Properties

Label 117.10.a.c.1.1
Level $117$
Weight $10$
Character 117.1
Self dual yes
Analytic conductor $60.259$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,10,Mod(1,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.2591928312\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 1602x^{2} + 1544x + 342272 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 13)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-36.8028\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-28.8028 q^{2} +317.603 q^{4} +258.914 q^{5} -8862.28 q^{7} +5599.18 q^{8} +O(q^{10})\) \(q-28.8028 q^{2} +317.603 q^{4} +258.914 q^{5} -8862.28 q^{7} +5599.18 q^{8} -7457.46 q^{10} -36087.9 q^{11} -28561.0 q^{13} +255259. q^{14} -323885. q^{16} -327405. q^{17} +265525. q^{19} +82231.9 q^{20} +1.03943e6 q^{22} +2.42458e6 q^{23} -1.88609e6 q^{25} +822638. q^{26} -2.81469e6 q^{28} -3.99178e6 q^{29} -6.45220e6 q^{31} +6.46202e6 q^{32} +9.43018e6 q^{34} -2.29457e6 q^{35} -8.15498e6 q^{37} -7.64787e6 q^{38} +1.44971e6 q^{40} +720241. q^{41} -4.13245e7 q^{43} -1.14616e7 q^{44} -6.98348e7 q^{46} -3.67369e7 q^{47} +3.81864e7 q^{49} +5.43247e7 q^{50} -9.07106e6 q^{52} -1.67334e7 q^{53} -9.34367e6 q^{55} -4.96215e7 q^{56} +1.14975e8 q^{58} +5.89865e7 q^{59} +1.28785e8 q^{61} +1.85842e8 q^{62} -2.02955e7 q^{64} -7.39484e6 q^{65} -1.91470e8 q^{67} -1.03985e8 q^{68} +6.60901e7 q^{70} -3.40865e8 q^{71} +3.19890e8 q^{73} +2.34887e8 q^{74} +8.43316e7 q^{76} +3.19821e8 q^{77} +2.44328e8 q^{79} -8.38584e7 q^{80} -2.07450e7 q^{82} +4.38630e8 q^{83} -8.47697e7 q^{85} +1.19026e9 q^{86} -2.02063e8 q^{88} +7.90342e8 q^{89} +2.53116e8 q^{91} +7.70054e8 q^{92} +1.05813e9 q^{94} +6.87481e7 q^{95} -1.65696e8 q^{97} -1.09988e9 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 33 q^{2} + 1429 q^{4} - 471 q^{5} - 11241 q^{7} + 45543 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 33 q^{2} + 1429 q^{4} - 471 q^{5} - 11241 q^{7} + 45543 q^{8} - 67831 q^{10} + 40140 q^{11} - 114244 q^{13} + 277653 q^{14} + 726609 q^{16} - 78717 q^{17} + 209664 q^{19} - 870843 q^{20} + 1364090 q^{22} + 4257444 q^{23} - 2900157 q^{25} - 942513 q^{26} + 4035181 q^{28} + 1647936 q^{29} - 11366002 q^{31} + 29458959 q^{32} + 26257659 q^{34} + 13789797 q^{35} + 4636891 q^{37} - 25172466 q^{38} + 22536791 q^{40} - 13859538 q^{41} - 33368081 q^{43} - 66489222 q^{44} + 71369332 q^{46} + 3943005 q^{47} + 23294923 q^{49} + 4217748 q^{50} - 40813669 q^{52} + 171019326 q^{53} - 121160538 q^{55} + 281552967 q^{56} + 79964734 q^{58} + 63389388 q^{59} + 77050190 q^{61} + 95878740 q^{62} + 768962465 q^{64} + 13452231 q^{65} - 41174072 q^{67} + 717615423 q^{68} + 409056389 q^{70} - 252460989 q^{71} + 594415068 q^{73} + 957058539 q^{74} - 326897170 q^{76} - 561950454 q^{77} + 115998984 q^{79} + 509107233 q^{80} - 875148240 q^{82} + 79577862 q^{83} + 549463469 q^{85} + 589924887 q^{86} - 2327564370 q^{88} + 1152240276 q^{89} + 321054201 q^{91} + 4213481460 q^{92} + 1859909503 q^{94} + 1273705170 q^{95} + 1049098084 q^{97} - 420532254 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −28.8028 −1.27292 −0.636459 0.771311i \(-0.719601\pi\)
