 1.82211e12 0.623816
\(590\) 9.26752e10 0.0314869
\(591\) 0 0
\(592\) −4.22845e12 −1.41492
\(593\) 5.55536e12 1.84487 0.922435 0.386152i \(-0.126196\pi\)
0.922435 + 0.386152i \(0.126196\pi\)
\(594\) 0 0
\(595\) 6.79318e11 0.222201
\(596\) −2.15201e12 −0.698614
\(597\) 0 0
\(598\) −1.01603e11 −0.0324900
\(599\) 3.35363e12 1.06437 0.532187 0.846627i \(-0.321370\pi\)
0.532187 + 0.846627i \(0.321370\pi\)
\(600\) 0 0
\(601\) 1.88646e12 0.589809 0.294905 0.955527i \(-0.404712\pi\)
0.294905 + 0.955527i \(0.404712\pi\)
\(602\) 5.84189e11 0.181288
\(603\) 0 0
\(604\) −2.40955e11 −0.0736664
\(605\) 1.05674e12 0.320677
\(606\) 0 0
\(607\) 1.01740e12 0.304188 0.152094 0.988366i \(-0.451398\pi\)
0.152094 + 0.988366i \(0.451398\pi\)
\(608\) −6.60987e11 −0.196168
\(609\) 0 0
\(610\) −2.91791e11 −0.0853272
\(611\) −1.37935e12 −0.400394
\(612\) 0 0
\(613\) −5.21446e11 −0.149155 −0.0745774 0.997215i \(-0.523761\pi\)
−0.0745774 + 0.997215i \(0.523761\pi\)
\(614\) 2.26038e11 0.0641836
\(615\) 0 0
\(616\) −1.32413e12 −0.370526
\(617\) −1.14541e12 −0.318183 −0.159092 0.987264i \(-0.550857\pi\)
−0.159092 + 0.987264i \(0.550857\pi\)
\(618\) 0 0
\(619\) −1.10612e12 −0.302827 −0.151414 0.988470i \(-0.548383\pi\)
−0.151414 + 0.988470i \(0.548383\pi\)
\(620\) 8.53452e12 2.31962
\(621\) 0 0
\(622\) 6.64793e10 0.0178086
\(623\) 7.79308e12 2.07259
\(624\) 0 0
\(625\) 8.16561e12 2.14057
\(626\) 4.55751e11 0.118616
\(627\) 0 0
\(628\) 4.14023e12 1.06220
\(629\) 4.84295e11 0.123362
\(630\) 0 0
\(631\) 3.20443e12 0.804671 0.402336 0.915492i \(-0.368198\pi\)
0.402336 + 0.915492i \(0.368198\pi\)
\(632\) −6.51908e11 −0.162540
\(633\) 0 0
\(634\) 1.82313e11 0.0448143
\(635\) 1.02518e12 0.250219
\(636\) 0 0
\(637\) 1.37106e12 0.329937
\(638\) 2.27386e11 0.0543338
\(639\) 0 0
\(640\) −4.11374e12 −0.969230
\(641\) 4.90467e12 1.14749 0.573745 0.819034i \(-0.305490\pi\)
0.573745 + 0.819034i \(0.305490\pi\)
\(642\) 0 0
\(643\) 1.53529e12 0.354194 0.177097 0.984193i \(-0.443329\pi\)
0.177097 + 0.984193i \(0.443329\pi\)
\(644\) −5.32926e12 −1.22090
\(645\) 0 0
\(646\) 2.44046e10 0.00551347
\(647\) 6.61326e11 0.148370 0.0741850 0.997244i \(-0.476364\pi\)
0.0741850 + 0.997244i \(0.476364\pi\)
\(648\) 0 0
\(649\) −5.07763e11 −0.112347
\(650\) −4.11460e11 −0.0904101
\(651\) 0 0
\(652\) 2.98000e12 0.645807
\(653\) −4.61469e12 −0.993192 −0.496596 0.867982i \(-0.665417\pi\)
−0.496596 + 0.867982i \(0.665417\pi\)
