Properties

Label 117.10.a.e.1.2
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 1438x^{3} - 4164x^{2} + 396957x - 59580 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(16.7176\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-19.7176 q^{2} -123.217 q^{4} -1555.58 q^{5} -8329.39 q^{7} +12524.9 q^{8} +O(q^{10})\) \(q-19.7176 q^{2} -123.217 q^{4} -1555.58 q^{5} -8329.39 q^{7} +12524.9 q^{8} +30672.3 q^{10} -30751.5 q^{11} +28561.0 q^{13} +164236. q^{14} -183875. q^{16} +637455. q^{17} +105834. q^{19} +191674. q^{20} +606345. q^{22} +511169. q^{23} +466710. q^{25} -563154. q^{26} +1.02632e6 q^{28} -781868. q^{29} -2.83285e6 q^{31} -2.78721e6 q^{32} -1.25691e7 q^{34} +1.29571e7 q^{35} +1.22183e7 q^{37} -2.08680e6 q^{38} -1.94836e7 q^{40} +6.83367e6 q^{41} +3.84656e7 q^{43} +3.78910e6 q^{44} -1.00790e7 q^{46} +1.30402e7 q^{47} +2.90252e7 q^{49} -9.20238e6 q^{50} -3.51920e6 q^{52} +2.42871e7 q^{53} +4.78364e7 q^{55} -1.04325e8 q^{56} +1.54166e7 q^{58} -1.63738e8 q^{59} +1.90751e7 q^{61} +5.58569e7 q^{62} +1.49101e8 q^{64} -4.44290e7 q^{65} -7.22869e7 q^{67} -7.85452e7 q^{68} -2.55482e8 q^{70} -2.65461e7 q^{71} +2.42850e8 q^{73} -2.40916e8 q^{74} -1.30406e7 q^{76} +2.56141e8 q^{77} -4.64290e8 q^{79} +2.86032e8 q^{80} -1.34744e8 q^{82} -5.46643e8 q^{83} -9.91613e8 q^{85} -7.58449e8 q^{86} -3.85160e8 q^{88} -3.65672e8 q^{89} -2.37896e8 q^{91} -6.29847e7 q^{92} -2.57121e8 q^{94} -1.64634e8 q^{95} +9.98914e7 q^{97} -5.72307e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 15 q^{2} + 361 q^{4} - 1803 q^{5} + 10099 q^{7} - 23151 q^{8} + 84505 q^{10} - 121746 q^{11} + 142805 q^{13} - 8475 q^{14} - 322463 q^{16} + 495669 q^{17} - 840738 q^{19} + 1595607 q^{20} - 2023594 q^{22} + 592152 q^{23} + 1670362 q^{25} - 428415 q^{26} + 2587955 q^{28} - 10678182 q^{29} + 12885296 q^{31} - 3282927 q^{32} - 9934079 q^{34} - 8380731 q^{35} + 7171823 q^{37} + 25568814 q^{38} - 54359445 q^{40} - 9294012 q^{41} + 12831975 q^{43} + 41479074 q^{44} - 59319696 q^{46} - 43354215 q^{47} + 25249488 q^{49} + 16270770 q^{50} + 10310521 q^{52} - 93231780 q^{53} + 99448846 q^{55} - 199599225 q^{56} + 151020970 q^{58} - 246496182 q^{59} - 132232612 q^{61} - 158135724 q^{62} + 91019105 q^{64} - 51495483 q^{65} - 369388534 q^{67} - 238172073 q^{68} - 144857425 q^{70} - 212150457 q^{71} - 252729806 q^{73} - 192105957 q^{74} - 953775990 q^{76} - 449666118 q^{77} - 1247271728 q^{79} - 900649725 q^{80} + 169559388 q^{82} - 1696894296 q^{83} - 775363765 q^{85} - 3291621459 q^{86} - 220227222 q^{88} + 753854382 q^{89} + 288437539 q^{91} - 13876128 q^{92} + 272071215 q^{94} - 1442632962 q^{95} + 3824606 q^{97} - 1570614816 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −19.7176 −0.871402 −0.435701 0.900091i \(-0.643500\pi\)
−0.435701 + 0.900091i \(0.643500\pi\)
\(3\) 0 0
\(4\) −123.217 −0.240658
\(5\) −1555.58 −1.11308 −0.556542 0.830820i \(-0.687872\pi\)
−0.556542 + 0.830820i \(0.687872\pi\)
\(6\) 0 0
\(7\) −8329.39 −1.31121 −0.655605 0.755104i \(-0.727586\pi\)
−0.655605 + 0.755104i \(0.727586\pi\)
\(8\) 12524.9 1.08111
\(9\) 0 0
\(10\) 30672.3 0.969944
\(11\) −30751.5 −0.633284 −0.316642 0.948545i \(-0.602555\pi\)
−0.316642 + 0.948545i \(0.602555\pi\)
\(12\) 0 0
\(13\) 28561.0 0.277350
\(14\) 164236. 1.14259
\(15\) 0 0
\(16\) −183875. −0.701426
\(17\) 637455. 1.85110 0.925549 0.378629i \(-0.123604\pi\)
0.925549 + 0.378629i \(0.123604\pi\)
\(18\) 0 0
\(19\) 105834. 0.186310 0.0931548 0.995652i \(-0.470305\pi\)
0.0931548 + 0.995652i \(0.470305\pi\)
\(20\) 191674. 0.267872
\(21\) 0 0
\(22\) 606345. 0.551845
\(23\) 511169. 0.380881 0.190441 0.981699i \(-0.439008\pi\)
0.190441 + 0.981699i \(0.439008\pi\)
\(24\) 0 0
\(25\) 466710. 0.238955
\(26\) −563154. −0.241684
\(27\) 0 0
\(28\) 1.02632e6 0.315553
\(29\) −781868. −0.205278 −0.102639 0.994719i \(-0.532729\pi\)
−0.102639 + 0.994719i \(0.532729\pi\)
\(30\) 0 0
\(31\) −2.83285e6 −0.550929 −0.275464 0.961311i \(-0.588832\pi\)
−0.275464 + 0.961311i \(0.588832\pi\)
\(32\) −2.78721e6 −0.469888
\(33\) 0 0
\(34\) −1.25691e7 −1.61305
\(35\) 1.29571e7 1.45949
\(36\) 0 0
\(37\) 1.22183e7 1.07178 0.535889 0.844289i \(-0.319977\pi\)
0.535889 + 0.844289i \(0.319977\pi\)
\(38\) −2.08680e6 −0.162351
\(39\) 0 0
\(40\) −1.94836e7 −1.20337
\(41\) 6.83367e6 0.377682 0.188841 0.982008i \(-0.439527\pi\)
0.188841 + 0.982008i \(0.439527\pi\)
\(42\) 0 0
\(43\) 3.84656e7 1.71579 0.857896 0.513823i \(-0.171771\pi\)
0.857896 + 0.513823i \(0.171771\pi\)
\(44\) 3.78910e6 0.152405
\(45\) 0 0
\(46\) −1.00790e7 −0.331901
\(47\) 1.30402e7 0.389802 0.194901 0.980823i \(-0.437561\pi\)
0.194901 + 0.980823i \(0.437561\pi\)
\(48\) 0 0
\(49\) 2.90252e7 0.719272
\(50\) −9.20238e6 −0.208226
\(51\) 0 0
\(52\) −3.51920e6 −0.0667465
\(53\) 2.42871e7 0.422800 0.211400 0.977400i \(-0.432198\pi\)
0.211400 + 0.977400i \(0.432198\pi\)