−0.636459 + 0.771311i \(0.719601\pi\)
\(3\) 0 0
\(4\) 317.603 0.620318
\(5\) 258.914 0.185264 0.0926319 0.995700i \(-0.470472\pi\)
0.0926319 + 0.995700i \(0.470472\pi\)
\(6\) 0 0
\(7\) −8862.28 −1.39510 −0.697548 0.716538i \(-0.745726\pi\)
−0.697548 + 0.716538i \(0.745726\pi\)
\(8\) 5599.18 0.483303
\(9\) 0 0
\(10\) −7457.46 −0.235825
\(11\) −36087.9 −0.743181 −0.371591 0.928397i \(-0.621188\pi\)
−0.371591 + 0.928397i \(0.621188\pi\)
\(12\) 0 0
\(13\) −28561.0 −0.277350
\(14\) 255259. 1.77584
\(15\) 0 0
\(16\) −323885. −1.23552
\(17\) −327405. −0.950747 −0.475373 0.879784i \(-0.657687\pi\)
−0.475373 + 0.879784i \(0.657687\pi\)
\(18\) 0 0
\(19\) 265525. 0.467428 0.233714 0.972305i \(-0.424912\pi\)
0.233714 + 0.972305i \(0.424912\pi\)
\(20\) 82231.9 0.114923
\(21\) 0 0
\(22\) 1.03943e6 0.946008
\(23\) 2.42458e6 1.80660 0.903299 0.429012i \(-0.141138\pi\)
0.903299 + 0.429012i \(0.141138\pi\)
\(24\) 0 0
\(25\) −1.88609e6 −0.965677
\(26\) 822638. 0.353044
\(27\) 0 0
\(28\) −2.81469e6 −0.865404
\(29\) −3.99178e6 −1.04803 −0.524017 0.851708i \(-0.675567\pi\)
−0.524017 + 0.851708i \(0.675567\pi\)
\(30\) 0 0
\(31\) −6.45220e6 −1.25482 −0.627408 0.778691i \(-0.715884\pi\)
−0.627408 + 0.778691i \(0.715884\pi\)
\(32\) 6.46202e6 1.08942
\(33\) 0 0
\(34\) 9.43018e6 1.21022
\(35\) −2.29457e6 −0.258461
\(36\) 0 0
\(37\) −8.15498e6 −0.715344 −0.357672 0.933847i \(-0.616429\pi\)
−0.357672 + 0.933847i \(0.616429\pi\)
\(38\) −7.64787e6 −0.594997
\(39\) 0 0
\(40\) 1.44971e6 0.0895386
\(41\) 720241. 0.0398062 0.0199031 0.999802i \(-0.493664\pi\)
0.0199031 + 0.999802i \(0.493664\pi\)
\(42\) 0 0
\(43\) −4.13245e7 −1.84332 −0.921658 0.388004i \(-0.873165\pi\)
−0.921658 + 0.388004i \(0.873165\pi\)
\(44\) −1.14616e7 −0.461009
\(45\) 0 0
\(46\) −6.98348e7 −2.29965
\(47\) −3.67369e7 −1.09815 −0.549076 0.835772i \(-0.685020\pi\)
−0.549076 + 0.835772i \(0.685020\pi\)
\(48\) 0 0
\(49\) 3.81864e7 0.946295
\(50\) 5.43247e7 1.22923
\(51\) 0 0
\(52\) −9.07106e6 −0.172045
\(53\) −1.67334e7 −0.291302 −0.145651 0.989336i \(-0.546528\pi\)
−0.145651 + 0.989336i \(0.546528\pi\)
\(54\) 0 0
\(55\) −9.34367e6 −0.137685
\(56\) −4.96215e7 −0.674255
\(57\) 0 0
\(58\) 1.14975e8 1.33406
\(59\) 5.89865e7 0.633751 0.316875 0.948467i \(-0.397366\pi\)
0.316875 + 0.948467i \(0.397366\pi\)
\(60\) 0 0
\(61\) 1.28785e8 1.19091 0.595456 0.803388i \(-0.296971\pi\)
0.595456 + 0.803388i \(0.296971\pi\)
\(62\) 1.85842e8 1.59728
\(63\) 0 0
\(64\) −2.02955e7 −0.151213
\(65\) −7.39484e6 −0.0513829
\(66\) 0 0
\(67\) −1.91470e8 −1.16082 −0.580410 0.814324i \(-0.697108\pi\)
−0.580410 + 0.814324i \(0.697108\pi\)
\(68\) −1.03985e8 −0.589766
\(69\) 0 0
\(70\) 6.60901e7 0.328999
\(71\) −3.40865e8 −1.59192 −0.795958 0.605351i \(-0.793033\pi\)
−0.795958 + 0.605351i \(0.793033\pi\)
\(72\) 0 0
\(73\) 3.19890e8 1.31840 0.659200 0.751968i \(-0.270895\pi\)