\(654\) 0 0
\(655\) −9.66610e12 −2.05194
\(656\) 1.27248e12 0.268278
\(657\) 0 0
\(658\) 1.43015e12 0.297416
\(659\) 9.04687e12 1.86859 0.934294 0.356502i \(-0.116031\pi\)
0.934294 + 0.356502i \(0.116031\pi\)
\(660\) 0 0
\(661\) 3.59295e12 0.732057 0.366028 0.930604i \(-0.380717\pi\)
0.366028 + 0.930604i \(0.380717\pi\)
\(662\) 3.15926e11 0.0639328
\(663\) 0 0
\(664\) −2.43339e12 −0.485797
\(665\) −6.57568e12 −1.30390
\(666\) 0 0
\(667\) 1.84841e12 0.361604
\(668\) −3.72124e12 −0.723093
\(669\) 0 0
\(670\) −5.21819e11 −0.100042
\(671\) 1.59871e12 0.304451
\(672\) 0 0
\(673\) 2.13714e12 0.401573 0.200786 0.979635i \(-0.435650\pi\)
0.200786 + 0.979635i \(0.435650\pi\)
\(674\) 1.80608e11 0.0337107
\(675\) 0 0
\(676\) −4.09558e11 −0.0754320
\(677\) 2.55166e12 0.466847 0.233423 0.972375i \(-0.425007\pi\)
0.233423 + 0.972375i \(0.425007\pi\)
\(678\) 0 0
\(679\) 9.46070e12 1.70809
\(680\) 2.30875e11 0.0414083
\(681\) 0 0
\(682\) 9.24320e11 0.163604
\(683\) −7.63188e12 −1.34196 −0.670978 0.741477i \(-0.734126\pi\)
−0.670978 + 0.741477i \(0.734126\pi\)
\(684\) 0 0
\(685\) 3.71743e12 0.645113
\(686\) −2.26574e11 −0.0390617
\(687\) 0 0
\(688\) −4.87266e12 −0.829121
\(689\) 8.76056e11 0.148097
\(690\) 0 0
\(691\) −2.36970e12 −0.395405 −0.197703 0.980262i \(-0.563348\pi\)
−0.197703 + 0.980262i \(0.563348\pi\)
\(692\) 2.83132e12 0.469365
\(693\) 0 0
\(694\) −7.37405e10 −0.0120667
\(695\) −3.84165e12 −0.624578
\(696\) 0 0
\(697\) −1.45741e11 −0.0233902
\(698\) −1.23747e12 −0.197326
\(699\) 0 0
\(700\) −2.15819e13 −3.39741
\(701\) 1.72803e12 0.270284 0.135142 0.990826i \(-0.456851\pi\)
0.135142 + 0.990826i \(0.456851\pi\)
\(702\) 0 0
\(703\) −4.68789e12 −0.723900
\(704\) 5.24097e12 0.804146
\(705\) 0 0
\(706\) 6.81804e11 0.103285
\(707\) −1.49509e13 −2.25051
\(708\) 0 0
\(709\) −3.26440e12 −0.485172 −0.242586 0.970130i \(-0.577996\pi\)
−0.242586 + 0.970130i \(0.577996\pi\)
\(710\) 1.18361e12 0.174802
\(711\) 0 0
\(712\) 2.64858e12 0.386236
\(713\) 7.51378e12 1.08882
\(714\) 0 0
\(715\) 3.21721e12 0.460365
\(716\) 6.21976e12 0.884433
\(717\) 0 0
\(718\) 1.10128e12 0.154646
\(719\) 6.17850e11 0.0862191 0.0431095 0.999070i \(-0.486274\pi\)
0.0431095 + 0.999070i \(0.486274\pi\)
\(720\) 0 0
\(721\) 1.07054e13 1.47535
\(722\) 7.80344e11 0.106873
\(723\) 0 0
\(724\) 1.23436e13 1.66962
\(725\) 7.48550e12 1.00624
\(726\) 0 0
\(727\) 5.84000e12 0.775368 0.387684 0.921792i \(-0.373275\pi\)