\(54\) 0 0
\(55\) 4.78364e7 0.704898
\(56\) −1.04325e8 −1.41757
\(57\) 0 0
\(58\) 1.54166e7 0.178880
\(59\) −1.63738e8 −1.75920 −0.879599 0.475716i \(-0.842189\pi\)
−0.879599 + 0.475716i \(0.842189\pi\)
\(60\) 0 0
\(61\) 1.90751e7 0.176394 0.0881968 0.996103i \(-0.471890\pi\)
0.0881968 + 0.996103i \(0.471890\pi\)
\(62\) 5.58569e7 0.480081
\(63\) 0 0
\(64\) 1.49101e8 1.11089
\(65\) −4.44290e7 −0.308714
\(66\) 0 0
\(67\) −7.22869e7 −0.438251 −0.219125 0.975697i \(-0.570320\pi\)
−0.219125 + 0.975697i \(0.570320\pi\)
\(68\) −7.85452e7 −0.445481
\(69\) 0 0
\(70\) −2.55482e8 −1.27180
\(71\) −2.65461e7 −0.123976 −0.0619880 0.998077i \(-0.519744\pi\)
−0.0619880 + 0.998077i \(0.519744\pi\)
\(72\) 0 0
\(73\) 2.42850e8 1.00089 0.500445 0.865769i \(-0.333170\pi\)
0.500445 + 0.865769i \(0.333170\pi\)
\(74\) −2.40916e8 −0.933950
\(75\) 0 0
\(76\) −1.30406e7 −0.0448369
\(77\) 2.56141e8 0.830369
\(78\) 0 0
\(79\) −4.64290e8 −1.34112 −0.670560 0.741855i \(-0.733946\pi\)
−0.670560 + 0.741855i \(0.733946\pi\)
\(80\) 2.86032e8 0.780746
\(81\) 0 0
\(82\) −1.34744e8 −0.329113
\(83\) −5.46643e8 −1.26431 −0.632153 0.774843i \(-0.717829\pi\)
−0.632153 + 0.774843i \(0.717829\pi\)
\(84\) 0 0
\(85\) −9.91613e8 −2.06043
\(86\) −7.58449e8 −1.49515
\(87\) 0 0
\(88\) −3.85160e8 −0.684651
\(89\) −3.65672e8 −0.617783 −0.308892 0.951097i \(-0.599958\pi\)
−0.308892 + 0.951097i \(0.599958\pi\)
\(90\) 0 0
\(91\) −2.37896e8 −0.363664
\(92\) −6.29847e7 −0.0916621
\(93\) 0 0
\(94\) −2.57121e8 −0.339674
\(95\) −1.64634e8 −0.207378
\(96\) 0 0
\(97\) 9.98914e7 0.114566 0.0572830 0.998358i \(-0.481756\pi\)
0.0572830 + 0.998358i \(0.481756\pi\)
\(98\) −5.72307e8 −0.626775
\(99\) 0 0
\(100\) −5.75065e7 −0.0575065
\(101\) 6.76155e8 0.646547 0.323273 0.946306i \(-0.395217\pi\)
0.323273 + 0.946306i \(0.395217\pi\)
\(102\) 0 0
\(103\) −1.73267e8 −0.151687 −0.0758434 0.997120i \(-0.524165\pi\)
−0.0758434 + 0.997120i \(0.524165\pi\)
\(104\) 3.57725e8 0.299847
\(105\) 0 0
\(106\) −4.78883e8 −0.368429
\(107\) −1.23684e9 −0.912191 −0.456095 0.889931i \(-0.650752\pi\)
−0.456095 + 0.889931i \(0.650752\pi\)
\(108\) 0 0
\(109\) −1.04481e9 −0.708956 −0.354478 0.935064i \(-0.615341\pi\)
−0.354478 + 0.935064i \(0.615341\pi\)
\(110\) −9.43218e8 −0.614250
\(111\) 0 0
\(112\) 1.53156e9 0.919716
\(113\) 1.17492e9 0.677884 0.338942 0.940807i \(-0.389931\pi\)
0.338942 + 0.940807i \(0.389931\pi\)
\(114\) 0 0
\(115\) −7.95166e8 −0.423953
\(116\) 9.63394e7 0.0494018
\(117\) 0 0
\(118\) 3.22851e9 1.53297
\(119\) −5.30961e9 −2.42718
\(120\) 0 0
\(121\) −1.41230e9 −0.598951
\(122\) −3.76115e8 −0.153710
\(123\) 0 0
\(124\) 3.49055e8 0.132585
\(125\) 2.31224e9 0.847106
\(126\) 0 0
\(127\) 6.34961e8 0.216586 0.108293 0.994119i \(-0.465462\pi\)
0.108293 + 0.994119i \(0.465462\pi\)
\(128\) −1.51286e9 −0.498142
\(129\) 0 0
\(130\) 8.76032e8 0.269014
\(131\) 5.68611e9 1.68692 0.843459 0.537193i \(-0.180515\pi\)
0.843459 + 0.537193i \(0.180515\pi\)
\(132\) 0 0
\(133\) −8.81536e8 −0.244291
\(134\) 1.42532e9 0.381893
\(135\) 0 0
\(136\) 7.98408e9 2.00124
\(137\) −4.47162e9 −1.08448 −0.542241 0.840223i \(-0.682424\pi\)
−0.542241 + 0.840223i \(0.682424\pi\)
\(138\) 0 0
\(139\) −8.63285e9 −1.96150 −0.980748 0.195275i \(-0.937440\pi\)
−0.980748 + 0.195275i \(0.937440\pi\)
\(140\) −1.59653e9 −0.351237
\(141\) 0 0
\(142\) 5.23424e8 0.108033
\(143\) −8.78292e8 −0.175641
\(144\) 0 0
\(145\) 1.21626e9 0.228492
\(146\) −4.78842e9 −0.872177
\(147\) 0 0
\(148\) −1.50551e9 −0.257932
\(149\) 6.88630e9 1.14458 0.572292 0.820050i \(-0.306054\pi\)
0.572292 + 0.820050i \(0.306054\pi\)
\(150\) 0 0
\(151\) 4.01063e9 0.627792 0.313896 0.949457i \(-0.398366\pi\)
0.313896 + 0.949457i \(0.398366\pi\)
\(152\) 1.32557e9 0.201422
\(153\) 0 0
\(154\) −5.05048e9 −0.723585
\(155\) 4.40672e9 0.613230
\(156\) 0 0
\(157\) 9.39913e9 1.23464 0.617318 0.786714i \(-0.288219\pi\)
0.617318 + 0.786714i \(0.288219\pi\)
\(158\) 9.15469e9 1.16866
\(159\) 0 0
\(160\) 4.33573e9 0.523025
\(161\) −4.25773e9 −0.499415
\(162\) 0 0
\(163\) 3.72144e9 0.412920 0.206460 0.978455i \(-0.433806\pi\)
0.206460 + 0.978455i \(0.433806\pi\)
\(164\) −8.42024e8 −0.0908923
\(165\) 0 0
\(166\) 1.07785e10 1.10172
\(167\) 4.48607e9 0.446315 0.223158 0.974782i \(-0.428364\pi\)
0.223158 + 0.974782i \(0.428364\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 1.95522e10 1.79546
\(171\) 0 0
\(172\) −4.73962e9 −0.412919
\(173\) 1.69286e10 1.43686 0.718428 0.695602i \(-0.244862\pi\)
0.718428 + 0.695602i \(0.244862\pi\)
\(174\) 0 0
\(175\) −3.88741e9 −0.313321
\(176\) 5.65441e9 0.444202
\(177\) 0 0
\(178\) 7.21016e9 0.538338
\(179\) −1.23127e10 −0.896428 −0.448214 0.893926i \(-0.647940\pi\)
−0.448214 + 0.893926i \(0.647940\pi\)
\(180\) 0 0
\(181\) −2.43748e10 −1.68806 −0.844030 0.536295i \(-0.819823\pi\)
−0.844030 + 0.536295i \(0.819823\pi\)