0.659200 + 0.751968i \(0.270895\pi\)
\(74\) 2.34887e8 0.910574
\(75\) 0 0
\(76\) 8.43316e7 0.289954
\(77\) 3.19821e8 1.03681
\(78\) 0 0
\(79\) 2.44328e8 0.705751 0.352876 0.935670i \(-0.385204\pi\)
0.352876 + 0.935670i \(0.385204\pi\)
\(80\) −8.38584e7 −0.228898
\(81\) 0 0
\(82\) −2.07450e7 −0.0506700
\(83\) 4.38630e8 1.01449 0.507244 0.861802i \(-0.330664\pi\)
0.507244 + 0.861802i \(0.330664\pi\)
\(84\) 0 0
\(85\) −8.47697e7 −0.176139
\(86\) 1.19026e9 2.34639
\(87\) 0 0
\(88\) −2.02063e8 −0.359182
\(89\) 7.90342e8 1.33524 0.667621 0.744501i \(-0.267312\pi\)
0.667621 + 0.744501i \(0.267312\pi\)
\(90\) 0 0
\(91\) 2.53116e8 0.386930
\(92\) 7.70054e8 1.12067
\(93\) 0 0
\(94\) 1.05813e9 1.39786
\(95\) 6.87481e7 0.0865974
\(96\) 0 0
\(97\) −1.65696e8 −0.190037 −0.0950185 0.995476i \(-0.530291\pi\)
−0.0950185 + 0.995476i \(0.530291\pi\)
\(98\) −1.09988e9 −1.20456
\(99\) 0 0
\(100\) −5.99027e8 −0.599027
\(101\) 7.41636e8 0.709161 0.354580 0.935026i \(-0.384624\pi\)
0.354580 + 0.935026i \(0.384624\pi\)
\(102\) 0 0
\(103\) 1.42175e9 1.24467 0.622336 0.782750i \(-0.286184\pi\)
0.622336 + 0.782750i \(0.286184\pi\)
\(104\) −1.59918e8 −0.134044
\(105\) 0 0
\(106\) 4.81970e8 0.370803
\(107\) 1.44196e9 1.06347 0.531736 0.846910i \(-0.321540\pi\)
0.531736 + 0.846910i \(0.321540\pi\)
\(108\) 0 0
\(109\) −8.42758e7 −0.0571852 −0.0285926 0.999591i \(-0.509103\pi\)
−0.0285926 + 0.999591i \(0.509103\pi\)
\(110\) 2.69124e8 0.175261
\(111\) 0 0
\(112\) 2.87036e9 1.72367
\(113\) −8.60241e8 −0.496326 −0.248163 0.968718i \(-0.579827\pi\)
−0.248163 + 0.968718i \(0.579827\pi\)
\(114\) 0 0
\(115\) 6.27758e8 0.334697
\(116\) −1.26780e9 −0.650115
\(117\) 0 0
\(118\) −1.69898e9 −0.806712
\(119\) 2.90155e9 1.32638
\(120\) 0 0
\(121\) −1.05561e9 −0.447681
\(122\) −3.70936e9 −1.51593
\(123\) 0 0
\(124\) −2.04924e9 −0.778386
\(125\) −9.94026e8 −0.364169
\(126\) 0 0
\(127\) −1.44120e9 −0.491596 −0.245798 0.969321i \(-0.579050\pi\)
−0.245798 + 0.969321i \(0.579050\pi\)
\(128\) −2.72399e9 −0.896934
\(129\) 0 0
\(130\) 2.12992e8 0.0654062
\(131\) 4.54928e9 1.34965 0.674827 0.737976i \(-0.264218\pi\)
0.674827 + 0.737976i \(0.264218\pi\)
\(132\) 0 0
\(133\) −2.35316e9 −0.652107
\(134\) 5.51489e9 1.47763
\(135\) 0 0
\(136\) −1.83320e9 −0.459499
\(137\) 1.99742e9 0.484426 0.242213 0.970223i \(-0.422127\pi\)
0.242213 + 0.970223i \(0.422127\pi\)
\(138\) 0 0
\(139\) 3.55325e8 0.0807345 0.0403672 0.999185i \(-0.487147\pi\)
0.0403672 + 0.999185i \(0.487147\pi\)
\(140\) −7.28762e8 −0.160328
\(141\) 0 0
\(142\) 9.81789e9 2.02638
\(143\) 1.03071e9 0.206121
\(144\) 0 0
\(145\) −1.03353e9 −0.194163
\(146\) −9.21372e9 −1.67821
\(147\) 0 0
\(148\) −2.59005e9 −0.443741
\(149\) −5.92546e9 −0.984881 −0.492440 0.870346i \(-0.663895\pi\)
−0.492440 + 0.870346i \(0.663895\pi\)
\(150\) 0 0
\(151\) −1.07568e10 −1.68378 −0.841891 0.539647i \(-0.818558\pi\)
−0.841891 + 0.539647i \(0.818558\pi\)
\(152\) 1.48672e9 0.225909
\(153\) 0 0
\(154\) −9.21176e9 −1.31977
