Properties

Label 117.10.a.c.1.2
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-15.3567\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.35673 q^{2} -457.879 q^{4} +1236.25 q^{5} +892.010 q^{7} +7135.13 q^{8} +O(q^{10})\) \(q-7.35673 q^{2} -457.879 q^{4} +1236.25 q^{5} +892.010 q^{7} +7135.13 q^{8} -9094.74 q^{10} +27149.8 q^{11} -28561.0 q^{13} -6562.27 q^{14} +181943. q^{16} +34643.4 q^{17} +428885. q^{19} -566052. q^{20} -199734. q^{22} -2.03704e6 q^{23} -424814. q^{25} +210115. q^{26} -408432. q^{28} +5.26400e6 q^{29} -4.15910e6 q^{31} -4.99169e6 q^{32} -254862. q^{34} +1.10275e6 q^{35} -7.58854e6 q^{37} -3.15519e6 q^{38} +8.82080e6 q^{40} +4.92536e6 q^{41} +1.71882e7 q^{43} -1.24313e7 q^{44} +1.49859e7 q^{46} +2.95568e7 q^{47} -3.95579e7 q^{49} +3.12524e6 q^{50} +1.30775e7 q^{52} +2.72331e7 q^{53} +3.35640e7 q^{55} +6.36461e6 q^{56} -3.87258e7 q^{58} +1.13602e8 q^{59} -3.76868e7 q^{61} +3.05973e7 q^{62} -5.64321e7 q^{64} -3.53085e7 q^{65} +1.90094e8 q^{67} -1.58625e7 q^{68} -8.11260e6 q^{70} -6.87130e7 q^{71} +3.61495e8 q^{73} +5.58268e7 q^{74} -1.96377e8 q^{76} +2.42179e7 q^{77} -1.42229e8 q^{79} +2.24926e8 q^{80} -3.62346e7 q^{82} +5.80240e7 q^{83} +4.28279e7 q^{85} -1.26449e8 q^{86} +1.93718e8 q^{88} +8.59928e8 q^{89} -2.54767e7 q^{91} +9.32716e8 q^{92} -2.17442e8 q^{94} +5.30208e8 q^{95} +1.46970e9 q^{97} +2.91017e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 1429 q^{4} - 471 q^{5} - 11241 q^{7} + 45543 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 33 q^{2} + 1429 q^{4} - 471 q^{5} - 11241 q^{7} + 45543 q^{8} - 67831 q^{10} + 40140 q^{11} - 114244 q^{13} + 277653 q^{14} + 726609 q^{16} - 78717 q^{17} + 209664 q^{19} - 870843 q^{20} + 1364090 q^{22} + 4257444 q^{23} - 2900157 q^{25} - 942513 q^{26} + 4035181 q^{28} + 1647936 q^{29} - 11366002 q^{31} + 29458959 q^{32} + 26257659 q^{34} + 13789797 q^{35} + 4636891 q^{37} - 25172466 q^{38} + 22536791 q^{40} - 13859538 q^{41} - 33368081 q^{43} - 66489222 q^{44} + 71369332 q^{46} + 3943005 q^{47} + 23294923 q^{49} + 4217748 q^{50} - 40813669 q^{52} + 171019326 q^{53} - 121160538 q^{55} + 281552967 q^{56} + 79964734 q^{58} + 63389388 q^{59} + 77050190 q^{61} + 95878740 q^{62} + 768962465 q^{64} + 13452231 q^{65} - 41174072 q^{67} + 717615423 q^{68} + 409056389 q^{70} - 252460989 q^{71} + 594415068 q^{73} + 957058539 q^{74} - 326897170 q^{76} - 561950454 q^{77} + 115998984 q^{79} + 509107233 q^{80} - 875148240 q^{82} + 79577862 q^{83} + 549463469 q^{85} + 589924887 q^{86} - 2327564370 q^{88} + 1152240276 q^{89} + 321054201 q^{91} + 4213481460 q^{92} + 1859909503 q^{94} + 1273705170 q^{95} + 1049098084 q^{97} - 420532254 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.35673 −0.325124 −0.162562 0.986698i \(-0.551976\pi\)
−0.162562 + 0.986698i \(0.551976\pi\)
\(3\) 0 0
\(4\) −457.879 −0.894294
\(5\) 1236.25 0.884588 0.442294 0.896870i \(-0.354165\pi\)
0.442294 + 0.896870i \(0.354165\pi\)
\(6\) 0 0
\(7\) 892.010 0.140420 0.0702099 0.997532i \(-0.477633\pi\)
0.0702099 + 0.997532i \(0.477633\pi\)
\(8\) 7135.13 0.615881
\(9\) 0 0
\(10\) −9094.74 −0.287601
\(11\) 27149.8 0.559114 0.279557 0.960129i \(-0.409812\pi\)
0.279557 + 0.960129i \(0.409812\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) −6562.27 −0.0456539
\(15\) 0 0
\(16\) 181943. 0.694056
\(17\) 34643.4 0.100601 0.0503003 0.998734i \(-0.483982\pi\)
0.0503003 + 0.998734i \(0.483982\pi\)
\(18\) 0 0
\(19\) 428885. 0.755004 0.377502 0.926009i \(-0.376783\pi\)
0.377502 + 0.926009i \(0.376783\pi\)
\(20\) −566052. −0.791081
\(21\) 0 0
\(22\) −199734. −0.181782
\(23\) −2.03704e6 −1.51783 −0.758916 0.651188i \(-0.774271\pi\)
−0.758916 + 0.651188i \(0.774271\pi\)
\(24\) 0 0
\(25\) −424814. −0.217505
\(26\) 210115. 0.0901733
\(27\) 0 0
\(28\) −408432. −0.125577
\(29\) 5.26400e6 1.38205 0.691026 0.722830i \(-0.257159\pi\)
0.691026 + 0.722830i \(0.257159\pi\)
\(30\) 0 0
\(31\) −4.15910e6 −0.808856 −0.404428 0.914570i \(-0.632529\pi\)
−0.404428 + 0.914570i \(0.632529\pi\)
\(32\) −4.99169e6 −0.841536
\(33\) 0 0
\(34\) −254862. −0.0327077
\(35\) 1.10275e6 0.124214
\(36\) 0 0
\(37\) −7.58854e6 −0.665657 −0.332829 0.942987i \(-0.608003\pi\)
−0.332829 + 0.942987i \(0.608003\pi\)
\(38\) −3.15519e6 −0.245470
\(39\) 0 0
\(40\) 8.82080e6 0.544801
\(41\) 4.92536e6 0.272214 0.136107 0.990694i \(-0.456541\pi\)
0.136107 + 0.990694i \(0.456541\pi\)
\(42\) 0 0
\(43\) 1.71882e7 0.766696 0.383348 0.923604i \(-0.374771\pi\)
0.383348 + 0.923604i \(0.374771\pi\)
\(44\) −1.24313e7 −0.500012
\(45\) 0 0
\(46\) 1.49859e7 0.493484
\(47\) 2.95568e7 0.883522 0.441761 0.897133i \(-0.354354\pi\)
0.441761 + 0.897133i \(0.354354\pi\)
\(48\) 0 0
\(49\) −3.95579e7 −0.980282
\(50\) 3.12524e6 0.0707161
\(51\) 0 0
\(52\) 1.30775e7 0.248033
\(53\) 2.72331e7 0.474084 0.237042 0.971499i \(-0.423822\pi\)