\(182\) 4.69073e9 0.316898
\(183\) 0 0
\(184\) 6.40237e9 0.411775
\(185\) −1.90066e10 −1.19298
\(186\) 0 0
\(187\) −1.96027e10 −1.17227
\(188\) −1.60677e9 −0.0938089
\(189\) 0 0
\(190\) 3.24618e9 0.180710
\(191\) 8.67702e9 0.471759 0.235880 0.971782i \(-0.424203\pi\)
0.235880 + 0.971782i \(0.424203\pi\)
\(192\) 0 0
\(193\) −2.33509e10 −1.21142 −0.605712 0.795684i \(-0.707112\pi\)
−0.605712 + 0.795684i \(0.707112\pi\)
\(194\) −1.96962e9 −0.0998330
\(195\) 0 0
\(196\) −3.57640e9 −0.173098
\(197\) 2.62332e9 0.124095 0.0620473 0.998073i \(-0.480237\pi\)
0.0620473 + 0.998073i \(0.480237\pi\)
\(198\) 0 0
\(199\) 8.36775e9 0.378242 0.189121 0.981954i \(-0.439436\pi\)
0.189121 + 0.981954i \(0.439436\pi\)
\(200\) 5.84551e9 0.258337
\(201\) 0 0
\(202\) −1.33321e10 −0.563403
\(203\) 6.51249e9 0.269163
\(204\) 0 0
\(205\) −1.06303e10 −0.420392
\(206\) 3.41640e9 0.132180
\(207\) 0 0
\(208\) −5.25164e9 −0.194541
\(209\) −3.25456e9 −0.117987
\(210\) 0 0
\(211\) 3.66318e10 1.27229 0.636147 0.771568i \(-0.280527\pi\)
0.636147 + 0.771568i \(0.280527\pi\)
\(212\) −2.99258e9 −0.101750
\(213\) 0 0
\(214\) 2.43874e10 0.794885
\(215\) −5.98364e10 −1.90982
\(216\) 0 0
\(217\) 2.35959e10 0.722383
\(218\) 2.06012e10 0.617786
\(219\) 0 0
\(220\) −5.89425e9 −0.169639
\(221\) 1.82063e10 0.513402
\(222\) 0 0
\(223\) 6.22383e10 1.68533 0.842667 0.538435i \(-0.180984\pi\)
0.842667 + 0.538435i \(0.180984\pi\)
\(224\) 2.32158e10 0.616122
\(225\) 0 0
\(226\) −2.31666e10 −0.590710
\(227\) −4.00531e10 −1.00120 −0.500599 0.865679i \(-0.666887\pi\)
−0.500599 + 0.865679i \(0.666887\pi\)
\(228\) 0 0
\(229\) 4.61622e10 1.10924 0.554621 0.832103i \(-0.312863\pi\)
0.554621 + 0.832103i \(0.312863\pi\)
\(230\) 1.56787e10 0.369433
\(231\) 0 0
\(232\) −9.79285e9 −0.221929
\(233\) 2.82042e10 0.626920 0.313460 0.949601i \(-0.398512\pi\)
0.313460 + 0.949601i \(0.398512\pi\)
\(234\) 0 0
\(235\) −2.02851e10 −0.433882
\(236\) 2.01753e10 0.423365
\(237\) 0 0
\(238\) 1.04693e11 2.11505
\(239\) −7.93923e9 −0.157394 −0.0786969 0.996899i \(-0.525076\pi\)
−0.0786969 + 0.996899i \(0.525076\pi\)
\(240\) 0 0
\(241\) −4.33069e10 −0.826953 −0.413476 0.910515i \(-0.635686\pi\)
−0.413476 + 0.910515i \(0.635686\pi\)
\(242\) 2.78471e10 0.521927
\(243\) 0 0
\(244\) −2.35037e9 −0.0424505
\(245\) −4.51511e10 −0.800610
\(246\) 0 0
\(247\) 3.02273e9 0.0516730
\(248\) −3.54812e10 −0.595616
\(249\) 0 0
\(250\) −4.55918e10 −0.738171
\(251\) −3.48447e10 −0.554121 −0.277061 0.960852i \(-0.589360\pi\)
−0.277061 + 0.960852i \(0.589360\pi\)
\(252\) 0 0
\(253\) −1.57192e10 −0.241206
\(254\) −1.25199e10 −0.188733
\(255\) 0 0
\(256\) −4.65097e10 −0.676806
\(257\) −6.17149e10 −0.882452 −0.441226 0.897396i \(-0.645456\pi\)
−0.441226 + 0.897396i \(0.645456\pi\)
\(258\) 0 0
\(259\) −1.01771e11 −1.40533
\(260\) 5.47440e9 0.0742945
\(261\) 0 0
\(262\) −1.12116e11 −1.46999
\(263\) 1.78558e10 0.230132 0.115066 0.993358i \(-0.463292\pi\)
0.115066 + 0.993358i \(0.463292\pi\)
\(264\) 0 0
\(265\) −3.77806e10 −0.470611
\(266\) 1.73818e10 0.212876
\(267\) 0 0
\(268\) 8.90696e9 0.105469
\(269\) 5.24399e10 0.610628 0.305314 0.952252i \(-0.401239\pi\)
0.305314 + 0.952252i \(0.401239\pi\)
\(270\) 0 0
\(271\) −5.03988e10 −0.567621 −0.283811 0.958880i \(-0.591599\pi\)
−0.283811 + 0.958880i \(0.591599\pi\)
\(272\) −1.17212e11 −1.29841
\(273\) 0 0
\(274\) 8.81695e10 0.945020
\(275\) −1.43520e10 −0.151327
\(276\) 0 0
\(277\) −1.58677e11 −1.61941 −0.809703 0.586840i \(-0.800372\pi\)
−0.809703 + 0.586840i \(0.800372\pi\)
\(278\) 1.70219e11 1.70925
\(279\) 0 0
\(280\) 1.62286e11 1.57787
\(281\) −3.04536e10 −0.291381 −0.145690 0.989330i \(-0.546540\pi\)
−0.145690 + 0.989330i \(0.546540\pi\)
\(282\) 0 0
\(283\) 4.21589e10 0.390706 0.195353 0.980733i \(-0.437415\pi\)
0.195353 + 0.980733i \(0.437415\pi\)
\(284\) 3.27092e9 0.0298358
\(285\) 0 0
\(286\) 1.73178e10 0.153054
\(287\) −5.69204e10 −0.495221
\(288\) 0 0
\(289\) 2.87761e11 2.42656
\(290\) −2.39817e10 −0.199108
\(291\) 0 0
\(292\) −2.99233e10 −0.240872
\(293\) −9.73493e10 −0.771665 −0.385832 0.922569i \(-0.626086\pi\)
−0.385832 + 0.922569i \(0.626086\pi\)
\(294\) 0 0
\(295\) 2.54707e11 1.95813
\(296\) 1.53034e11 1.15871
\(297\) 0 0
\(298\) −1.35781e11 −0.997393
\(299\) 1.45995e10 0.105637
\(300\) 0 0
\(301\) −3.20395e11 −2.24976
\(302\) −7.90799e10 −0.547060
\(303\) 0 0
\(304\) −1.94602e10 −0.130682
\(305\) −2.96729e10 −0.196341
\(306\) 0 0
\(307\) −1.62669e11 −1.04516 −0.522578 0.852591i \(-0.675030\pi\)
−0.522578 + 0.852591i \(0.675030\pi\)
\(308\) −3.15609e10 −0.199835
\(309\) 0 0
\(310\) −8.68900e10 −0.534370
\(311\) −1.80301e11 −1.09289 −0.546445 0.837495i \(-0.684019\pi\)
−0.546445 + 0.837495i \(0.684019\pi\)
\(312\) 0 0
\(313\) −6.08927e10 −0.358605 −0.179302 0.983794i \(-0.557384\pi\)
−0.179302 + 0.983794i \(0.557384\pi\)
\(314\) −1.85328e11 −1.07586