0.387684 + 0.921792i \(0.373275\pi\)
\(728\) 8.57680e11 0.113171
\(729\) 0 0
\(730\) −2.71473e12 −0.353813
\(731\) 5.58079e11 0.0722882
\(732\) 0 0
\(733\) −7.18908e10 −0.00919826 −0.00459913 0.999989i \(-0.501464\pi\)
−0.00459913 + 0.999989i \(0.501464\pi\)
\(734\) 5.77258e9 0.000734070 0
\(735\) 0 0
\(736\) −2.72569e12 −0.342394
\(737\) 2.85902e12 0.356954
\(738\) 0 0
\(739\) −1.01033e13 −1.24613 −0.623067 0.782168i \(-0.714114\pi\)
−0.623067 + 0.782168i \(0.714114\pi\)
\(740\) −2.19574e13 −2.69178
\(741\) 0 0
\(742\) −9.08322e11 −0.110007
\(743\) 6.09193e12 0.733340 0.366670 0.930351i \(-0.380498\pi\)
0.366670 + 0.930351i \(0.380498\pi\)
\(744\) 0 0
\(745\) −1.09497e13 −1.30226
\(746\) −1.73908e11 −0.0205587
\(747\) 0 0
\(748\) −6.26286e11 −0.0731502
\(749\) 6.78139e12 0.787319
\(750\) 0 0
\(751\) −1.43572e13 −1.64698 −0.823491 0.567330i \(-0.807976\pi\)
−0.823491 + 0.567330i \(0.807976\pi\)
\(752\) −1.19287e13 −1.36023
\(753\) 0 0
\(754\) −1.47284e11 −0.0165953
\(755\) −1.22601e12 −0.137319
\(756\) 0 0
\(757\) 1.33786e13 1.48074 0.740370 0.672200i \(-0.234651\pi\)
0.740370 + 0.672200i \(0.234651\pi\)
\(758\) −7.09640e11 −0.0780776
\(759\) 0 0
\(760\) −2.23483e12 −0.242987
\(761\) −1.00649e13 −1.08788 −0.543938 0.839126i \(-0.683067\pi\)
−0.543938 + 0.839126i \(0.683067\pi\)
\(762\) 0 0
\(763\) −6.45269e12 −0.689255
\(764\) −5.35231e12 −0.568357
\(765\) 0 0
\(766\) 1.46201e12 0.153433
\(767\) 3.28892e11 0.0343142
\(768\) 0 0
\(769\) 4.34623e12 0.448172 0.224086 0.974569i \(-0.428060\pi\)
0.224086 + 0.974569i \(0.428060\pi\)
\(770\) −3.33571e12 −0.341963
\(771\) 0 0
\(772\) 1.05255e13 1.06651
\(773\) −2.50017e12 −0.251862 −0.125931 0.992039i \(-0.540192\pi\)
−0.125931 + 0.992039i \(0.540192\pi\)
\(774\) 0 0
\(775\) 3.04285e13 3.02986
\(776\) 3.21534e12 0.318310
\(777\) 0 0
\(778\) −8.28731e11 −0.0810971
\(779\) 1.41075e12 0.137256
\(780\) 0 0
\(781\) −6.48495e12 −0.623702
\(782\) 1.00636e11 0.00962332
\(783\) 0 0
\(784\) 1.18571e13 1.12087
\(785\) 2.10660e13 1.98001
\(786\) 0 0
\(787\) −1.47010e13 −1.36603 −0.683013 0.730406i \(-0.739331\pi\)
−0.683013 + 0.730406i \(0.739331\pi\)
\(788\) 6.37893e12 0.589359
\(789\) 0 0
\(790\) −1.64226e12 −0.150010
\(791\) 7.83761e12 0.711851
\(792\) 0 0
\(793\) −1.03553e12 −0.0929892
\(794\) 5.68266e10 0.00507410
\(795\) 0 0
\(796\) −1.29448e12 −0.114284
\(797\) −8.96898e12 −0.787373 −0.393687 0.919245i \(-0.628801\pi\)