0.237042 + 0.971499i \(0.423822\pi\)
\(54\) 0 0
\(55\) 3.35640e7 0.494585
\(56\) 6.36461e6 0.0864819
\(57\) 0 0
\(58\) −3.87258e7 −0.449339
\(59\) 1.13602e8 1.22054 0.610272 0.792192i \(-0.291060\pi\)
0.610272 + 0.792192i \(0.291060\pi\)
\(60\) 0 0
\(61\) −3.76868e7 −0.348502 −0.174251 0.984701i \(-0.555750\pi\)
−0.174251 + 0.984701i \(0.555750\pi\)
\(62\) 3.05973e7 0.262979
\(63\) 0 0
\(64\) −5.64321e7 −0.420452
\(65\) −3.53085e7 −0.245340
\(66\) 0 0
\(67\) 1.90094e8 1.15247 0.576237 0.817283i \(-0.304521\pi\)
0.576237 + 0.817283i \(0.304521\pi\)
\(68\) −1.58625e7 −0.0899666
\(69\) 0 0
\(70\) −8.11260e6 −0.0403849
\(71\) −6.87130e7 −0.320905 −0.160453 0.987044i \(-0.551295\pi\)
−0.160453 + 0.987044i \(0.551295\pi\)
\(72\) 0 0
\(73\) 3.61495e8 1.48987 0.744937 0.667135i \(-0.232480\pi\)
0.744937 + 0.667135i \(0.232480\pi\)
\(74\) 5.58268e7 0.216421
\(75\) 0 0
\(76\) −1.96377e8 −0.675196
\(77\) 2.42179e7 0.0785107
\(78\) 0 0
\(79\) −1.42229e8 −0.410834 −0.205417 0.978675i \(-0.565855\pi\)
−0.205417 + 0.978675i \(0.565855\pi\)
\(80\) 2.24926e8 0.613953
\(81\) 0 0
\(82\) −3.62346e7 −0.0885035
\(83\) 5.80240e7 0.134201 0.0671006 0.997746i \(-0.478625\pi\)
0.0671006 + 0.997746i \(0.478625\pi\)
\(84\) 0 0
\(85\) 4.28279e7 0.0889901
\(86\) −1.26449e8 −0.249272
\(87\) 0 0
\(88\) 1.93718e8 0.344348
\(89\) 8.59928e8 1.45280 0.726402 0.687270i \(-0.241191\pi\)
0.726402 + 0.687270i \(0.241191\pi\)
\(90\) 0 0
\(91\) −2.54767e7 −0.0389454
\(92\) 9.32716e8 1.35739
\(93\) 0 0
\(94\) −2.17442e8 −0.287255
\(95\) 5.30208e8 0.667867
\(96\) 0 0
\(97\) 1.46970e9 1.68560 0.842802 0.538223i \(-0.180904\pi\)
0.842802 + 0.538223i \(0.180904\pi\)
\(98\) 2.91017e8 0.318714
\(99\) 0 0
\(100\) 1.94513e8 0.194513
\(101\) 4.15100e8 0.396923 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(102\) 0 0
\(103\) 1.86377e9 1.63164 0.815821 0.578305i \(-0.196286\pi\)
0.815821 + 0.578305i \(0.196286\pi\)
\(104\) −2.03786e8 −0.170815
\(105\) 0 0
\(106\) −2.00346e8 −0.154136
\(107\) 7.50777e8 0.553712 0.276856 0.960911i \(-0.410707\pi\)
0.276856 + 0.960911i \(0.410707\pi\)
\(108\) 0 0
\(109\) 2.07010e9 1.40467 0.702333 0.711849i \(-0.252142\pi\)
0.702333 + 0.711849i \(0.252142\pi\)
\(110\) −2.46921e8 −0.160802
\(111\) 0 0
\(112\) 1.62295e8 0.0974592
\(113\) 2.10155e9 1.21251 0.606257 0.795268i \(-0.292670\pi\)
0.606257 + 0.795268i \(0.292670\pi\)
\(114\) 0 0
\(115\) −2.51829e9 −1.34266
\(116\) −2.41027e9 −1.23596
\(117\) 0 0
\(118\) −8.35741e8 −0.396828
\(119\) 3.09023e7 0.0141263
\(120\) 0 0
\(121\) −1.62083e9 −0.687392
\(122\) 2.77251e8 0.113306
\(123\) 0 0
\(124\) 1.90436e9 0.723356
\(125\) −2.93972e9 −1.07699
\(126\) 0 0
\(127\) −4.77696e9 −1.62943 −0.814713 0.579865i \(-0.803105\pi\)
−0.814713 + 0.579865i \(0.803105\pi\)
\(128\) 2.97090e9 0.978235
\(129\) 0 0
\(130\) 2.59755e8 0.0797662
\(131\) 4.62884e9 1.37326 0.686628 0.727009i \(-0.259090\pi\)
0.686628 + 0.727009i \(0.259090\pi\)
\(132\) 0 0
\(133\) 3.82569e8 0.106018
\(134\) −1.39847e9 −0.374697
\(135\) 0 0
\(136\) 2.47186e8 0.0619581
\(137\) −3.85972e9 −0.936080 −0.468040 0.883707i \(-0.655040\pi\)
−0.468040 + 0.883707i \(0.655040\pi\)
\(138\) 0 0
\(139\) −8.38068e9 −1.90420 −0.952100 0.305786i \(-0.901081\pi\)
−0.952100 + 0.305786i \(0.901081\pi\)
\(140\) −5.04924e8 −0.111084
\(141\) 0 0
\(142\) 5.05503e8 0.104334
\(143\) −7.75427e8 −0.155070
\(144\) 0 0
\(145\) 6.50761e9 1.22255
\(146\) −2.65942e9 −0.484394
\(147\) 0 0
\(148\) 3.47463e9 0.595293
\(149\) −3.96089e9 −0.658347 −0.329174 0.944269i \(-0.606770\pi\)
−0.329174 + 0.944269i \(0.606770\pi\)
\(150\) 0 0
\(151\) 1.11419e10 1.74407 0.872036 0.489442i \(-0.162799\pi\)
0.872036 + 0.489442i \(0.162799\pi\)
\(152\) 3.06015e9 0.464993
\(153\) 0 0
\(154\) −1.78165e8 −0.0255257
\(155\) −5.14168e9 −0.715504
\(156\) 0 0
\(157\) −7.39104e9 −0.970861 −0.485430 0.874275i \(-0.661337\pi\)
−0.485430 + 0.874275i \(0.661337\pi\)
\(158\) 1.04634e9 0.133572
\(159\) 0 0
\(160\) −6.17097e9 −0.744412
\(161\) −1.81706e9 −0.213134
\(162\) 0 0
\(163\) −7.32911e8 −0.0813218 −0.0406609 0.999173i \(-0.512946\pi\)
−0.0406609 + 0.999173i \(0.512946\pi\)
\(164\) −2.25522e9 −0.243440
\(165\) 0 0
\(166\) −4.26867e8 −0.0436321
\(167\) 1.23516e10 1.22885 0.614427 0.788974i \(-0.289387\pi\)
0.614427 + 0.788974i \(0.289387\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) −3.15073e8 −0.0289329
\(171\) 0 0
\(172\) −7.87012e9 −0.685651
\(173\) −1.12727e10 −0.956794 −0.478397 0.878144i \(-0.658782\pi\)
−0.478397 + 0.878144i \(0.658782\pi\)
\(174\) 0 0
\(175\) −3.78938e8 −0.0305420
\(176\) 4.93971e9 0.388056
\(177\) 0 0
\(178\) −6.32626e9 −0.472342
\(179\) 3.32764e9 0.242269 0.121134 0.992636i \(-0.461347\pi\)
0.121134 + 0.992636i \(0.461347\pi\)
\(180\) 0 0
\(181\) 1.56098e10 1.08104 0.540521 0.841330i \(-0.318227\pi\)
0.540521 + 0.841330i \(0.318227\pi\)
\(182\) 1.87425e8 0.0126621