\(155\) −1.67056e9 −0.232472
\(156\) 0 0
\(157\) 8.87634e9 1.16597 0.582983 0.812485i \(-0.301886\pi\)
0.582983 + 0.812485i \(0.301886\pi\)
\(158\) −7.03734e9 −0.898363
\(159\) 0 0
\(160\) 1.67311e9 0.201829
\(161\) −2.14873e10 −2.52038
\(162\) 0 0
\(163\) 2.75052e9 0.305190 0.152595 0.988289i \(-0.451237\pi\)
0.152595 + 0.988289i \(0.451237\pi\)
\(164\) 2.28751e8 0.0246925
\(165\) 0 0
\(166\) −1.26338e10 −1.29136
\(167\) 9.17849e9 0.913160 0.456580 0.889682i \(-0.349074\pi\)
0.456580 + 0.889682i \(0.349074\pi\)
\(168\) 0 0
\(169\) 8.15731e8 0.0769231
\(170\) 2.44161e9 0.224210
\(171\) 0 0
\(172\) −1.31248e10 −1.14344
\(173\) −9.75049e8 −0.0827598 −0.0413799 0.999143i \(-0.513175\pi\)
−0.0413799 + 0.999143i \(0.513175\pi\)
\(174\) 0 0
\(175\) 1.67150e10 1.34721
\(176\) 1.16883e10 0.918218
\(177\) 0 0
\(178\) −2.27641e10 −1.69965
\(179\) 8.88356e9 0.646768 0.323384 0.946268i \(-0.395180\pi\)
0.323384 + 0.946268i \(0.395180\pi\)
\(180\) 0 0
\(181\) −5.22791e9 −0.362055 −0.181028 0.983478i \(-0.557942\pi\)
−0.181028 + 0.983478i \(0.557942\pi\)
\(182\) −7.29045e9 −0.492530
\(183\) 0 0
\(184\) 1.35757e10 0.873134
\(185\) −2.11144e9 −0.132527
\(186\) 0 0
\(187\) 1.18154e10 0.706577
\(188\) −1.16678e10 −0.681204
\(189\) 0 0
\(190\) −1.98014e9 −0.110231
\(191\) −9.23471e9 −0.502080 −0.251040 0.967977i \(-0.580773\pi\)
−0.251040 + 0.967977i \(0.580773\pi\)
\(192\) 0 0
\(193\) 1.07065e10 0.555441 0.277720 0.960662i \(-0.410421\pi\)
0.277720 + 0.960662i \(0.410421\pi\)
\(194\) 4.77250e9 0.241901
\(195\) 0 0
\(196\) 1.21281e10 0.587004
\(197\) 2.77001e10 1.31034 0.655169 0.755482i \(-0.272597\pi\)
0.655169 + 0.755482i \(0.272597\pi\)
\(198\) 0 0
\(199\) 3.32299e10 1.50207 0.751035 0.660262i \(-0.229555\pi\)
0.751035 + 0.660262i \(0.229555\pi\)
\(200\) −1.05606e10 −0.466715
\(201\) 0 0
\(202\) −2.13612e10 −0.902703
\(203\) 3.53763e10 1.46211
\(204\) 0 0
\(205\) 1.86481e8 0.00737465
\(206\) −4.09503e10 −1.58436
\(207\) 0 0
\(208\) 9.25048e9 0.342673
\(209\) −9.58225e9 −0.347383
\(210\) 0 0
\(211\) −1.49261e10 −0.518411 −0.259205 0.965822i \(-0.583461\pi\)
−0.259205 + 0.965822i \(0.583461\pi\)
\(212\) −5.31458e9 −0.180700
\(213\) 0 0
\(214\) −4.15325e10 −1.35371
\(215\) −1.06995e10 −0.341500
\(216\) 0 0
\(217\) 5.71812e10 1.75059
\(218\) 2.42738e9 0.0727920
\(219\) 0 0
\(220\) −2.96758e9 −0.0854083
\(221\) 9.35101e9 0.263690
\(222\) 0 0
\(223\) 2.23373e10 0.604865 0.302433 0.953171i \(-0.402201\pi\)
0.302433 + 0.953171i \(0.402201\pi\)
\(224\) −5.72683e10 −1.51984
\(225\) 0 0
\(226\) 2.47774e10 0.631782
\(227\) −5.20726e9 −0.130165 −0.0650824 0.997880i \(-0.520731\pi\)
−0.0650824 + 0.997880i \(0.520731\pi\)
\(228\) 0 0
\(229\) 1.35573e10 0.325773 0.162887 0.986645i \(-0.447920\pi\)
0.162887 + 0.986645i \(0.447920\pi\)
\(230\) −1.80812e10 −0.426042
\(231\) 0 0
\(232\) −2.23507e10 −0.506518
\(233\) −2.06224e8 −0.00458393 −0.00229196 0.999997i \(-0.500730\pi\)
−0.00229196 + 0.999997i \(0.500730\pi\)
\(234\) 0 0