−0.393687 + 0.919245i \(0.628801\pi\)
\(798\) 0 0
\(799\) 1.36623e12 0.118594
\(800\) −1.10382e13 −0.952782
\(801\) 0 0
\(802\) 2.26444e11 0.0193275
\(803\) 1.48739e13 1.26242
\(804\) 0 0
\(805\) −2.71159e13 −2.27584
\(806\) −5.98708e11 −0.0499698
\(807\) 0 0
\(808\) −5.08127e12 −0.419393
\(809\) −1.74450e13 −1.43187 −0.715934 0.698168i \(-0.753999\pi\)
−0.715934 + 0.698168i \(0.753999\pi\)
\(810\) 0 0
\(811\) −8.34611e12 −0.677470 −0.338735 0.940882i \(-0.609999\pi\)
−0.338735 + 0.940882i \(0.609999\pi\)
\(812\) −7.72534e12 −0.623614
\(813\) 0 0
\(814\) −2.37807e12 −0.189852
\(815\) 1.51626e13 1.20383
\(816\) 0 0
\(817\) −5.40210e12 −0.424193
\(818\) −1.67555e12 −0.130848
\(819\) 0 0
\(820\) 6.60774e12 0.510376
\(821\) −1.88288e13 −1.44637 −0.723183 0.690657i \(-0.757322\pi\)
−0.723183 + 0.690657i \(0.757322\pi\)
\(822\) 0 0
\(823\) 4.02178e12 0.305576 0.152788 0.988259i \(-0.451175\pi\)
0.152788 + 0.988259i \(0.451175\pi\)
\(824\) 3.63838e12 0.274938
\(825\) 0 0
\(826\) −3.41006e11 −0.0254889
\(827\) −3.84013e12 −0.285477 −0.142738 0.989760i \(-0.545591\pi\)
−0.142738 + 0.989760i \(0.545591\pi\)
\(828\) 0 0
\(829\) 1.81041e13 1.33132 0.665660 0.746255i \(-0.268150\pi\)
0.665660 + 0.746255i \(0.268150\pi\)
\(830\) −6.13010e12 −0.448349
\(831\) 0 0
\(832\) −3.39473e12 −0.245612
\(833\) −1.35803e12 −0.0977249
\(834\) 0 0
\(835\) −1.89341e13 −1.34789
\(836\) 6.06234e12 0.429252
\(837\) 0 0
\(838\) 4.59766e11 0.0322062
\(839\) −1.83543e13 −1.27882 −0.639410 0.768866i \(-0.720821\pi\)
−0.639410 + 0.768866i \(0.720821\pi\)
\(840\) 0 0
\(841\) −1.18277e13 −0.815300
\(842\) −1.15380e12 −0.0791092
\(843\) 0 0
\(844\) −9.75538e12 −0.661764
\(845\) −2.08388e12 −0.140610
\(846\) 0 0
\(847\) −3.88835e12 −0.259591
\(848\) 7.57621e12 0.503119
\(849\) 0 0
\(850\) 4.07546e11 0.0267789
\(851\) −1.93313e13 −1.26351
\(852\) 0 0
\(853\) −1.20116e13 −0.776835 −0.388418 0.921483i \(-0.626978\pi\)
−0.388418 + 0.921483i \(0.626978\pi\)
\(854\) 1.07367e12 0.0690732
\(855\) 0 0
\(856\) 2.30475e12 0.146721
\(857\) 6.17723e12 0.391183 0.195592 0.980685i \(-0.437337\pi\)
0.195592 + 0.980685i \(0.437337\pi\)
\(858\) 0 0
\(859\) 2.76160e13 1.73058 0.865291 0.501269i \(-0.167133\pi\)
0.865291 + 0.501269i \(0.167133\pi\)
\(860\) −2.53027e13 −1.57733
\(861\) 0 0
\(862\) 2.41439e12 0.148944
\(863\) −9.27582e12 −0.569251 −0.284626 0.958639i \(-0.591869\pi\)
−0.284626 + 0.958639i \(0.591869\pi\)
\(864\) 0 0