\(183\) 0 0
\(184\) −1.45345e10 −0.934805
\(185\) −9.38133e9 −0.588832
\(186\) 0 0
\(187\) 9.40564e8 0.0562472
\(188\) −1.35334e10 −0.790129
\(189\) 0 0
\(190\) −3.90060e9 −0.217140
\(191\) −2.64757e10 −1.43945 −0.719725 0.694259i \(-0.755732\pi\)
−0.719725 + 0.694259i \(0.755732\pi\)
\(192\) 0 0
\(193\) −2.67204e9 −0.138623 −0.0693114 0.997595i \(-0.522080\pi\)
−0.0693114 + 0.997595i \(0.522080\pi\)
\(194\) −1.08122e10 −0.548031
\(195\) 0 0
\(196\) 1.81127e10 0.876661
\(197\) −1.38233e10 −0.653903 −0.326951 0.945041i \(-0.606021\pi\)
−0.326951 + 0.945041i \(0.606021\pi\)
\(198\) 0 0
\(199\) −1.21811e10 −0.550616 −0.275308 0.961356i \(-0.588780\pi\)
−0.275308 + 0.961356i \(0.588780\pi\)
\(200\) −3.03110e9 −0.133957
\(201\) 0 0
\(202\) −3.05378e9 −0.129049
\(203\) 4.69554e9 0.194068
\(204\) 0 0
\(205\) 6.08897e9 0.240797
\(206\) −1.37112e10 −0.530486
\(207\) 0 0
\(208\) −5.19646e9 −0.192497
\(209\) 1.16441e10 0.422133
\(210\) 0 0
\(211\) −3.16880e9 −0.110058 −0.0550292 0.998485i \(-0.517525\pi\)
−0.0550292 + 0.998485i \(0.517525\pi\)
\(212\) −1.24695e10 −0.423971
\(213\) 0 0
\(214\) −5.52326e9 −0.180025
\(215\) 2.12489e10 0.678210
\(216\) 0 0
\(217\) −3.70996e9 −0.113579
\(218\) −1.52292e10 −0.456691
\(219\) 0 0
\(220\) −1.53682e10 −0.442305
\(221\) −9.89451e8 −0.0279016
\(222\) 0 0
\(223\) −1.00184e10 −0.271285 −0.135642 0.990758i \(-0.543310\pi\)
−0.135642 + 0.990758i \(0.543310\pi\)
\(224\) −4.45264e9 −0.118168
\(225\) 0 0
\(226\) −1.54605e10 −0.394218
\(227\) 5.23965e10 1.30974 0.654871 0.755741i \(-0.272723\pi\)
0.654871 + 0.755741i \(0.272723\pi\)
\(228\) 0 0
\(229\) −2.94853e10 −0.708510 −0.354255 0.935149i \(-0.615266\pi\)
−0.354255 + 0.935149i \(0.615266\pi\)
\(230\) 1.85263e10 0.436530
\(231\) 0 0
\(232\) 3.75593e10 0.851180
\(233\) 6.67468e10 1.48364 0.741820 0.670599i \(-0.233963\pi\)
0.741820 + 0.670599i \(0.233963\pi\)
\(234\) 0 0
\(235\) 3.65396e10 0.781553
\(236\) −5.20161e10 −1.09152
\(237\) 0 0
\(238\) −2.27340e8 −0.00459281
\(239\) 7.42940e10 1.47286 0.736432 0.676511i \(-0.236509\pi\)
0.736432 + 0.676511i \(0.236509\pi\)
\(240\) 0 0
\(241\) 9.01496e10 1.72142 0.860711 0.509095i \(-0.170020\pi\)
0.860711 + 0.509095i \(0.170020\pi\)
\(242\) 1.19240e10 0.223488
\(243\) 0 0
\(244\) 1.72560e10 0.311663
\(245\) −4.89034e10 −0.867146
\(246\) 0 0
\(247\) −1.22494e10 −0.209400
\(248\) −2.96757e10 −0.498160
\(249\) 0 0
\(250\) 2.16267e10 0.350156
\(251\) −3.62007e10 −0.575685 −0.287843 0.957678i \(-0.592938\pi\)
−0.287843 + 0.957678i \(0.592938\pi\)
\(252\) 0 0
\(253\) −5.53053e10 −0.848641
\(254\) 3.51428e10 0.529766
\(255\) 0 0
\(256\) 7.03715e9 0.102404
\(257\) 1.97638e10 0.282600 0.141300 0.989967i \(-0.454872\pi\)
0.141300 + 0.989967i \(0.454872\pi\)
\(258\) 0 0
\(259\) −6.76905e9 −0.0934714
\(260\) 1.61670e10 0.219407
\(261\) 0 0
\(262\) −3.40531e10 −0.446479
\(263\) 1.70457e10 0.219692 0.109846 0.993949i \(-0.464964\pi\)
0.109846 + 0.993949i \(0.464964\pi\)
\(264\) 0 0
\(265\) 3.36669e10 0.419369
\(266\) −2.81446e9 −0.0344689
\(267\) 0 0
\(268\) −8.70398e10 −1.03065
\(269\) −6.56819e10 −0.764822 −0.382411 0.923992i \(-0.624906\pi\)
−0.382411 + 0.923992i \(0.624906\pi\)
\(270\) 0 0
\(271\) 1.52442e11 1.71689 0.858447 0.512902i \(-0.171430\pi\)
0.858447 + 0.512902i \(0.171430\pi\)
\(272\) 6.30312e9 0.0698225
\(273\) 0 0
\(274\) 2.83949e10 0.304343
\(275\) −1.15336e10 −0.121610
\(276\) 0 0
\(277\) −1.21612e11 −1.24113 −0.620566 0.784154i \(-0.713097\pi\)
−0.620566 + 0.784154i \(0.713097\pi\)
\(278\) 6.16544e10 0.619102
\(279\) 0 0
\(280\) 7.86824e9 0.0765008
\(281\) 2.03083e11 1.94310 0.971548 0.236842i \(-0.0761124\pi\)
0.971548 + 0.236842i \(0.0761124\pi\)
\(282\) 0 0
\(283\) 3.09567e10 0.286891 0.143445 0.989658i \(-0.454182\pi\)
0.143445 + 0.989658i \(0.454182\pi\)
\(284\) 3.14622e10 0.286984
\(285\) 0 0
\(286\) 5.70460e9 0.0504171
\(287\) 4.39347e9 0.0382243
\(288\) 0 0
\(289\) −1.17388e11 −0.989880
\(290\) −4.78747e10 −0.397480
\(291\) 0 0
\(292\) −1.65521e11 −1.33238
\(293\) 7.81733e10 0.619661 0.309831 0.950792i \(-0.399728\pi\)
0.309831 + 0.950792i \(0.399728\pi\)
\(294\) 0 0
\(295\) 1.40441e11 1.07968
\(296\) −5.41452e10 −0.409966
\(297\) 0 0
\(298\) 2.91392e10 0.214045
\(299\) 5.81798e10 0.420971
\(300\) 0 0
\(301\) 1.53321e10 0.107659
\(302\) −8.19682e10 −0.567040
\(303\) 0 0
\(304\) 7.80324e10 0.524015
\(305\) −4.65902e10 −0.308280
\(306\) 0 0
\(307\) 1.19962e11 0.770766 0.385383 0.922757i \(-0.374069\pi\)
0.385383 + 0.922757i \(0.374069\pi\)
\(308\) −1.10889e10 −0.0702116
\(309\) 0 0
\(310\) 3.78259e10 0.232628
\(311\) −1.16227e11 −0.704504 −0.352252 0.935905i \(-0.614584\pi\)
−0.352252 + 0.935905i \(0.614584\pi\)
\(312\) 0 0
\(313\) 9.92344e10 0.584403 0.292202 0.956357i \(-0.405612\pi\)
0.292202 + 0.956357i \(0.405612\pi\)
\(314\) 5.43738e10 0.315651
\(315\) 0 0