\(235\) −9.51170e9 −0.203448
\(236\) 1.87343e10 0.393127
\(237\) 0 0
\(238\) −8.35729e10 −1.68838
\(239\) −1.89887e10 −0.376448 −0.188224 0.982126i \(-0.560273\pi\)
−0.188224 + 0.982126i \(0.560273\pi\)
\(240\) 0 0
\(241\) −6.11533e10 −1.16773 −0.583866 0.811850i \(-0.698461\pi\)
−0.583866 + 0.811850i \(0.698461\pi\)
\(242\) 3.04045e10 0.569861
\(243\) 0 0
\(244\) 4.09024e10 0.738745
\(245\) 9.88700e9 0.175314
\(246\) 0 0
\(247\) −7.58366e9 −0.129641
\(248\) −3.61270e10 −0.606457
\(249\) 0 0
\(250\) 2.86308e10 0.463557
\(251\) 3.20685e9 0.0509973 0.0254986 0.999675i \(-0.491883\pi\)
0.0254986 + 0.999675i \(0.491883\pi\)
\(252\) 0 0
\(253\) −8.74981e10 −1.34263
\(254\) 4.15107e10 0.625761
\(255\) 0 0
\(256\) 8.88499e10 1.29294
\(257\) 2.80963e10 0.401744 0.200872 0.979617i \(-0.435622\pi\)
0.200872 + 0.979617i \(0.435622\pi\)
\(258\) 0 0
\(259\) 7.22717e10 0.997975
\(260\) −2.34862e9 −0.0318738
\(261\) 0 0
\(262\) −1.31032e11 −1.71800
\(263\) 1.25524e11 1.61780 0.808902 0.587944i \(-0.200062\pi\)
0.808902 + 0.587944i \(0.200062\pi\)
\(264\) 0 0
\(265\) −4.33252e9 −0.0539677
\(266\) 6.77776e10 0.830078
\(267\) 0 0
\(268\) −6.08116e10 −0.720078
\(269\) 1.78558e10 0.207918 0.103959 0.994582i \(-0.466849\pi\)
0.103959 + 0.994582i \(0.466849\pi\)
\(270\) 0 0
\(271\) 1.25204e11 1.41013 0.705063 0.709144i \(-0.250919\pi\)
0.705063 + 0.709144i \(0.250919\pi\)
\(272\) 1.06041e11 1.17467
\(273\) 0 0
\(274\) −5.75314e10 −0.616634
\(275\) 6.80650e10 0.717673
\(276\) 0 0
\(277\) −5.55594e10 −0.567020 −0.283510 0.958969i \(-0.591499\pi\)
−0.283510 + 0.958969i \(0.591499\pi\)
\(278\) −1.02344e10 −0.102768
\(279\) 0 0
\(280\) −1.28477e10 −0.124915
\(281\) −1.01237e11 −0.968635 −0.484317 0.874892i \(-0.660932\pi\)
−0.484317 + 0.874892i \(0.660932\pi\)
\(282\) 0 0
\(283\) −1.08041e11 −1.00127 −0.500635 0.865658i \(-0.666900\pi\)
−0.500635 + 0.865658i \(0.666900\pi\)
\(284\) −1.08260e11 −0.987495
\(285\) 0 0
\(286\) −2.96873e10 −0.262376
\(287\) −6.38298e9 −0.0555335
\(288\) 0 0
\(289\) −1.13940e10 −0.0960810
\(290\) 2.97685e10 0.247153
\(291\) 0 0
\(292\) 1.01598e11 0.817828
\(293\) −3.53224e9 −0.0279992 −0.0139996 0.999902i \(-0.504456\pi\)
−0.0139996 + 0.999902i \(0.504456\pi\)
\(294\) 0 0
\(295\) 1.52724e10 0.117411
\(296\) −4.56612e10 −0.345728
\(297\) 0 0
\(298\) 1.70670e11 1.25367
\(299\) −6.92485e10 −0.501060
\(300\) 0 0
\(301\) 3.66229e11 2.57160
\(302\) 3.09826e11 2.14332
\(303\) 0 0
\(304\) −8.59996e10 −0.577518
\(305\) 3.33441e10 0.220633
\(306\) 0 0
\(307\) −1.82031e11 −1.16956 −0.584781 0.811191i \(-0.698820\pi\)
−0.584781 + 0.811191i \(0.698820\pi\)
\(308\) 1.01576e11 0.643152
\(309\) 0 0
\(310\) 4.81170e10 0.295918
\(311\) 1.51907e11 0.920781 0.460390 0.887717i \(-0.347709\pi\)
0.460390 + 0.887717i \(0.347709\pi\)
\(312\) 0 0
\(313\) 6.10194e10 0.359351 0.179675 0.983726i \(-0.442495\pi\)
0.179675 + 0.983726i \(0.442495\pi\)
\(314\) −2.55664e11 −1.48418
\(315\) 0 0
\(316\) 7.75994e10 0.437790