\(865\) 1.44061e13 0.874929
\(866\) 3.91197e12 0.236355
\(867\) 0 0
\(868\) −3.14034e13 −1.87775
\(869\) 8.99785e12 0.535242
\(870\) 0 0
\(871\) −1.85187e12 −0.109025
\(872\) −2.19303e12 −0.128446
\(873\) 0 0
\(874\) −9.74143e11 −0.0564704
\(875\) −6.29103e13 −3.62815
\(876\) 0 0
\(877\) −2.19078e13 −1.25055 −0.625274 0.780405i \(-0.715013\pi\)
−0.625274 + 0.780405i \(0.715013\pi\)
\(878\) 4.67602e12 0.265553
\(879\) 0 0
\(880\) 2.78228e13 1.56397
\(881\) −2.92416e12 −0.163534 −0.0817672 0.996651i \(-0.526056\pi\)
−0.0817672 + 0.996651i \(0.526056\pi\)
\(882\) 0 0
\(883\) 3.35851e13 1.85919 0.929594 0.368585i \(-0.120158\pi\)
0.929594 + 0.368585i \(0.120158\pi\)
\(884\) 4.05663e11 0.0223424
\(885\) 0 0
\(886\) 3.25566e12 0.177495
\(887\) 3.31699e13 1.79924 0.899619 0.436676i \(-0.143844\pi\)
0.899619 + 0.436676i \(0.143844\pi\)
\(888\) 0 0
\(889\) −3.77225e12 −0.202555
\(890\) 6.67219e12 0.356462
\(891\) 0 0
\(892\) −4.80023e12 −0.253875
\(893\) −1.32248e13 −0.695920
\(894\) 0 0
\(895\) 3.16469e13 1.64864
\(896\) 1.51368e13 0.784601
\(897\) 0 0
\(898\) −1.83688e12 −0.0942619
\(899\) 1.08920e13 0.556148
\(900\) 0 0
\(901\) −8.67724e11 −0.0438652
\(902\) 7.15642e11 0.0359970
\(903\) 0 0
\(904\) 2.66371e12 0.132657
\(905\) 6.28057e13 3.11229
\(906\) 0 0
\(907\) 2.27086e13 1.11418 0.557092 0.830451i \(-0.311917\pi\)
0.557092 + 0.830451i \(0.311917\pi\)
\(908\) −1.01435e13 −0.495226
\(909\) 0 0
\(910\) 2.16063e12 0.104447
\(911\) −4.92090e12 −0.236707 −0.118354 0.992972i \(-0.537762\pi\)
−0.118354 + 0.992972i \(0.537762\pi\)
\(912\) 0 0
\(913\) 3.35865e13 1.59973
\(914\) −2.33025e12 −0.110444
\(915\) 0 0
\(916\) 1.23418e13 0.579229
\(917\) 3.55671e13 1.66107
\(918\) 0 0
\(919\) −9.41621e12 −0.435468 −0.217734 0.976008i \(-0.569867\pi\)
−0.217734 + 0.976008i \(0.569867\pi\)
\(920\) −9.21569e12 −0.424114
\(921\) 0 0
\(922\) 4.59455e12 0.209389
\(923\) 4.20049e12 0.190499
\(924\) 0 0
\(925\) −7.82858e13 −3.51597
\(926\) 5.14116e12 0.229780
\(927\) 0 0
\(928\) −3.95118e12 −0.174889
\(929\) 3.87518e13 1.70695 0.853476 0.521131i \(-0.174490\pi\)
0.853476 + 0.521131i \(0.174490\pi\)
\(930\) 0 0
\(931\) 1.31454e13 0.573458
\(932\) 3.98276e13 1.72907
\(933\) 0 0
\(934\) −2.59727e12 −0.111675
\(935\) −3.18662e12 −0.136357
\(936\) 0 0
\(937\) 1.41425e13 0.599373 0.299687 0.954038i \(-0.403118\pi\)
0.299687 + 0.954038i \(0.403118\pi\)
\(938\) 1.92007e12 0.0809850
\(939\) 0 0