\(316\) 6.51236e10 0.367406
\(317\) 2.98194e11 1.65856 0.829281 0.558832i \(-0.188750\pi\)
0.829281 + 0.558832i \(0.188750\pi\)
\(318\) 0 0
\(319\) 1.42917e11 0.772725
\(320\) −6.97642e10 −0.371927
\(321\) 0 0
\(322\) 1.33676e10 0.0692950
\(323\) 1.48580e10 0.0759539
\(324\) 0 0
\(325\) 1.21331e10 0.0603250
\(326\) 5.39183e9 0.0264397
\(327\) 0 0
\(328\) 3.51431e10 0.167652
\(329\) 2.63650e10 0.124064
\(330\) 0 0
\(331\) 6.87707e10 0.314904 0.157452 0.987527i \(-0.449672\pi\)
0.157452 + 0.987527i \(0.449672\pi\)
\(332\) −2.65680e10 −0.120015
\(333\) 0 0
\(334\) −9.08675e10 −0.399530
\(335\) 2.35003e11 1.01946
\(336\) 0 0
\(337\) −1.56091e11 −0.659239 −0.329619 0.944114i \(-0.606920\pi\)
−0.329619 + 0.944114i \(0.606920\pi\)
\(338\) −6.00111e9 −0.0250096
\(339\) 0 0
\(340\) −1.96100e10 −0.0795833
\(341\) −1.12919e11 −0.452243
\(342\) 0 0
\(343\) −7.12819e10 −0.278071
\(344\) 1.22640e11 0.472194
\(345\) 0 0
\(346\) 8.29298e10 0.311077
\(347\) 1.65467e11 0.612673 0.306337 0.951923i \(-0.400897\pi\)
0.306337 + 0.951923i \(0.400897\pi\)
\(348\) 0 0
\(349\) −4.02009e11 −1.45051 −0.725257 0.688478i \(-0.758279\pi\)
−0.725257 + 0.688478i \(0.758279\pi\)
\(350\) 2.78775e9 0.00992995
\(351\) 0 0
\(352\) −1.35524e11 −0.470514
\(353\) −2.74001e11 −0.939217 −0.469609 0.882875i \(-0.655605\pi\)
−0.469609 + 0.882875i \(0.655605\pi\)
\(354\) 0 0
\(355\) −8.49464e10 −0.283869
\(356\) −3.93743e11 −1.29923
\(357\) 0 0
\(358\) −2.44805e10 −0.0787675
\(359\) −8.26405e10 −0.262584 −0.131292 0.991344i \(-0.541913\pi\)
−0.131292 + 0.991344i \(0.541913\pi\)
\(360\) 0 0
\(361\) −1.38746e11 −0.429969
\(362\) −1.14837e11 −0.351473
\(363\) 0 0
\(364\) 1.16652e10 0.0348287
\(365\) 4.46898e11 1.31792
\(366\) 0 0
\(367\) 4.83059e10 0.138996 0.0694980 0.997582i \(-0.477860\pi\)
0.0694980 + 0.997582i \(0.477860\pi\)
\(368\) −3.70624e11 −1.05346
\(369\) 0 0
\(370\) 6.90158e10 0.191444
\(371\) 2.42922e10 0.0665708
\(372\) 0 0
\(373\) 8.53749e10 0.228371 0.114185 0.993459i \(-0.463574\pi\)
0.114185 + 0.993459i \(0.463574\pi\)
\(374\) −6.91947e9 −0.0182873
\(375\) 0 0
\(376\) 2.10892e11 0.544145
\(377\) −1.50345e11 −0.383312
\(378\) 0 0
\(379\) −2.25085e11 −0.560365 −0.280182 0.959947i \(-0.590395\pi\)
−0.280182 + 0.959947i \(0.590395\pi\)
\(380\) −2.42771e11 −0.597270
\(381\) 0 0
\(382\) 1.94774e11 0.468001
\(383\) −6.84152e11 −1.62464 −0.812322 0.583210i \(-0.801797\pi\)
−0.812322 + 0.583210i \(0.801797\pi\)
\(384\) 0 0
\(385\) 2.99394e10 0.0694495
\(386\) 1.96574e10 0.0450696
\(387\) 0 0
\(388\) −6.72944e11 −1.50743
\(389\) −7.47317e11 −1.65475 −0.827374 0.561652i \(-0.810166\pi\)
−0.827374 + 0.561652i \(0.810166\pi\)
\(390\) 0 0
\(391\) −7.05700e10 −0.152695
\(392\) −2.82251e11 −0.603738
\(393\) 0 0
\(394\) 1.01694e11 0.212600
\(395\) −1.75830e11 −0.363419
\(396\) 0 0
\(397\) 1.63235e11 0.329804 0.164902 0.986310i \(-0.447269\pi\)
0.164902 + 0.986310i \(0.447269\pi\)
\(398\) 8.96133e10 0.179019
\(399\) 0 0
\(400\) −7.72918e10 −0.150961
\(401\) 7.33836e11 1.41726 0.708629 0.705581i \(-0.249314\pi\)
0.708629 + 0.705581i \(0.249314\pi\)
\(402\) 0 0
\(403\) 1.18788e11 0.224336
\(404\) −1.90065e11 −0.354966
\(405\) 0 0
\(406\) −3.45438e10 −0.0630961
\(407\) −2.06028e11 −0.372178
\(408\) 0 0
\(409\) 7.45800e11 1.31785 0.658927 0.752207i \(-0.271010\pi\)
0.658927 + 0.752207i \(0.271010\pi\)
\(410\) −4.47949e10 −0.0782891
\(411\) 0 0
\(412\) −8.53380e11 −1.45917
\(413\) 1.01334e11 0.171388
\(414\) 0 0
\(415\) 7.17321e10 0.118713
\(416\) 1.42568e11 0.233400
\(417\) 0 0
\(418\) −8.56628e10 −0.137246
\(419\) 5.46254e11 0.865828 0.432914 0.901435i \(-0.357485\pi\)
0.432914 + 0.901435i \(0.357485\pi\)
\(420\) 0 0
\(421\) −2.95449e11 −0.458366 −0.229183 0.973383i \(-0.573606\pi\)
−0.229183 + 0.973383i \(0.573606\pi\)
\(422\) 2.33120e10 0.0357827
\(423\) 0 0
\(424\) 1.94312e11 0.291980
\(425\) −1.47170e10 −0.0218811
\(426\) 0 0
\(427\) −3.36170e10 −0.0489365
\(428\) −3.43765e11 −0.495182
\(429\) 0 0
\(430\) −1.56323e11 −0.220502
\(431\) 5.49479e11 0.767014 0.383507 0.923538i \(-0.374716\pi\)
0.383507 + 0.923538i \(0.374716\pi\)
\(432\) 0 0
\(433\) −7.54093e11 −1.03093 −0.515465 0.856910i \(-0.672381\pi\)
−0.515465 + 0.856910i \(0.672381\pi\)
\(434\) 2.72931e10 0.0369275
\(435\) 0 0
\(436\) −9.47856e11 −1.25618
\(437\) −8.73654e11 −1.14597
\(438\) 0 0
\(439\) 9.98220e10 0.128273 0.0641366 0.997941i \(-0.479571\pi\)
0.0641366 + 0.997941i \(0.479571\pi\)
\(440\) 2.39483e11 0.304606
\(441\) 0 0
\(442\) 7.27912e9 0.00907149
\(443\) 1.08040e12 1.33281 0.666404 0.745591i \(-0.267832\pi\)
0.666404 + 0.745591i \(0.267832\pi\)
\(444\) 0 0
\(445\) 1.06309e12 1.28513
\(446\) 7.37024e10 0.0882013
\(447\) 0 0
\(448\) −5.03380e10 −0.0590398
\(449\) −1.02947e12 −1.19538 −0.597688 0.801729i \(-0.703914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(450\) 0 0
\(451\) 1.33723e11 0.152199