\(315\) 0 0
\(316\) 5.72084e10 0.322751
\(317\) −4.75152e10 −0.264281 −0.132140 0.991231i \(-0.542185\pi\)
−0.132140 + 0.991231i \(0.542185\pi\)
\(318\) 0 0
\(319\) 2.40436e10 0.129999
\(320\) −2.31938e11 −1.23651
\(321\) 0 0
\(322\) 8.39522e10 0.435192
\(323\) 6.74646e10 0.344877
\(324\) 0 0
\(325\) 1.33297e10 0.0662743
\(326\) −7.33777e10 −0.359820
\(327\) 0 0
\(328\) 8.55914e10 0.408317
\(329\) −1.08617e11 −0.511112
\(330\) 0 0
\(331\) −8.96236e10 −0.410390 −0.205195 0.978721i \(-0.565783\pi\)
−0.205195 + 0.978721i \(0.565783\pi\)
\(332\) 6.73557e10 0.304265
\(333\) 0 0
\(334\) −8.84544e10 −0.388920
\(335\) 1.12448e11 0.487810
\(336\) 0 0
\(337\) 2.05747e11 0.868957 0.434478 0.900682i \(-0.356933\pi\)
0.434478 + 0.900682i \(0.356933\pi\)
\(338\) −1.60842e10 −0.0670309
\(339\) 0 0
\(340\) 1.22183e11 0.495858
\(341\) 8.71142e10 0.348894
\(342\) 0 0
\(343\) 9.43587e10 0.368094
\(344\) 4.81780e11 1.85496
\(345\) 0 0
\(346\) −3.33791e11 −1.25208
\(347\) −3.41311e11 −1.26377 −0.631884 0.775063i \(-0.717718\pi\)
−0.631884 + 0.775063i \(0.717718\pi\)
\(348\) 0 0
\(349\) −4.15352e11 −1.49866 −0.749328 0.662198i \(-0.769624\pi\)
−0.749328 + 0.662198i \(0.769624\pi\)
\(350\) 7.66503e10 0.273028
\(351\) 0 0
\(352\) 8.57107e10 0.297573
\(353\) 1.00300e11 0.343806 0.171903 0.985114i \(-0.445008\pi\)
0.171903 + 0.985114i \(0.445008\pi\)
\(354\) 0 0
\(355\) 4.12946e10 0.137996
\(356\) 4.50569e10 0.148675
\(357\) 0 0
\(358\) 2.42777e11 0.781149
\(359\) 3.35856e11 1.06716 0.533578 0.845751i \(-0.320847\pi\)
0.533578 + 0.845751i \(0.320847\pi\)
\(360\) 0 0
\(361\) −3.11487e11 −0.965289
\(362\) 4.80613e11 1.47098
\(363\) 0 0
\(364\) 2.93128e10 0.0875187
\(365\) −3.77774e11 −1.11407
\(366\) 0 0
\(367\) 3.43252e11 0.987679 0.493839 0.869553i \(-0.335593\pi\)
0.493839 + 0.869553i \(0.335593\pi\)
\(368\) −9.39910e10 −0.267160
\(369\) 0 0
\(370\) 3.74765e11 1.03956
\(371\) −2.02297e11 −0.554379
\(372\) 0 0
\(373\) −3.20544e11 −0.857428 −0.428714 0.903440i \(-0.641033\pi\)
−0.428714 + 0.903440i \(0.641033\pi\)
\(374\) 3.86517e11 1.02152
\(375\) 0 0
\(376\) 1.63328e11 0.421420
\(377\) −2.23309e10 −0.0569339
\(378\) 0 0
\(379\) 5.59129e11 1.39199 0.695994 0.718047i \(-0.254964\pi\)
0.695994 + 0.718047i \(0.254964\pi\)
\(380\) 2.02857e10 0.0499072
\(381\) 0 0
\(382\) −1.71090e11 −0.411092
\(383\) 1.14158e11 0.271089 0.135544 0.990771i \(-0.456722\pi\)
0.135544 + 0.990771i \(0.456722\pi\)
\(384\) 0 0
\(385\) −3.98448e11 −0.924270
\(386\) 4.60424e11 1.05564
\(387\) 0 0
\(388\) −1.23083e10 −0.0275712
\(389\) 1.10883e11 0.245522 0.122761 0.992436i \(-0.460825\pi\)
0.122761 + 0.992436i \(0.460825\pi\)
\(390\) 0 0
\(391\) 3.25847e11 0.705048
\(392\) 3.63539e11 0.777613
\(393\) 0 0
\(394\) −5.17255e10 −0.108136
\(395\) 7.22242e11 1.49278
\(396\) 0 0
\(397\) 2.31687e11 0.468107 0.234053 0.972224i \(-0.424801\pi\)
0.234053 + 0.972224i \(0.424801\pi\)
\(398\) −1.64992e11 −0.329601
\(399\) 0 0
\(400\) −8.58160e10 −0.167609
\(401\) −5.44480e10 −0.105156 −0.0525778 0.998617i \(-0.516744\pi\)
−0.0525778 + 0.998617i \(0.516744\pi\)
\(402\) 0 0
\(403\) −8.09089e10 −0.152800
\(404\) −8.33137e10 −0.155597
\(405\) 0 0
\(406\) −1.28411e11 −0.234549
\(407\) −3.75732e11 −0.678740
\(408\) 0 0
\(409\) 2.35793e11 0.416654 0.208327 0.978059i \(-0.433198\pi\)
0.208327 + 0.978059i \(0.433198\pi\)
\(410\) 2.09605e11 0.366331
\(411\) 0 0
\(412\) 2.13494e10 0.0365046
\(413\) 1.36384e12 2.30668
\(414\) 0 0
\(415\) 8.50348e11 1.40728
\(416\) −7.96055e10 −0.130324
\(417\) 0 0
\(418\) 6.41721e10 0.102814
\(419\) −5.43639e11 −0.861682 −0.430841 0.902428i \(-0.641783\pi\)
−0.430841 + 0.902428i \(0.641783\pi\)
\(420\) 0 0
\(421\) 2.70622e11 0.419849 0.209925 0.977718i \(-0.432678\pi\)
0.209925 + 0.977718i \(0.432678\pi\)
\(422\) −7.22291e11 −1.10868
\(423\) 0 0
\(424\) 3.04195e11 0.457094
\(425\) 2.97506e11 0.442329
\(426\) 0 0
\(427\) −1.58884e11 −0.231289
\(428\) 1.52399e11 0.219526
\(429\) 0 0
\(430\) 1.17983e12 1.66422
\(431\) 1.07553e12 1.50132 0.750662 0.660687i \(-0.229735\pi\)
0.750662 + 0.660687i \(0.229735\pi\)
\(432\) 0 0
\(433\) −2.63085e11 −0.359667 −0.179833 0.983697i \(-0.557556\pi\)
−0.179833 + 0.983697i \(0.557556\pi\)
\(434\) −4.65254e11 −0.629486
\(435\) 0 0
\(436\) 1.28739e11 0.170616
\(437\) 5.40992e10 0.0709618
\(438\) 0 0
\(439\) −8.20045e11 −1.05377 −0.526887 0.849935i \(-0.676641\pi\)
−0.526887 + 0.849935i \(0.676641\pi\)
\(440\) 5.99148e11 0.762074
\(441\) 0 0
\(442\) −3.58985e11 −0.447380
\(443\) 1.77977e10 0.0219557 0.0109779 0.999940i \(-0.496506\pi\)
0.0109779 + 0.999940i \(0.496506\pi\)
\(444\) 0 0
\(445\) 5.68832e11 0.687645
\(446\) −1.22719e12 −1.46860
\(447\) 0 0
\(448\) −1.24192e12 −1.45661
\(449\) −1.15873e12 −1.34547 −0.672734 0.739885i \(-0.734880\pi\)
−0.672734 + 0.739885i \(0.734880\pi\)
\(450\) 0 0