\(317\) −6.89227e10 −0.383350 −0.191675 0.981458i \(-0.561392\pi\)
−0.191675 + 0.981458i \(0.561392\pi\)
\(318\) 0 0
\(319\) 1.44055e11 0.778880
\(320\) −5.25478e9 −0.0280143
\(321\) 0 0
\(322\) 6.18896e11 3.20823
\(323\) −8.69341e10 −0.444405
\(324\) 0 0
\(325\) 5.38686e10 0.267831
\(326\) −7.92227e10 −0.388481
\(327\) 0 0
\(328\) 4.03276e9 0.0192385
\(329\) 3.25573e11 1.53203
\(330\) 0 0
\(331\) 4.70422e10 0.215408 0.107704 0.994183i \(-0.465650\pi\)
0.107704 + 0.994183i \(0.465650\pi\)
\(332\) 1.39310e11 0.629306
\(333\) 0 0
\(334\) −2.64366e11 −1.16238
\(335\) −4.95744e10 −0.215058
\(336\) 0 0
\(337\) −3.76711e11 −1.59101 −0.795507 0.605944i \(-0.792795\pi\)
−0.795507 + 0.605944i \(0.792795\pi\)
\(338\) −2.34954e10 −0.0979167
\(339\) 0 0
\(340\) −2.69231e10 −0.109262
\(341\) 2.32846e11 0.932556
\(342\) 0 0
\(343\) 1.92062e10 0.0749235
\(344\) −2.31383e11 −0.890880
\(345\) 0 0
\(346\) 2.80842e10 0.105346
\(347\) −1.68331e11 −0.623278 −0.311639 0.950201i \(-0.600878\pi\)
−0.311639 + 0.950201i \(0.600878\pi\)
\(348\) 0 0
\(349\) −9.36126e10 −0.337769 −0.168884 0.985636i \(-0.554016\pi\)
−0.168884 + 0.985636i \(0.554016\pi\)
\(350\) −4.81441e11 −1.71489
\(351\) 0 0
\(352\) −2.33201e11 −0.809634
\(353\) 3.49043e11 1.19644 0.598222 0.801330i \(-0.295874\pi\)
0.598222 + 0.801330i \(0.295874\pi\)
\(354\) 0 0
\(355\) −8.82548e10 −0.294924
\(356\) 2.51015e11 0.828276
\(357\) 0 0
\(358\) −2.55872e11 −0.823282
\(359\) −5.83173e11 −1.85299 −0.926493 0.376312i \(-0.877192\pi\)
−0.926493 + 0.376312i \(0.877192\pi\)
\(360\) 0 0
\(361\) −2.52184e11 −0.781512
\(362\) 1.50579e11 0.460866
\(363\) 0 0
\(364\) 8.03903e10 0.240020
\(365\) 8.28239e10 0.244252
\(366\) 0 0
\(367\) 5.28604e11 1.52101 0.760507 0.649329i \(-0.224950\pi\)
0.760507 + 0.649329i \(0.224950\pi\)
\(368\) −7.85286e11 −2.23209
\(369\) 0 0
\(370\) 6.08154e10 0.168696
\(371\) 1.48296e11 0.406394
\(372\) 0 0
\(373\) −4.19405e11 −1.12187 −0.560937 0.827858i \(-0.689559\pi\)
−0.560937 + 0.827858i \(0.689559\pi\)
\(374\) −3.40316e11 −0.899414
\(375\) 0 0
\(376\) −2.05697e11 −0.530740
\(377\) 1.14009e11 0.290672
\(378\) 0 0
\(379\) 4.24128e11 1.05590 0.527948 0.849277i \(-0.322962\pi\)
0.527948 + 0.849277i \(0.322962\pi\)
\(380\) 2.18346e10 0.0537180
\(381\) 0 0
\(382\) 2.65986e11 0.639107
\(383\) −6.52696e10 −0.154995 −0.0774973 0.996993i \(-0.524693\pi\)
−0.0774973 + 0.996993i \(0.524693\pi\)
\(384\) 0 0
\(385\) 8.28062e10 0.192083
\(386\) −3.08376e11 −0.707030
\(387\) 0 0
\(388\) −5.26254e10 −0.117883
\(389\) 5.91803e11 1.31040 0.655200 0.755455i \(-0.272584\pi\)
0.655200 + 0.755455i \(0.272584\pi\)
\(390\) 0 0
\(391\) −7.93819e11 −1.71762
\(392\) 2.13813e11 0.457347
\(393\) 0 0
\(394\) −7.97842e11 −1.66795
\(395\) 6.32600e10 0.130750
\(396\) 0 0
\(397\) −3.05131e11 −0.616495 −0.308248 0.951306i \(-0.599743\pi\)
−0.308248 + 0.951306i \(0.599743\pi\)
\(398\) −9.57115e11 −1.91201
\(399\) 0 0
\(400\) 6.10876e11 1.19312
\(401\) −2.56722e11 −0.495808 −0.247904 0.968785i \(-0.579742\pi\)