\(452\) −9.62256e11 −1.08435
\(453\) 0 0
\(454\) −3.85466e11 −0.425829
\(455\) −3.14955e10 −0.0344507
\(456\) 0 0
\(457\) 1.06106e12 1.13793 0.568966 0.822361i \(-0.307343\pi\)
0.568966 + 0.822361i \(0.307343\pi\)
\(458\) 2.16915e11 0.230354
\(459\) 0 0
\(460\) 1.15307e12 1.20073
\(461\) 7.20760e11 0.743253 0.371626 0.928382i \(-0.378800\pi\)
0.371626 + 0.928382i \(0.378800\pi\)
\(462\) 0 0
\(463\) 1.41179e11 0.142776 0.0713880 0.997449i \(-0.477257\pi\)
0.0713880 + 0.997449i \(0.477257\pi\)
\(464\) 9.57745e11 0.959222
\(465\) 0 0
\(466\) −4.91038e11 −0.482368
\(467\) 5.23104e11 0.508935 0.254467 0.967081i \(-0.418100\pi\)
0.254467 + 0.967081i \(0.418100\pi\)
\(468\) 0 0
\(469\) 1.69565e11 0.161830
\(470\) −2.68812e11 −0.254102
\(471\) 0 0
\(472\) 8.10568e11 0.751710
\(473\) 4.66658e11 0.428670
\(474\) 0 0
\(475\) −1.82196e11 −0.164217
\(476\) −1.41495e10 −0.0126331
\(477\) 0 0
\(478\) −5.46560e11 −0.478864
\(479\) −1.22387e12 −1.06224 −0.531122 0.847295i \(-0.678230\pi\)
−0.531122 + 0.847295i \(0.678230\pi\)
\(480\) 0 0
\(481\) 2.16736e11 0.184620
\(482\) −6.63206e11 −0.559676
\(483\) 0 0
\(484\) 7.42145e11 0.614730
\(485\) 1.81691e12 1.49107
\(486\) 0 0
\(487\) −3.77344e11 −0.303988 −0.151994 0.988381i \(-0.548569\pi\)
−0.151994 + 0.988381i \(0.548569\pi\)
\(488\) −2.68900e11 −0.214636
\(489\) 0 0
\(490\) 3.59769e11 0.281930
\(491\) 2.35736e12 1.83046 0.915229 0.402934i \(-0.132010\pi\)
0.915229 + 0.402934i \(0.132010\pi\)
\(492\) 0 0
\(493\) 1.82363e11 0.139035
\(494\) 9.01153e10 0.0680812
\(495\) 0 0
\(496\) −7.56717e11 −0.561392
\(497\) −6.12927e10 −0.0450614
\(498\) 0 0
\(499\) −2.64345e12 −1.90862 −0.954309 0.298822i \(-0.903406\pi\)
−0.954309 + 0.298822i \(0.903406\pi\)
\(500\) 1.34604e12 0.963145
\(501\) 0 0
\(502\) 2.66319e11 0.187169
\(503\) −1.53328e11 −0.106799 −0.0533994 0.998573i \(-0.517006\pi\)
−0.0533994 + 0.998573i \(0.517006\pi\)
\(504\) 0 0
\(505\) 5.13167e11 0.351113
\(506\) 4.06866e11 0.275914
\(507\) 0 0
\(508\) 2.18727e12 1.45719
\(509\) 6.36840e11 0.420533 0.210267 0.977644i \(-0.432567\pi\)
0.210267 + 0.977644i \(0.432567\pi\)
\(510\) 0 0
\(511\) 3.22457e11 0.209208
\(512\) −1.57287e12 −1.01153
\(513\) 0 0
\(514\) −1.45397e11 −0.0918801
\(515\) 2.30408e12 1.44333
\(516\) 0 0
\(517\) 8.02463e11 0.493989
\(518\) 4.97981e10 0.0303899
\(519\) 0 0
\(520\) −2.51931e11 −0.151101
\(521\) −1.84033e12 −1.09427 −0.547137 0.837043i \(-0.684282\pi\)
−0.547137 + 0.837043i \(0.684282\pi\)
\(522\) 0 0
\(523\) −1.13176e10 −0.00661447 −0.00330724 0.999995i \(-0.501053\pi\)
−0.00330724 + 0.999995i \(0.501053\pi\)
\(524\) −2.11945e12 −1.22809
\(525\) 0 0
\(526\) −1.25401e11 −0.0714272
\(527\) −1.44085e11 −0.0813715
\(528\) 0 0
\(529\) 2.34837e12 1.30382
\(530\) −2.47678e11 −0.136347
\(531\) 0 0
\(532\) −1.75170e11 −0.0948108
\(533\) −1.40673e11 −0.0754987
\(534\) 0 0
\(535\) 9.28148e11 0.489807
\(536\) 1.35634e12 0.709787
\(537\) 0 0
\(538\) 4.83203e11 0.248662
\(539\) −1.07399e12 −0.548089
\(540\) 0 0
\(541\) −2.25189e12 −1.13021 −0.565107 0.825018i \(-0.691165\pi\)
−0.565107 + 0.825018i \(0.691165\pi\)
\(542\) −1.12148e12 −0.558204
\(543\) 0 0
\(544\) −1.72929e11 −0.0846591
\(545\) 2.55916e12 1.24255
\(546\) 0 0
\(547\) 1.92777e11 0.0920686 0.0460343 0.998940i \(-0.485342\pi\)
0.0460343 + 0.998940i \(0.485342\pi\)
\(548\) 1.76728e12 0.837131
\(549\) 0 0
\(550\) 8.48498e10 0.0395384
\(551\) 2.25765e12 1.04346
\(552\) 0 0
\(553\) −1.26870e11 −0.0576892
\(554\) 8.94667e11 0.403522
\(555\) 0 0
\(556\) 3.83733e12 1.70292
\(557\) −3.00574e12 −1.32313 −0.661566 0.749887i \(-0.730108\pi\)
−0.661566 + 0.749887i \(0.730108\pi\)
\(558\) 0 0
\(559\) −4.90913e11 −0.212643
\(560\) 2.00636e11 0.0862112
\(561\) 0 0
\(562\) −1.49402e12 −0.631748
\(563\) 1.64962e11 0.0691984 0.0345992 0.999401i \(-0.488985\pi\)
0.0345992 + 0.999401i \(0.488985\pi\)
\(564\) 0 0
\(565\) 2.59804e12 1.07258
\(566\) −2.27740e11 −0.0932751
\(567\) 0 0
\(568\) −4.90277e11 −0.197639
\(569\) 2.35127e11 0.0940368 0.0470184 0.998894i \(-0.485028\pi\)
0.0470184 + 0.998894i \(0.485028\pi\)
\(570\) 0 0
\(571\) −2.71697e12 −1.06960 −0.534801 0.844978i \(-0.679613\pi\)
−0.534801 + 0.844978i \(0.679613\pi\)
\(572\) 3.55051e11 0.138678
\(573\) 0 0
\(574\) −3.23216e10 −0.0124276
\(575\) 8.65362e11 0.330136
\(576\) 0 0
\(577\) −3.01507e12 −1.13242 −0.566209 0.824262i \(-0.691590\pi\)
−0.566209 + 0.824262i \(0.691590\pi\)
\(578\) 8.63589e11 0.321834
\(579\) 0 0
\(580\) −2.97969e12 −1.09332
\(581\) 5.17580e10 0.0188445
\(582\) 0 0
\(583\) 7.39374e11 0.265067
\(584\) 2.57931e12 0.917585
\(585\) 0 0
\(586\) −5.75100e11 −0.201467
\(587\) 9.84708e11 0.342323 0.171161 0.985243i \(-0.445248\pi\)
0.171161 + 0.985243i \(0.445248\pi\)
\(588\) 0 0
\(589\) −1.78377e12 −0.610690
\(590\) −1.03318e12 −0.351030
\(591\) 0 0
\(592\) −1.38068e12 −0.462003