\(451\) −2.10145e11 −0.239180
\(452\) −1.44770e11 −0.163138
\(453\) 0 0
\(454\) 7.89751e11 0.872446
\(455\) 3.70066e11 0.404789
\(456\) 0 0
\(457\) −9.23583e11 −0.990497 −0.495249 0.868751i \(-0.664923\pi\)
−0.495249 + 0.868751i \(0.664923\pi\)
\(458\) −9.10207e11 −0.966597
\(459\) 0 0
\(460\) 9.79778e10 0.102028
\(461\) −6.32718e11 −0.652464 −0.326232 0.945290i \(-0.605779\pi\)
−0.326232 + 0.945290i \(0.605779\pi\)
\(462\) 0 0
\(463\) 2.14607e11 0.217035 0.108517 0.994095i \(-0.465390\pi\)
0.108517 + 0.994095i \(0.465390\pi\)
\(464\) 1.43766e11 0.143987
\(465\) 0 0
\(466\) −5.56119e11 −0.546300
\(467\) −5.49922e11 −0.535026 −0.267513 0.963554i \(-0.586202\pi\)
−0.267513 + 0.963554i \(0.586202\pi\)
\(468\) 0 0
\(469\) 6.02106e11 0.574639
\(470\) 3.99973e11 0.378086
\(471\) 0 0
\(472\) −2.05081e12 −1.90189
\(473\) −1.18287e12 −1.08658
\(474\) 0 0
\(475\) 4.93939e10 0.0445197
\(476\) 6.54234e11 0.584120
\(477\) 0 0
\(478\) 1.56542e11 0.137153
\(479\) −1.60843e12 −1.39602 −0.698010 0.716088i \(-0.745931\pi\)
−0.698010 + 0.716088i \(0.745931\pi\)
\(480\) 0 0
\(481\) 3.48968e11 0.297258
\(482\) 8.53908e11 0.720609
\(483\) 0 0
\(484\) 1.74019e11 0.144142
\(485\) −1.55389e11 −0.127521
\(486\) 0 0
\(487\) −1.40030e12 −1.12808 −0.564040 0.825747i \(-0.690754\pi\)
−0.564040 + 0.825747i \(0.690754\pi\)
\(488\) 2.38915e11 0.190701
\(489\) 0 0
\(490\) 8.90270e11 0.697653
\(491\) −1.31274e12 −1.01932 −0.509661 0.860376i \(-0.670229\pi\)
−0.509661 + 0.860376i \(0.670229\pi\)
\(492\) 0 0
\(493\) −4.98406e11 −0.379990
\(494\) −5.96010e10 −0.0450280
\(495\) 0 0
\(496\) 5.20888e11 0.386436
\(497\) 2.21113e11 0.162559
\(498\) 0 0
\(499\) −3.50247e11 −0.252885 −0.126442 0.991974i \(-0.540356\pi\)
−0.126442 + 0.991974i \(0.540356\pi\)
\(500\) −2.84907e11 −0.203863
\(501\) 0 0
\(502\) 6.87053e11 0.482863
\(503\) −2.62962e12 −1.83163 −0.915815 0.401601i \(-0.868454\pi\)
−0.915815 + 0.401601i \(0.868454\pi\)
\(504\) 0 0
\(505\) −1.05181e12 −0.719661
\(506\) 3.09945e11 0.210187
\(507\) 0 0
\(508\) −7.82379e10 −0.0521231
\(509\) −4.07673e11 −0.269204 −0.134602 0.990900i \(-0.542976\pi\)
−0.134602 + 0.990900i \(0.542976\pi\)
\(510\) 0 0
\(511\) −2.02280e12 −1.31238
\(512\) 1.69164e12 1.08791
\(513\) 0 0
\(514\) 1.21687e12 0.768970
\(515\) 2.69531e11 0.168840
\(516\) 0 0
\(517\) −4.01005e11 −0.246855
\(518\) 2.00669e12 1.22460
\(519\) 0 0
\(520\) −5.56470e11 −0.333754
\(521\) 1.90638e12 1.13355 0.566773 0.823874i \(-0.308192\pi\)
0.566773 + 0.823874i \(0.308192\pi\)
\(522\) 0 0
\(523\) −6.84980e11 −0.400332 −0.200166 0.979762i \(-0.564148\pi\)
−0.200166 + 0.979762i \(0.564148\pi\)
\(524\) −7.00624e11 −0.405971
\(525\) 0 0
\(526\) −3.52073e11 −0.200538
\(527\) −1.80581e12 −1.01982
\(528\) 0 0
\(529\) −1.53986e12 −0.854930
\(530\) 7.44942e11 0.410092
\(531\) 0 0
\(532\) 1.08620e11 0.0587906
\(533\) 1.95177e11 0.104750
\(534\) 0 0
\(535\) 1.92400e12 1.01534
\(536\) −9.05389e11 −0.473798
\(537\) 0 0
\(538\) −1.03399e12 −0.532103
\(539\) −8.92568e11 −0.455503
\(540\) 0 0
\(541\) −1.99962e12 −1.00360 −0.501798 0.864985i \(-0.667328\pi\)
−0.501798 + 0.864985i \(0.667328\pi\)
\(542\) 9.93743e11 0.494626
\(543\) 0 0
\(544\) −1.77672e12 −0.869809
\(545\) 1.62529e12 0.789128
\(546\) 0 0
\(547\) 2.19967e12 1.05055 0.525273 0.850933i \(-0.323963\pi\)
0.525273 + 0.850933i \(0.323963\pi\)
\(548\) 5.50979e11 0.260989
\(549\) 0 0
\(550\) 2.82987e11 0.131866
\(551\) −8.27485e10 −0.0382453
\(552\) 0 0
\(553\) 3.86726e12 1.75849
\(554\) 3.12873e12 1.41115
\(555\) 0 0
\(556\) 1.06371e12 0.472050
\(557\) −2.10846e12 −0.928148 −0.464074 0.885797i \(-0.653613\pi\)
−0.464074 + 0.885797i \(0.653613\pi\)
\(558\) 0 0
\(559\) 1.09862e12 0.475875
\(560\) −2.38247e12 −1.02372
\(561\) 0 0
\(562\) 6.00472e11 0.253910
\(563\) −2.49136e12 −1.04508 −0.522540 0.852615i \(-0.675015\pi\)
−0.522540 + 0.852615i \(0.675015\pi\)
\(564\) 0 0
\(565\) −1.82769e12 −0.754542
\(566\) −8.31272e11 −0.340462
\(567\) 0 0
\(568\) −3.32488e11 −0.134032
\(569\) −6.91496e11 −0.276557 −0.138278 0.990393i \(-0.544157\pi\)
−0.138278 + 0.990393i \(0.544157\pi\)
\(570\) 0 0
\(571\) −2.70238e11 −0.106386 −0.0531930 0.998584i \(-0.516940\pi\)
−0.0531930 + 0.998584i \(0.516940\pi\)
\(572\) 1.08220e11 0.0422695
\(573\) 0 0
\(574\) 1.12233e12 0.431537
\(575\) 2.38568e11 0.0910136
\(576\) 0 0
\(577\) −3.66686e12 −1.37722 −0.688610 0.725132i \(-0.741779\pi\)
−0.688610 + 0.725132i \(0.741779\pi\)
\(578\) −5.67395e12 −2.11451
\(579\) 0 0
\(580\) −1.49864e11 −0.0549883
\(581\) 4.55321e12 1.65777
\(582\) 0 0
\(583\) −7.46864e11 −0.267752
\(584\) 3.04169e12 1.08207
\(585\) 0 0
\(586\) 1.91949e12 0.672431
\(587\) −1.16732e12 −0.405806 −0.202903 0.979199i \(-0.565038\pi\)
−0.202903 + 0.979199i \(0.565038\pi\)
\(588\) 0 0
\(589\) −2.99812e11 −0.102643
\(590\) −5.02221e12 −1.70632
\(591\) 0 0
\(592\) −2.24664e12 −0.751773