−0.247904 + 0.968785i \(0.579742\pi\)
\(402\) 0 0
\(403\) 1.84281e11 0.348023
\(404\) 2.35546e11 0.439906
\(405\) 0 0
\(406\) −1.01894e12 −1.86114
\(407\) 2.94296e11 0.531631
\(408\) 0 0
\(409\) −4.57003e11 −0.807540 −0.403770 0.914860i \(-0.632300\pi\)
−0.403770 + 0.914860i \(0.632300\pi\)
\(410\) −5.37117e9 −0.00938732
\(411\) 0 0
\(412\) 4.51551e11 0.772093
\(413\) −5.22755e11 −0.884144
\(414\) 0 0
\(415\) 1.13567e11 0.187948
\(416\) −1.84562e11 −0.302150
\(417\) 0 0
\(418\) 2.75996e11 0.442190
\(419\) 1.65068e11 0.261637 0.130818 0.991406i \(-0.458240\pi\)
0.130818 + 0.991406i \(0.458240\pi\)
\(420\) 0 0
\(421\) −9.10255e10 −0.141219 −0.0706096 0.997504i \(-0.522494\pi\)
−0.0706096 + 0.997504i \(0.522494\pi\)
\(422\) 4.29913e11 0.659894
\(423\) 0 0
\(424\) −9.36935e10 −0.140787
\(425\) 6.17514e11 0.918114
\(426\) 0 0
\(427\) −1.14133e12 −1.66144
\(428\) 4.57971e11 0.659691
\(429\) 0 0
\(430\) 3.08176e11 0.434701
\(431\) −7.94605e11 −1.10918 −0.554592 0.832122i \(-0.687126\pi\)
−0.554592 + 0.832122i \(0.687126\pi\)
\(432\) 0 0
\(433\) −8.26325e11 −1.12968 −0.564840 0.825200i \(-0.691062\pi\)
−0.564840 + 0.825200i \(0.691062\pi\)
\(434\) −1.64698e12 −2.22836
\(435\) 0 0
\(436\) −2.67662e10 −0.0354730
\(437\) 6.43787e11 0.844453
\(438\) 0 0
\(439\) 1.21562e12 1.56210 0.781050 0.624469i \(-0.214684\pi\)
0.781050 + 0.624469i \(0.214684\pi\)
\(440\) −5.23169e10 −0.0665434
\(441\) 0 0
\(442\) −2.69335e11 −0.335655
\(443\) 8.73136e11 1.07712 0.538561 0.842586i \(-0.318968\pi\)
0.538561 + 0.842586i \(0.318968\pi\)
\(444\) 0 0
\(445\) 2.04631e11 0.247372
\(446\) −6.43377e11 −0.769943
\(447\) 0 0
\(448\) 1.79864e11 0.210957
\(449\) −1.22107e12 −1.41785 −0.708927 0.705282i \(-0.750821\pi\)
−0.708927 + 0.705282i \(0.750821\pi\)
\(450\) 0 0
\(451\) −2.59920e10 −0.0295832
\(452\) −2.73215e11 −0.307880
\(453\) 0 0
\(454\) 1.49984e11 0.165689
\(455\) 6.55352e10 0.0716842
\(456\) 0 0
\(457\) 6.32643e11 0.678478 0.339239 0.940700i \(-0.389830\pi\)
0.339239 + 0.940700i \(0.389830\pi\)
\(458\) −3.90490e11 −0.414682
\(459\) 0 0
\(460\) 1.99378e11 0.207619
\(461\) −8.09117e11 −0.834367 −0.417184 0.908822i \(-0.636983\pi\)
−0.417184 + 0.908822i \(0.636983\pi\)
\(462\) 0 0
\(463\) 7.69685e11 0.778393 0.389196 0.921155i \(-0.372753\pi\)
0.389196 + 0.921155i \(0.372753\pi\)
\(464\) 1.29288e12 1.29487
\(465\) 0 0
\(466\) 5.93984e9 0.00583496
\(467\) −1.59708e12 −1.55382 −0.776909 0.629613i \(-0.783213\pi\)
−0.776909 + 0.629613i \(0.783213\pi\)
\(468\) 0 0
\(469\) 1.69686e12 1.61946
\(470\) 2.73964e11 0.258972
\(471\) 0 0
\(472\) 3.30276e11 0.306294
\(473\) 1.49132e12 1.36992
\(474\) 0 0
\(475\) −5.00804e11 −0.451384
\(476\) 9.21542e11 0.822780
\(477\) 0 0
\(478\) 5.46929e11 0.479187
\(479\) −1.61308e12 −1.40006 −0.700028 0.714115i \(-0.746829\pi\)
−0.700028 + 0.714115i \(0.746829\pi\)
\(480\) 0 0
\(481\) 2.32914e11 0.198401
\(482\) 1.76139e12 1.48643
\(483\) 0 0
\(484\) −3.35265e11 −0.277705
\(485\) −4.29009e10 −0.0352070
\(486\) 0 0