\(593\) −1.01065e12 −0.335625 −0.167812 0.985819i \(-0.553670\pi\)
−0.167812 + 0.985819i \(0.553670\pi\)
\(594\) 0 0
\(595\) 3.82029e10 0.0124960
\(596\) 1.81361e12 0.588756
\(597\) 0 0
\(598\) −4.28013e11 −0.136868
\(599\) −5.47507e12 −1.73768 −0.868839 0.495095i \(-0.835133\pi\)
−0.868839 + 0.495095i \(0.835133\pi\)
\(600\) 0 0
\(601\) 9.94557e11 0.310953 0.155476 0.987840i \(-0.450309\pi\)
0.155476 + 0.987840i \(0.450309\pi\)
\(602\) −1.12794e11 −0.0350027
\(603\) 0 0
\(604\) −5.10165e12 −1.55971
\(605\) −2.00375e12 −0.608058
\(606\) 0 0
\(607\) 4.57629e12 1.36825 0.684124 0.729366i \(-0.260185\pi\)
0.684124 + 0.729366i \(0.260185\pi\)
\(608\) −2.14086e12 −0.635363
\(609\) 0 0
\(610\) 3.42752e11 0.100229
\(611\) −8.44173e11 −0.245045
\(612\) 0 0
\(613\) 2.27107e12 0.649617 0.324809 0.945780i \(-0.394700\pi\)
0.324809 + 0.945780i \(0.394700\pi\)
\(614\) −8.82531e11 −0.250595
\(615\) 0 0
\(616\) 1.72798e11 0.0483532
\(617\) −3.53862e12 −0.982994 −0.491497 0.870879i \(-0.663550\pi\)
−0.491497 + 0.870879i \(0.663550\pi\)
\(618\) 0 0
\(619\) 1.97957e12 0.541956 0.270978 0.962586i \(-0.412653\pi\)
0.270978 + 0.962586i \(0.412653\pi\)
\(620\) 2.35426e12 0.639871
\(621\) 0 0
\(622\) 8.55047e11 0.229052
\(623\) 7.67065e11 0.204003
\(624\) 0 0
\(625\) −2.80452e12 −0.735187
\(626\) −7.30040e11 −0.190004
\(627\) 0 0
\(628\) 3.38420e12 0.868235
\(629\) −2.62893e11 −0.0669656
\(630\) 0 0
\(631\) 3.71649e11 0.0933256 0.0466628 0.998911i \(-0.485141\pi\)
0.0466628 + 0.998911i \(0.485141\pi\)
\(632\) −1.01482e12 −0.253025
\(633\) 0 0
\(634\) −2.19373e12 −0.539239
\(635\) −5.90551e12 −1.44137
\(636\) 0 0
\(637\) 1.12981e12 0.271881
\(638\) −1.05140e12 −0.251232
\(639\) 0 0
\(640\) 3.67277e12 0.865335
\(641\) −1.07772e12 −0.252143 −0.126071 0.992021i \(-0.540237\pi\)
−0.126071 + 0.992021i \(0.540237\pi\)
\(642\) 0 0
\(643\) −6.69209e12 −1.54388 −0.771938 0.635698i \(-0.780712\pi\)
−0.771938 + 0.635698i \(0.780712\pi\)
\(644\) 8.31992e11 0.190604
\(645\) 0 0
\(646\) −1.09307e11 −0.0246945
\(647\) −1.58975e12 −0.356664 −0.178332 0.983970i \(-0.557070\pi\)
−0.178332 + 0.983970i \(0.557070\pi\)
\(648\) 0 0
\(649\) 3.08429e12 0.682423
\(650\) −8.92600e10 −0.0196131
\(651\) 0 0
\(652\) 3.35584e11 0.0727256
\(653\) 1.96565e12 0.423055 0.211527 0.977372i \(-0.432156\pi\)
0.211527 + 0.977372i \(0.432156\pi\)
\(654\) 0 0
\(655\) 5.72240e12 1.21476
\(656\) 8.96134e11 0.188932
\(657\) 0 0
\(658\) −1.93960e11 −0.0403362
\(659\) −1.09426e11 −0.0226014 −0.0113007 0.999936i \(-0.503597\pi\)
−0.0113007 + 0.999936i \(0.503597\pi\)
\(660\) 0 0
\(661\) −2.69590e12 −0.549285 −0.274643 0.961546i \(-0.588560\pi\)
−0.274643 + 0.961546i \(0.588560\pi\)
\(662\) −5.05927e11 −0.102383
\(663\) 0 0
\(664\) 4.14009e11 0.0826520
\(665\) 4.72951e11 0.0937818
\(666\) 0 0
\(667\) −1.07230e13 −2.09772
\(668\) −5.65555e12 −1.09896
\(669\) 0 0
\(670\) −1.72885e12 −0.331452
\(671\) −1.02319e12 −0.194852
\(672\) 0 0
\(673\) −6.37187e12 −1.19729 −0.598644 0.801015i \(-0.704294\pi\)
−0.598644 + 0.801015i \(0.704294\pi\)
\(674\) 1.14832e12 0.214335
\(675\) 0 0
\(676\) −3.73506e11 −0.0687919
\(677\) 6.61270e12 1.20985 0.604923 0.796284i \(-0.293204\pi\)
0.604923 + 0.796284i \(0.293204\pi\)
\(678\) 0 0
\(679\) 1.31099e12 0.236692
\(680\) 3.05583e11 0.0548073
\(681\) 0 0
\(682\) 8.30713e11 0.147035
\(683\) −3.52480e12 −0.619785 −0.309893 0.950772i \(-0.600293\pi\)
−0.309893 + 0.950772i \(0.600293\pi\)
\(684\) 0 0
\(685\) −4.77157e12 −0.828045
\(686\) 5.24401e11 0.0904076
\(687\) 0 0
\(688\) 3.12727e12 0.532130
\(689\) −7.77804e11 −0.131487
\(690\) 0 0
\(691\) 1.21020e12 0.201932 0.100966 0.994890i \(-0.467807\pi\)
0.100966 + 0.994890i \(0.467807\pi\)
\(692\) 5.16151e12 0.855656
\(693\) 0 0
\(694\) −1.21730e12 −0.199195
\(695\) −1.03606e13 −1.68443
\(696\) 0 0
\(697\) 1.70632e11 0.0273849
\(698\) 2.95747e12 0.471597
\(699\) 0 0
\(700\) 1.73508e11 0.0273135
\(701\) −3.34752e12 −0.523591 −0.261796 0.965123i \(-0.584315\pi\)
−0.261796 + 0.965123i \(0.584315\pi\)
\(702\) 0 0
\(703\) −3.25461e12 −0.502574
\(704\) −1.53212e12 −0.235081
\(705\) 0 0
\(706\) 2.01575e12 0.305362
\(707\) 3.70273e11 0.0557359
\(708\) 0 0
\(709\) 1.09345e13 1.62514 0.812568 0.582866i \(-0.198069\pi\)
0.812568 + 0.582866i \(0.198069\pi\)
\(710\) 6.24928e11 0.0922926
\(711\) 0 0
\(712\) 6.13570e12 0.894755
\(713\) 8.47224e12 1.22771
\(714\) 0 0
\(715\) −9.58620e11 −0.137173
\(716\) −1.52365e12 −0.216660
\(717\) 0 0
\(718\) 6.07964e11 0.0853724
\(719\) −4.73071e12 −0.660156 −0.330078 0.943954i \(-0.607075\pi\)
−0.330078 + 0.943954i \(0.607075\pi\)
\(720\) 0 0
\(721\) 1.66250e12 0.229115
\(722\) 1.02071e12 0.139793
\(723\) 0 0
\(724\) −7.14738e12 −0.966770
\(725\) −2.23622e12 −0.300603
\(726\) 0 0
\(727\) 1.40402e13 1.86410 0.932049 0.362333i \(-0.118020\pi\)
0.932049 + 0.362333i \(0.118020\pi\)