\(593\) −3.14463e12 −1.04430 −0.522148 0.852855i \(-0.674869\pi\)
−0.522148 + 0.852855i \(0.674869\pi\)
\(594\) 0 0
\(595\) 8.25954e12 2.70165
\(596\) −8.48508e11 −0.275453
\(597\) 0 0
\(598\) −2.87867e11 −0.0920527
\(599\) −2.09251e12 −0.664120 −0.332060 0.943258i \(-0.607744\pi\)
−0.332060 + 0.943258i \(0.607744\pi\)
\(600\) 0 0
\(601\) 4.34608e12 1.35882 0.679410 0.733758i \(-0.262236\pi\)
0.679410 + 0.733758i \(0.262236\pi\)
\(602\) 6.31742e12 1.96045
\(603\) 0 0
\(604\) −4.94177e11 −0.151083
\(605\) 2.19694e12 0.666683
\(606\) 0 0
\(607\) 1.73690e12 0.519310 0.259655 0.965701i \(-0.416391\pi\)
0.259655 + 0.965701i \(0.416391\pi\)
\(608\) −2.94982e11 −0.0875447
\(609\) 0 0
\(610\) 5.85078e11 0.171092
\(611\) 3.72441e11 0.108112
\(612\) 0 0
\(613\) 4.02259e12 1.15062 0.575312 0.817934i \(-0.304881\pi\)
0.575312 + 0.817934i \(0.304881\pi\)
\(614\) 3.20744e12 0.910752
\(615\) 0 0
\(616\) 3.20815e12 0.897722
\(617\) 5.03083e12 1.39752 0.698758 0.715358i \(-0.253737\pi\)
0.698758 + 0.715358i \(0.253737\pi\)
\(618\) 0 0
\(619\) −4.77626e12 −1.30761 −0.653807 0.756661i \(-0.726829\pi\)
−0.653807 + 0.756661i \(0.726829\pi\)
\(620\) −5.42983e11 −0.147579
\(621\) 0 0
\(622\) 3.55510e12 0.952348
\(623\) 3.04582e12 0.810044
\(624\) 0 0
\(625\) −4.50842e12 −1.18186
\(626\) 1.20066e12 0.312489
\(627\) 0 0
\(628\) −1.15813e12 −0.297125
\(629\) 7.78864e12 1.98396
\(630\) 0 0
\(631\) −3.04417e12 −0.764428 −0.382214 0.924074i \(-0.624838\pi\)
−0.382214 + 0.924074i \(0.624838\pi\)
\(632\) −5.81521e12 −1.44990
\(633\) 0 0
\(634\) 9.36884e11 0.230295
\(635\) −9.87734e11 −0.241078
\(636\) 0 0
\(637\) 8.28989e11 0.199490
\(638\) −4.74081e11 −0.113282
\(639\) 0 0
\(640\) 2.35337e12 0.554473
\(641\) 1.53417e12 0.358932 0.179466 0.983764i \(-0.442563\pi\)
0.179466 + 0.983764i \(0.442563\pi\)
\(642\) 0 0
\(643\) 3.17074e12 0.731494 0.365747 0.930714i \(-0.380814\pi\)
0.365747 + 0.930714i \(0.380814\pi\)
\(644\) 5.24624e11 0.120188
\(645\) 0 0
\(646\) −1.33024e12 −0.300527
\(647\) 6.75140e12 1.51469 0.757347 0.653013i \(-0.226495\pi\)
0.757347 + 0.653013i \(0.226495\pi\)
\(648\) 0 0
\(649\) 5.03517e12 1.11407
\(650\) −2.62829e11 −0.0577516
\(651\) 0 0
\(652\) −4.58544e11 −0.0993726
\(653\) 3.96591e12 0.853559 0.426780 0.904356i \(-0.359648\pi\)
0.426780 + 0.904356i \(0.359648\pi\)
\(654\) 0 0
\(655\) −8.84520e12 −1.87768
\(656\) −1.25654e12 −0.264916
\(657\) 0 0
\(658\) 2.14166e12 0.445384
\(659\) 1.08932e12 0.224993 0.112497 0.993652i \(-0.464115\pi\)
0.112497 + 0.993652i \(0.464115\pi\)
\(660\) 0 0
\(661\) −9.01775e12 −1.83735 −0.918674 0.395017i \(-0.870739\pi\)
−0.918674 + 0.395017i \(0.870739\pi\)
\(662\) 1.76716e12 0.357615
\(663\) 0 0
\(664\) −6.84667e12 −1.36686
\(665\) 1.37130e12 0.271916
\(666\) 0 0
\(667\) −3.99667e11 −0.0781865
\(668\) −5.52759e11 −0.107409
\(669\) 0 0
\(670\) −2.21721e12 −0.425079
\(671\) −5.86587e11 −0.111707
\(672\) 0 0
\(673\) 6.77812e12 1.27362 0.636812 0.771019i \(-0.280253\pi\)
0.636812 + 0.771019i \(0.280253\pi\)
\(674\) −4.05683e12 −0.757211
\(675\) 0 0
\(676\) −1.00512e11 −0.0185122
\(677\) 9.77011e12 1.78752 0.893759 0.448548i \(-0.148059\pi\)
0.893759 + 0.448548i \(0.148059\pi\)
\(678\) 0 0
\(679\) −8.32035e11 −0.150220
\(680\) −1.24199e13 −2.22755
\(681\) 0 0
\(682\) −1.71768e12 −0.304027
\(683\) −7.99180e12 −1.40524 −0.702621 0.711564i \(-0.747987\pi\)
−0.702621 + 0.711564i \(0.747987\pi\)
\(684\) 0 0
\(685\) 6.95597e12 1.20712
\(686\) −1.86053e12 −0.320758
\(687\) 0 0
\(688\) −7.07285e12 −1.20350
\(689\) 6.93664e11 0.117264
\(690\) 0 0
\(691\) −7.13265e12 −1.19014 −0.595072 0.803672i \(-0.702877\pi\)
−0.595072 + 0.803672i \(0.702877\pi\)
\(692\) −2.08589e12 −0.345791
\(693\) 0 0
\(694\) 6.72982e12 1.10125
\(695\) 1.34291e13 2.18331
\(696\) 0 0
\(697\) 4.35616e12 0.699127
\(698\) 8.18974e12 1.30593
\(699\) 0 0
\(700\) 4.78994e11 0.0754031
\(701\) −1.19764e13 −1.87325 −0.936626 0.350330i \(-0.886069\pi\)
−0.936626 + 0.350330i \(0.886069\pi\)
\(702\) 0 0
\(703\) 1.29312e12 0.199683
\(704\) −4.58507e12 −0.703507
\(705\) 0 0
\(706\) −1.97767e12 −0.299594
\(707\) −5.63196e12 −0.847759
\(708\) 0 0
\(709\) −6.13692e12 −0.912099 −0.456050 0.889954i \(-0.650736\pi\)
−0.456050 + 0.889954i \(0.650736\pi\)
\(710\) −8.14229e11 −0.120250
\(711\) 0 0
\(712\) −4.58002e12 −0.667893
\(713\) −1.44806e12 −0.209838
\(714\) 0 0
\(715\) 1.36626e12 0.195504
\(716\) 1.51713e12 0.215733
\(717\) 0 0
\(718\) −6.62226e12 −0.929922
\(719\) −4.74258e12 −0.661812 −0.330906 0.943664i \(-0.607354\pi\)
−0.330906 + 0.943664i \(0.607354\pi\)
\(720\) 0 0
\(721\) 1.44321e12 0.198893
\(722\) 6.14177e12 0.841155
\(723\) 0 0
\(724\) 3.00339e12 0.406245
\(725\) −3.64905e11 −0.0490523
\(726\) 0 0
\(727\) −9.67795e12 −1.28493 −0.642464 0.766316i \(-0.722088\pi\)
−0.642464 + 0.766316i \(0.722088\pi\)
\(728\) −2.97963e12 −0.393162