\(940\) −6.19433e13 −2.58773
\(941\) 2.29704e13 0.955027 0.477514 0.878624i \(-0.341538\pi\)
0.477514 + 0.878624i \(0.341538\pi\)
\(942\) 0 0
\(943\) 5.81744e12 0.239568
\(944\) 2.84429e12 0.116574
\(945\) 0 0
\(946\) −2.74038e12 −0.111250
\(947\) 1.50510e12 0.0608120 0.0304060 0.999538i \(-0.490320\pi\)
0.0304060 + 0.999538i \(0.490320\pi\)
\(948\) 0 0
\(949\) −9.63423e12 −0.385584
\(950\) −3.94498e12 −0.157141
\(951\) 0 0
\(952\) −8.49523e11 −0.0335204
\(953\) −2.42253e13 −0.951373 −0.475686 0.879615i \(-0.657800\pi\)
−0.475686 + 0.879615i \(0.657800\pi\)
\(954\) 0 0
\(955\) −2.72332e13 −1.05946
\(956\) −1.31802e13 −0.510343
\(957\) 0 0
\(958\) −5.67291e11 −0.0217601
\(959\) −1.36786e13 −0.522225
\(960\) 0 0
\(961\) 1.78364e13 0.674608
\(962\) 1.54034e12 0.0579869
\(963\) 0 0
\(964\) 5.05923e13 1.88685
\(965\) 5.35551e13 1.98805
\(966\) 0 0
\(967\) 2.41172e13 0.886967 0.443484 0.896282i \(-0.353742\pi\)
0.443484 + 0.896282i \(0.353742\pi\)
\(968\) −1.32151e12 −0.0483760
\(969\) 0 0
\(970\) 8.09996e12 0.293772
\(971\) −3.13584e13 −1.13206 −0.566028 0.824386i \(-0.691521\pi\)
−0.566028 + 0.824386i \(0.691521\pi\)
\(972\) 0 0
\(973\) 1.41357e13 0.505602
\(974\) 2.27469e12 0.0809854
\(975\) 0 0
\(976\) −8.95534e12 −0.315906
\(977\) −4.44366e13 −1.56033 −0.780163 0.625576i \(-0.784864\pi\)
−0.780163 + 0.625576i \(0.784864\pi\)
\(978\) 0 0
\(979\) −3.65566e13 −1.27187
\(980\) 6.15714e13 2.13237
\(981\) 0 0
\(982\) 6.24755e12 0.214392
\(983\) −1.53216e13 −0.523376 −0.261688 0.965153i \(-0.584279\pi\)
−0.261688 + 0.965153i \(0.584279\pi\)
\(984\) 0 0
\(985\) 3.24567e13 1.09861
\(986\) 1.45883e11 0.00491541
\(987\) 0 0
\(988\) −3.92675e12 −0.131107
\(989\) −2.22765e13 −0.740394
\(990\) 0 0
\(991\) 2.32887e13 0.767034 0.383517 0.923534i \(-0.374713\pi\)
0.383517 + 0.923534i \(0.374713\pi\)
\(992\) −1.60615e13 −0.526604
\(993\) 0 0
\(994\) −4.35520e12 −0.141504
\(995\) −6.58644e12 −0.213033
\(996\) 0 0
\(997\) −1.12247e13 −0.359788 −0.179894 0.983686i \(-0.557575\pi\)
−0.179894 + 0.983686i \(0.557575\pi\)
\(998\) 2.60636e12 0.0831663
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.3 5
3.2 odd 2 13.10.a.b.1.3 5
12.11 even 2 208.10.a.h.1.4 5
15.14 odd 2 325.10.a.b.1.3 5
39.38 odd 2 169.10.a.b.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.3 5 3.2 odd 2
117.10.a.e.1.3 5 1.1 even 1 trivial
169.10.a.b.1.3 5 39.38 odd 2
208.10.a.h.1.4 5 12.11 even 2
325.10.a.b.1.3 5 15.14 odd 2