\(728\) −1.81780e11 −0.0239858
\(729\) 0 0
\(730\) −3.28770e12 −0.428489
\(731\) 5.95459e11 0.0771301
\(732\) 0 0
\(733\) −1.78493e12 −0.228377 −0.114188 0.993459i \(-0.536427\pi\)
−0.114188 + 0.993459i \(0.536427\pi\)
\(734\) −3.55373e11 −0.0451910
\(735\) 0 0
\(736\) 1.01683e13 1.27731
\(737\) 5.16101e12 0.644364
\(738\) 0 0
\(739\) −1.24956e13 −1.54119 −0.770595 0.637325i \(-0.780041\pi\)
−0.770595 + 0.637325i \(0.780041\pi\)
\(740\) 4.29551e12 0.526589
\(741\) 0 0
\(742\) −1.78711e11 −0.0216438
\(743\) −4.21591e12 −0.507506 −0.253753 0.967269i \(-0.581665\pi\)
−0.253753 + 0.967269i \(0.581665\pi\)
\(744\) 0 0
\(745\) −4.89665e12 −0.582366
\(746\) −6.28080e11 −0.0742489
\(747\) 0 0
\(748\) −4.30664e11 −0.0503016
\(749\) 6.69701e11 0.0777522
\(750\) 0 0
\(751\) 9.94988e12 1.14140 0.570701 0.821158i \(-0.306672\pi\)
0.570701 + 0.821158i \(0.306672\pi\)
\(752\) 5.37765e12 0.613214
\(753\) 0 0
\(754\) 1.10605e12 0.124624
\(755\) 1.37742e13 1.54278
\(756\) 0 0
\(757\) −1.61992e13 −1.79293 −0.896465 0.443115i \(-0.853873\pi\)
−0.896465 + 0.443115i \(0.853873\pi\)
\(758\) 1.65589e12 0.182188
\(759\) 0 0
\(760\) 3.78310e12 0.411327
\(761\) −4.79250e12 −0.518001 −0.259001 0.965877i \(-0.583393\pi\)
−0.259001 + 0.965877i \(0.583393\pi\)
\(762\) 0 0
\(763\) 1.84655e12 0.197243
\(764\) 1.21226e13 1.28729
\(765\) 0 0
\(766\) 5.03312e12 0.528211
\(767\) −3.24460e12 −0.338518
\(768\) 0 0
\(769\) −8.41625e11 −0.0867861 −0.0433930 0.999058i \(-0.513817\pi\)
−0.0433930 + 0.999058i \(0.513817\pi\)
\(770\) −2.20256e11 −0.0225797
\(771\) 0 0
\(772\) 1.22347e12 0.123970
\(773\) −3.90333e12 −0.393213 −0.196607 0.980482i \(-0.562992\pi\)
−0.196607 + 0.980482i \(0.562992\pi\)
\(774\) 0 0
\(775\) 1.76684e12 0.175930
\(776\) 1.04865e13 1.03813
\(777\) 0 0
\(778\) 5.49781e12 0.537999
\(779\) 2.11241e12 0.205523
\(780\) 0 0
\(781\) −1.86555e12 −0.179422
\(782\) 5.19164e11 0.0496449
\(783\) 0 0
\(784\) −7.19727e12 −0.680371
\(785\) −9.13716e12 −0.858812
\(786\) 0 0
\(787\) −1.42677e13 −1.32577 −0.662884 0.748723i \(-0.730668\pi\)
−0.662884 + 0.748723i \(0.730668\pi\)
\(788\) 6.32939e12 0.584782
\(789\) 0 0
\(790\) 1.29354e12 0.118156
\(791\) 1.87460e12 0.170261
\(792\) 0 0
\(793\) 1.07637e12 0.0966570
\(794\) −1.20087e12 −0.107227
\(795\) 0 0
\(796\) 5.57748e12 0.492413
\(797\) −1.77300e13 −1.55649 −0.778245 0.627960i \(-0.783890\pi\)
−0.778245 + 0.627960i \(0.783890\pi\)
\(798\) 0 0
\(799\) 1.02395e12 0.0888829
\(800\) 2.12054e12 0.183038
\(801\) 0 0
\(802\) −5.39863e12 −0.460785
\(803\) 9.81453e12 0.833009
\(804\) 0 0
\(805\) −2.24634e12 −0.188535
\(806\) −8.73891e11 −0.0729372
\(807\) 0 0
\(808\) 2.96179e12 0.244458
\(809\) −6.57374e12 −0.539565 −0.269783 0.962921i \(-0.586952\pi\)
−0.269783 + 0.962921i \(0.586952\pi\)
\(810\) 0 0
\(811\) 1.30848e13 1.06212 0.531060 0.847334i \(-0.321794\pi\)
0.531060 + 0.847334i \(0.321794\pi\)
\(812\) −2.14999e12 −0.173553
\(813\) 0 0
\(814\) 1.51569e12 0.121004
\(815\) −9.06060e11 −0.0719363
\(816\) 0 0
\(817\) 7.37177e12 0.578858
\(818\) −5.48665e12 −0.428467
\(819\) 0 0
\(820\) −2.78801e12 −0.215344
\(821\) −4.25638e12 −0.326961 −0.163480 0.986547i \(-0.552272\pi\)
−0.163480 + 0.986547i \(0.552272\pi\)
\(822\) 0 0
\(823\) −4.41691e12 −0.335598 −0.167799 0.985821i \(-0.553666\pi\)
−0.167799 + 0.985821i \(0.553666\pi\)
\(824\) 1.32982e13 1.00490
\(825\) 0 0
\(826\) −7.45489e11 −0.0557226
\(827\) 1.65971e13 1.23384 0.616919 0.787026i \(-0.288380\pi\)
0.616919 + 0.787026i \(0.288380\pi\)
\(828\) 0 0
\(829\) −1.79742e13 −1.32176 −0.660882 0.750490i \(-0.729817\pi\)
−0.660882 + 0.750490i \(0.729817\pi\)
\(830\) −5.27714e11 −0.0385964
\(831\) 0 0
\(832\) 1.61176e12 0.116612
\(833\) −1.37042e12 −0.0986171
\(834\) 0 0
\(835\) 1.52697e13 1.08703
\(836\) −5.33161e12 −0.377511
\(837\) 0 0
\(838\) −4.01864e12 −0.281502
\(839\) −3.10688e12 −0.216469 −0.108234 0.994125i \(-0.534520\pi\)
−0.108234 + 0.994125i \(0.534520\pi\)
\(840\) 0 0
\(841\) 1.32025e13 0.910070
\(842\) 2.17354e12 0.149026
\(843\) 0 0
\(844\) 1.45092e12 0.0984246
\(845\) 1.00845e12 0.0680452
\(846\) 0 0
\(847\) −1.44580e12 −0.0965234
\(848\) 4.95486e12 0.329041
\(849\) 0 0
\(850\) 1.08269e11 0.00711409
\(851\) 1.54581e13 1.01036
\(852\) 0 0
\(853\) 1.20700e13 0.780613 0.390306 0.920685i \(-0.372369\pi\)
0.390306 + 0.920685i \(0.372369\pi\)
\(854\) 2.47311e11 0.0159105
\(855\) 0 0
\(856\) 5.35690e12 0.341021
\(857\) 6.31368e12 0.399824 0.199912 0.979814i \(-0.435934\pi\)
0.199912 + 0.979814i \(0.435934\pi\)
\(858\) 0 0
\(859\) 1.86663e13 1.16974 0.584870 0.811127i \(-0.301146\pi\)
0.584870 + 0.811127i \(0.301146\pi\)
\(860\) −9.72943e12 −0.606519
\(861\) 0 0
\(862\) −4.04237e12 −0.249375
\(863\) 1.78712e13 1.09675 0.548373 0.836234i \(-0.315247\pi\)
0.548373 + 0.836234i \(0.315247\pi\)
\(864\) 0 0
\(865\) −1.39358e13 −0.846368
\(866\) 5.54766e12 0.335181