\(729\) 0 0
\(730\) 7.44878e12 0.970806
\(731\) 2.45201e13 3.17610
\(732\) 0 0
\(733\) 1.50341e13 1.92357 0.961787 0.273798i \(-0.0882801\pi\)
0.961787 + 0.273798i \(0.0882801\pi\)
\(734\) −6.76810e12 −0.860666
\(735\) 0 0
\(736\) −1.42474e12 −0.178972
\(737\) 2.22293e12 0.277537
\(738\) 0 0
\(739\) −2.14842e12 −0.264983 −0.132492 0.991184i \(-0.542298\pi\)
−0.132492 + 0.991184i \(0.542298\pi\)
\(740\) 2.34194e12 0.287100
\(741\) 0 0
\(742\) 3.98881e12 0.483087
\(743\) −5.22310e12 −0.628751 −0.314376 0.949299i \(-0.601795\pi\)
−0.314376 + 0.949299i \(0.601795\pi\)
\(744\) 0 0
\(745\) −1.07122e13 −1.27402
\(746\) 6.32035e12 0.747165
\(747\) 0 0
\(748\) 2.41538e12 0.282116
\(749\) 1.03021e13 1.19607
\(750\) 0 0
\(751\) 1.65523e13 1.89880 0.949399 0.314071i \(-0.101693\pi\)
0.949399 + 0.314071i \(0.101693\pi\)
\(752\) −2.39776e12 −0.273417
\(753\) 0 0
\(754\) 4.40312e11 0.0496123
\(755\) −6.23886e12 −0.698786
\(756\) 0 0
\(757\) 1.59809e13 1.76877 0.884384 0.466761i \(-0.154579\pi\)
0.884384 + 0.466761i \(0.154579\pi\)
\(758\) −1.10247e13 −1.21298
\(759\) 0 0
\(760\) −2.06203e12 −0.224199
\(761\) −3.31655e12 −0.358473 −0.179236 0.983806i \(-0.557363\pi\)
−0.179236 + 0.983806i \(0.557363\pi\)
\(762\) 0 0
\(763\) 8.70266e12 0.929591
\(764\) −1.06916e12 −0.113533
\(765\) 0 0
\(766\) −2.25092e12 −0.236227
\(767\) −4.67651e12 −0.487914
\(768\) 0 0
\(769\) −2.26842e12 −0.233913 −0.116956 0.993137i \(-0.537314\pi\)
−0.116956 + 0.993137i \(0.537314\pi\)
\(770\) 7.85644e12 0.805411
\(771\) 0 0
\(772\) 2.87723e12 0.291539
\(773\) −1.45998e13 −1.47075 −0.735375 0.677661i \(-0.762994\pi\)
−0.735375 + 0.677661i \(0.762994\pi\)
\(774\) 0 0
\(775\) −1.32212e12 −0.131647
\(776\) 1.25113e12 0.123859
\(777\) 0 0
\(778\) −2.18634e12 −0.213949
\(779\) 7.23237e11 0.0703659
\(780\) 0 0
\(781\) 8.16330e11 0.0785120
\(782\) −6.42492e12 −0.614380
\(783\) 0 0
\(784\) −5.33700e12 −0.504516
\(785\) −1.46211e13 −1.37425
\(786\) 0 0
\(787\) −1.26923e13 −1.17938 −0.589692 0.807628i \(-0.700751\pi\)
−0.589692 + 0.807628i \(0.700751\pi\)
\(788\) −3.23237e11 −0.0298643
\(789\) 0 0
\(790\) −1.42409e13 −1.30081
\(791\) −9.78638e12 −0.888849
\(792\) 0 0
\(793\) 5.44804e11 0.0489228
\(794\) −4.56831e12 −0.407909
\(795\) 0 0
\(796\) −1.03105e12 −0.0910270
\(797\) 1.22392e13 1.07446 0.537230 0.843436i \(-0.319471\pi\)
0.537230 + 0.843436i \(0.319471\pi\)
\(798\) 0 0
\(799\) 8.31254e12 0.721561
\(800\) −1.30082e12 −0.112282
\(801\) 0 0
\(802\) 1.07358e12 0.0916328
\(803\) −7.46801e12 −0.633847
\(804\) 0 0
\(805\) 6.62325e12 0.555891
\(806\) 1.59533e12 0.133150
\(807\) 0 0
\(808\) 8.46880e12 0.698990
\(809\) 4.89425e12 0.401714 0.200857 0.979621i \(-0.435627\pi\)
0.200857 + 0.979621i \(0.435627\pi\)
\(810\) 0 0
\(811\) −3.11178e12 −0.252590 −0.126295 0.991993i \(-0.540309\pi\)
−0.126295 + 0.991993i \(0.540309\pi\)
\(812\) −8.02449e11 −0.0647761
\(813\) 0 0
\(814\) 7.40853e12 0.591456
\(815\) −5.78900e12 −0.459615
\(816\) 0 0
\(817\) 4.07098e12 0.319669
\(818\) −4.64926e12 −0.363073
\(819\) 0 0
\(820\) 1.30984e12 0.101171
\(821\) −3.48502e12 −0.267708 −0.133854 0.991001i \(-0.542735\pi\)
−0.133854 + 0.991001i \(0.542735\pi\)
\(822\) 0 0
\(823\) −4.38954e12 −0.333518 −0.166759 0.985998i \(-0.553330\pi\)
−0.166759 + 0.985998i \(0.553330\pi\)
\(824\) −2.17016e12 −0.163990
\(825\) 0 0
\(826\) −2.68916e13 −2.01004
\(827\) 1.21660e13 0.904424 0.452212 0.891910i \(-0.350635\pi\)
0.452212 + 0.891910i \(0.350635\pi\)
\(828\) 0 0
\(829\) −1.35524e12 −0.0996600 −0.0498300 0.998758i \(-0.515868\pi\)
−0.0498300 + 0.998758i \(0.515868\pi\)
\(830\) −1.67668e13 −1.22631
\(831\) 0 0
\(832\) 4.25847e12 0.308105
\(833\) 1.85023e13 1.33144
\(834\) 0 0
\(835\) −6.97845e12 −0.496786
\(836\) 4.01017e11 0.0283945
\(837\) 0 0
\(838\) 1.07192e13 0.750872
\(839\) 1.12215e13 0.781847 0.390924 0.920423i \(-0.372156\pi\)
0.390924 + 0.920423i \(0.372156\pi\)
\(840\) 0 0
\(841\) −1.38958e13 −0.957861
\(842\) −5.33601e12 −0.365858
\(843\) 0 0
\(844\) −4.51366e12 −0.306188
\(845\) −1.26894e12 −0.0856218
\(846\) 0 0
\(847\) 1.17636e13 0.785351
\(848\) −4.46578e12 −0.296563
\(849\) 0 0
\(850\) −5.86610e12 −0.385447
\(851\) 6.24564e12 0.408220
\(852\) 0 0
\(853\) 7.91778e11 0.0512074 0.0256037 0.999672i \(-0.491849\pi\)
0.0256037 + 0.999672i \(0.491849\pi\)
\(854\) 3.13281e12 0.201546
\(855\) 0 0
\(856\) −1.54913e13 −0.986180
\(857\) −1.76782e13 −1.11950 −0.559751 0.828661i \(-0.689103\pi\)
−0.559751 + 0.828661i \(0.689103\pi\)
\(858\) 0 0
\(859\) 4.03561e12 0.252895 0.126448 0.991973i \(-0.459642\pi\)
0.126448 + 0.991973i \(0.459642\pi\)
\(860\) 7.37286e12 0.459614
\(861\) 0 0
\(862\) −2.12068e13 −1.30826
\(863\) 7.74540e11 0.0475330 0.0237665 0.999718i \(-0.492434\pi\)
0.0237665 + 0.999718i \(0.492434\pi\)
\(864\) 0 0
\(865\) −2.63338e13 −1.59934
\(866\) 5.18739e12 0.313414