\(867\) 0 0
\(868\) 1.69871e12 0.101573
\(869\) −3.86149e12 −0.229703
\(870\) 0 0
\(871\) −5.42926e12 −0.319639
\(872\) 1.47705e13 0.865107
\(873\) 0 0
\(874\) 6.42723e12 0.372583
\(875\) −2.62226e12 −0.151231
\(876\) 0 0
\(877\) −3.76100e12 −0.214687 −0.107343 0.994222i \(-0.534234\pi\)
−0.107343 + 0.994222i \(0.534234\pi\)
\(878\) −7.34363e11 −0.0417047
\(879\) 0 0
\(880\) 6.10671e12 0.343270
\(881\) −2.05824e13 −1.15108 −0.575539 0.817775i \(-0.695208\pi\)
−0.575539 + 0.817775i \(0.695208\pi\)
\(882\) 0 0
\(883\) −3.01536e13 −1.66923 −0.834616 0.550833i \(-0.814310\pi\)
−0.834616 + 0.550833i \(0.814310\pi\)
\(884\) 4.53049e11 0.0249522
\(885\) 0 0
\(886\) −7.94821e12 −0.433329
\(887\) 3.34317e13 1.81343 0.906717 0.421739i \(-0.138580\pi\)
0.906717 + 0.421739i \(0.138580\pi\)
\(888\) 0 0
\(889\) −4.26109e12 −0.228804
\(890\) −7.82083e12 −0.417828
\(891\) 0 0
\(892\) 4.58720e12 0.242608
\(893\) 1.26765e13 0.667063
\(894\) 0 0
\(895\) 4.11379e12 0.214308
\(896\) 2.65007e12 0.137364
\(897\) 0 0
\(898\) 7.57351e12 0.388646
\(899\) −2.18935e13 −1.11788
\(900\) 0 0
\(901\) 9.43448e11 0.0476932
\(902\) −9.83762e11 −0.0494835
\(903\) 0 0
\(904\) 1.49948e13 0.746765
\(905\) 1.92976e13 0.956277
\(906\) 0 0
\(907\) 2.03004e13 0.996030 0.498015 0.867169i \(-0.334063\pi\)
0.498015 + 0.867169i \(0.334063\pi\)
\(908\) −2.39912e13 −1.17129
\(909\) 0 0
\(910\) 2.31704e11 0.0112008
\(911\) −1.74407e13 −0.838940 −0.419470 0.907769i \(-0.637784\pi\)
−0.419470 + 0.907769i \(0.637784\pi\)
\(912\) 0 0
\(913\) 1.57534e12 0.0750337
\(914\) −7.80592e12 −0.369970
\(915\) 0 0
\(916\) 1.35007e13 0.633617
\(917\) 4.12897e12 0.192832
\(918\) 0 0
\(919\) 1.69619e13 0.784430 0.392215 0.919874i \(-0.371709\pi\)
0.392215 + 0.919874i \(0.371709\pi\)
\(920\) −1.79683e13 −0.826917
\(921\) 0 0
\(922\) −5.30243e12 −0.241650
\(923\) 1.96251e12 0.0890031
\(924\) 0 0
\(925\) 3.22372e12 0.144784
\(926\) −1.03861e12 −0.0464200
\(927\) 0 0
\(928\) −2.62762e13 −1.16305
\(929\) −4.90922e12 −0.216243 −0.108121 0.994138i \(-0.534484\pi\)
−0.108121 + 0.994138i \(0.534484\pi\)
\(930\) 0 0
\(931\) −1.69658e13 −0.740117
\(932\) −3.05619e13 −1.32681
\(933\) 0 0
\(934\) −3.84833e12 −0.165467
\(935\) 1.16277e12 0.0497556
\(936\) 0 0
\(937\) 1.13139e13 0.479497 0.239749 0.970835i \(-0.422935\pi\)
0.239749 + 0.970835i \(0.422935\pi\)
\(938\) −1.24745e12 −0.0526149
\(939\) 0 0
\(940\) −1.67307e13 −0.698938
\(941\) −7.23052e11 −0.0300619 −0.0150310 0.999887i \(-0.504785\pi\)
−0.0150310 + 0.999887i \(0.504785\pi\)
\(942\) 0 0
\(943\) −1.00332e13 −0.413176
\(944\) 2.06691e13 0.847126
\(945\) 0 0
\(946\) −3.43307e12 −0.139371
\(947\) −4.04364e13 −1.63380 −0.816898 0.576782i \(-0.804308\pi\)
−0.816898 + 0.576782i \(0.804308\pi\)
\(948\) 0 0
\(949\) −1.03247e13 −0.413216
\(950\) 1.34037e12 0.0533910
\(951\) 0 0
\(952\) 2.20492e11 0.00870014
\(953\) −4.03093e13 −1.58302 −0.791511 0.611155i \(-0.790705\pi\)
−0.791511 + 0.611155i \(0.790705\pi\)
\(954\) 0 0
\(955\) −3.27305e13 −1.27332
\(956\) −3.40176e13 −1.31717
\(957\) 0 0
\(958\) 9.00366e12 0.345362
\(959\) −3.44291e12 −0.131444
\(960\) 0 0
\(961\) −9.14153e12 −0.345751
\(962\) −1.59447e12 −0.0600245
\(963\) 0 0
\(964\) −4.12776e13 −1.53946
\(965\) −3.30330e12 −0.122624
\(966\) 0 0
\(967\) 1.74415e13 0.641451 0.320726 0.947172i \(-0.396073\pi\)
0.320726 + 0.947172i \(0.396073\pi\)
\(968\) −1.15649e13 −0.423352
\(969\) 0 0
\(970\) −1.33665e13 −0.484782
\(971\) 5.09597e13 1.83967 0.919836 0.392303i \(-0.128322\pi\)
0.919836 + 0.392303i \(0.128322\pi\)
\(972\) 0 0
\(973\) −7.47565e12 −0.267388
\(974\) 2.77601e12 0.0988340
\(975\) 0 0
\(976\) −6.85683e12 −0.241880
\(977\) −3.19652e13 −1.12241 −0.561205 0.827677i \(-0.689662\pi\)
−0.561205 + 0.827677i \(0.689662\pi\)
\(978\) 0 0
\(979\) 2.33469e13 0.812283
\(980\) 2.23918e13 0.775483
\(981\) 0 0
\(982\) −1.73425e13 −0.595127
\(983\) 5.12376e13 1.75024 0.875121 0.483904i \(-0.160782\pi\)
0.875121 + 0.483904i \(0.160782\pi\)
\(984\) 0 0
\(985\) −1.70890e13 −0.578434
\(986\) −1.34159e12 −0.0452038
\(987\) 0 0
\(988\) 5.60873e12 0.187266
\(989\) −3.50131e13 −1.16372
\(990\) 0 0
\(991\) −1.90444e13 −0.627243 −0.313622 0.949548i \(-0.601542\pi\)
−0.313622 + 0.949548i \(0.601542\pi\)
\(992\) 2.07609e13 0.680682
\(993\) 0 0
\(994\) 4.50914e11 0.0146506
\(995\) −1.50589e13 −0.487068
\(996\) 0 0
\(997\) 4.27709e13 1.37095 0.685473 0.728098i \(-0.259595\pi\)
0.685473 + 0.728098i \(0.259595\pi\)
\(998\) 1.94471e13 0.620538
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.c.1.2 4
3.2 odd 2 13.10.a.a.1.3 4
12.11 even 2 208.10.a.g.1.2 4
15.14 odd 2 325.10.a.a.1.2 4
39.38 odd 2 169.10.a.a.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.a.1.3 4 3.2 odd 2
117.10.a.c.1.2 4 1.1 even 1 trivial
169.10.a.a.1.2 4 39.38 odd 2
208.10.a.g.1.2 4 12.11 even 2
325.10.a.a.1.2 4 15.14 odd 2