\(867\) 0 0
\(868\) −2.90741e12 −0.173847
\(869\) 1.42776e13 0.849311
\(870\) 0 0
\(871\) −2.06459e12 −0.121549
\(872\) −1.30862e13 −0.766461
\(873\) 0 0
\(874\) −1.06671e12 −0.0618363
\(875\) −1.92596e13 −1.11073
\(876\) 0 0
\(877\) −2.57530e13 −1.47004 −0.735020 0.678046i \(-0.762827\pi\)
−0.735020 + 0.678046i \(0.762827\pi\)
\(878\) 1.61693e13 0.918261
\(879\) 0 0
\(880\) −8.79590e12 −0.494434
\(881\) −1.93336e12 −0.108124 −0.0540620 0.998538i \(-0.517217\pi\)
−0.0540620 + 0.998538i \(0.517217\pi\)
\(882\) 0 0
\(883\) 2.94334e13 1.62936 0.814681 0.579910i \(-0.196912\pi\)
0.814681 + 0.579910i \(0.196912\pi\)
\(884\) −2.24333e12 −0.123554
\(885\) 0 0
\(886\) −3.50928e11 −0.0191323
\(887\) −4.07138e12 −0.220844 −0.110422 0.993885i \(-0.535220\pi\)
−0.110422 + 0.993885i \(0.535220\pi\)
\(888\) 0 0
\(889\) −5.28884e12 −0.283990
\(890\) −1.12160e13 −0.599215
\(891\) 0 0
\(892\) −7.66881e12 −0.405589
\(893\) 1.38010e12 0.0726238
\(894\) 0 0
\(895\) 1.91534e13 0.997799
\(896\) 1.26012e13 0.653168
\(897\) 0 0
\(898\) 2.28473e13 1.17244
\(899\) 2.21491e12 0.113094
\(900\) 0 0
\(901\) 1.54819e13 0.782643
\(902\) 4.14356e12 0.208422
\(903\) 0 0
\(904\) 1.47158e13 0.732869
\(905\) 3.79170e13 1.87895
\(906\) 0 0
\(907\) −5.11710e12 −0.251068 −0.125534 0.992089i \(-0.540064\pi\)
−0.125534 + 0.992089i \(0.540064\pi\)
\(908\) 4.93522e12 0.240946
\(909\) 0 0
\(910\) −7.29682e12 −0.352734
\(911\) 1.65675e13 0.796937 0.398468 0.917182i \(-0.369542\pi\)
0.398468 + 0.917182i \(0.369542\pi\)
\(912\) 0 0
\(913\) 1.68101e13 0.800665
\(914\) 1.82108e13 0.863121
\(915\) 0 0
\(916\) −5.68796e12 −0.266948
\(917\) −4.73618e13 −2.21191
\(918\) 0 0
\(919\) 2.46210e13 1.13864 0.569319 0.822117i \(-0.307207\pi\)
0.569319 + 0.822117i \(0.307207\pi\)
\(920\) −9.95940e12 −0.458340
\(921\) 0 0
\(922\) 1.24757e13 0.568558
\(923\) −7.58182e11 −0.0343848
\(924\) 0 0
\(925\) 5.70242e12 0.256107
\(926\) −4.23153e12 −0.189125
\(927\) 0 0
\(928\) 2.17923e12 0.0964577
\(929\) −2.10967e13 −0.929272 −0.464636 0.885502i \(-0.653815\pi\)
−0.464636 + 0.885502i \(0.653815\pi\)
\(930\) 0 0
\(931\) 3.07186e12 0.134007
\(932\) −3.47524e12 −0.150873
\(933\) 0 0
\(934\) 1.08431e13 0.466223
\(935\) 3.04935e13 1.30484
\(936\) 0 0
\(937\) −3.29230e13 −1.39531 −0.697656 0.716433i \(-0.745774\pi\)
−0.697656 + 0.716433i \(0.745774\pi\)
\(938\) −1.18721e13 −0.500742
\(939\) 0 0
\(940\) 2.49947e12 0.104417
\(941\) −3.85496e13 −1.60275 −0.801376 0.598161i \(-0.795898\pi\)
−0.801376 + 0.598161i \(0.795898\pi\)
\(942\) 0 0
\(943\) 3.49316e12 0.143852
\(944\) 3.01072e13 1.23395
\(945\) 0 0
\(946\) 2.33234e13 0.946852
\(947\) −1.22394e13 −0.494521 −0.247261 0.968949i \(-0.579530\pi\)
−0.247261 + 0.968949i \(0.579530\pi\)
\(948\) 0 0
\(949\) 6.93605e12 0.277597
\(950\) −9.73928e11 −0.0387945
\(951\) 0 0
\(952\) −6.65026e13 −2.62405
\(953\) −3.26425e13 −1.28194 −0.640968 0.767568i \(-0.721467\pi\)
−0.640968 + 0.767568i \(0.721467\pi\)
\(954\) 0 0
\(955\) −1.34978e13 −0.525108
\(956\) 9.78247e11 0.0378781
\(957\) 0 0
\(958\) 3.17143e13 1.21649
\(959\) 3.72459e13 1.42198
\(960\) 0 0
\(961\) −1.84146e13 −0.696478
\(962\) −6.88081e12 −0.259031
\(963\) 0 0
\(964\) 5.33614e12 0.199013
\(965\) 3.63243e13 1.34842
\(966\) 0 0
\(967\) −1.28552e13 −0.472780 −0.236390 0.971658i \(-0.575964\pi\)
−0.236390 + 0.971658i \(0.575964\pi\)
\(968\) −1.76889e13 −0.647533
\(969\) 0 0
\(970\) 3.06390e12 0.111122
\(971\) 4.30846e13 1.55538 0.777689 0.628650i \(-0.216392\pi\)
0.777689 + 0.628650i \(0.216392\pi\)
\(972\) 0 0
\(973\) 7.19064e13 2.57193
\(974\) 2.76105e13 0.983012
\(975\) 0 0
\(976\) −3.50743e12 −0.123727
\(977\) −3.58870e13 −1.26012 −0.630059 0.776547i \(-0.716969\pi\)
−0.630059 + 0.776547i \(0.716969\pi\)
\(978\) 0 0
\(979\) 1.12449e13 0.391233
\(980\) 5.56338e12 0.192673
\(981\) 0 0
\(982\) 2.58840e13 0.888239
\(983\) −4.49637e12 −0.153593 −0.0767964 0.997047i \(-0.524469\pi\)
−0.0767964 + 0.997047i \(0.524469\pi\)
\(984\) 0 0
\(985\) −4.08078e12 −0.138128
\(986\) 9.82735e12 0.331124
\(987\) 0 0
\(988\) −3.72452e11 −0.0124355
\(989\) 1.96624e13 0.653513
\(990\) 0 0
\(991\) 1.56221e13 0.514526 0.257263 0.966341i \(-0.417179\pi\)
0.257263 + 0.966341i \(0.417179\pi\)
\(992\) 7.89573e12 0.258875
\(993\) 0 0
\(994\) −4.35981e12 −0.141654
\(995\) −1.30167e13 −0.421015
\(996\) 0 0
\(997\) −3.76783e13 −1.20771 −0.603856 0.797094i \(-0.706370\pi\)
−0.603856 + 0.797094i \(0.706370\pi\)
\(998\) 6.90603e12 0.220364
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.e.1.2 5
3.2 odd 2 13.10.a.b.1.4 5
12.11 even 2 208.10.a.h.1.1 5
15.14 odd 2 325.10.a.b.1.2 5
39.38 odd 2 169.10.a.b.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.b.1.4 5 3.2 odd 2
117.10.a.e.1.2 5 1.1 even 1 trivial
169.10.a.b.1.2 5 39.38 odd 2
208.10.a.h.1.1 5 12.11 even 2
325.10.a.b.1.2 5 15.14 odd 2