\(487\) 9.29058e11 0.748449 0.374225 0.927338i \(-0.377909\pi\)
0.374225 + 0.927338i \(0.377909\pi\)
\(488\) 7.21089e11 0.575572
\(489\) 0 0
\(490\) −2.84774e11 −0.223160
\(491\) 2.30662e12 1.79106 0.895528 0.445005i \(-0.146798\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(492\) 0 0
\(493\) 1.30693e12 0.996415
\(494\) 2.18431e11 0.165022
\(495\) 0 0
\(496\) 2.08977e12 1.55036
\(497\) 3.02084e12 2.22088
\(498\) 0 0
\(499\) −1.31410e11 −0.0948800 −0.0474400 0.998874i \(-0.515106\pi\)
−0.0474400 + 0.998874i \(0.515106\pi\)
\(500\) −3.15706e11 −0.225901
\(501\) 0 0
\(502\) −9.23664e10 −0.0649153
\(503\) 1.88419e12 1.31241 0.656203 0.754584i \(-0.272162\pi\)
0.656203 + 0.754584i \(0.272162\pi\)
\(504\) 0 0
\(505\) 1.92020e11 0.131382
\(506\) 2.52019e12 1.70906
\(507\) 0 0
\(508\) −4.57730e11 −0.304946
\(509\) 1.00390e11 0.0662919 0.0331459 0.999451i \(-0.489447\pi\)
0.0331459 + 0.999451i \(0.489447\pi\)
\(510\) 0 0
\(511\) −2.83495e12 −1.83930
\(512\) −1.16445e12 −0.748866
\(513\) 0 0
\(514\) −8.09252e11 −0.511387
\(515\) 3.68110e11 0.230593
\(516\) 0 0
\(517\) 1.32576e12 0.816126
\(518\) −2.08163e12 −1.27034
\(519\) 0 0
\(520\) −4.14051e10 −0.0248335
\(521\) 1.04516e11 0.0621462 0.0310731 0.999517i \(-0.490108\pi\)
0.0310731 + 0.999517i \(0.490108\pi\)
\(522\) 0 0
\(523\) 1.17694e12 0.687855 0.343927 0.938996i \(-0.388243\pi\)
0.343927 + 0.938996i \(0.388243\pi\)
\(524\) 1.44487e12 0.837215
\(525\) 0 0
\(526\) −3.61544e12 −2.05933
\(527\) 2.11248e12 1.19301
\(528\) 0 0
\(529\) 4.07744e12 2.26379
\(530\) 1.24789e11 0.0686964
\(531\) 0 0
\(532\) −7.47370e11 −0.404514
\(533\) −2.05708e10 −0.0110403
\(534\) 0 0
\(535\) 3.73343e11 0.197023
\(536\) −1.07208e12 −0.561028
\(537\) 0 0
\(538\) −5.14296e11 −0.264663
\(539\) −1.37807e12 −0.703269
\(540\) 0 0
\(541\) −2.98502e12 −1.49817 −0.749083 0.662476i \(-0.769506\pi\)
−0.749083 + 0.662476i \(0.769506\pi\)
\(542\) −3.60624e12 −1.79497
\(543\) 0 0
\(544\) −2.11570e12 −1.03576
\(545\) −2.18202e10 −0.0105943
\(546\) 0 0
\(547\) 3.78628e12 1.80830 0.904148 0.427219i \(-0.140507\pi\)
0.904148 + 0.427219i \(0.140507\pi\)
\(548\) 6.34387e11 0.300498
\(549\) 0 0
\(550\) −1.96047e12 −0.913539
\(551\) −1.05992e12 −0.489880
\(552\) 0 0
\(553\) −2.16530e12 −0.984591
\(554\) 1.60027e12 0.721770
\(555\) 0 0
\(556\) 1.12852e11 0.0500811
\(557\) −1.00551e12 −0.442627 −0.221313 0.975203i \(-0.571034\pi\)
−0.221313 + 0.975203i \(0.571034\pi\)
\(558\) 0 0
\(559\) 1.18027e12 0.511244
\(560\) 7.43177e11 0.319335
\(561\) 0 0
\(562\) 2.91591e12 1.23299
\(563\) −2.76515e11 −0.115993 −0.0579964 0.998317i \(-0.518471\pi\)
−0.0579964 + 0.998317i \(0.518471\pi\)
\(564\) 0 0
\(565\) −2.22728e11 −0.0919512
\(566\) 3.11190e12 1.27453
\(567\) 0 0
\(568\) −1.90857e12 −0.769378
\(569\) −8.39220e11 −0.335638 −0.167819 0.985818i \(-0.553672\pi\)
−0.167819 + 0.985818i \(0.553672\pi\)
\(570\) 0 0
\(571\) −1.02285e11 −0.0402672 −0.0201336 0.999797i \(-0.506409\pi\)
−0.0201336 + 0.999797i \(0.506409\pi\)
\(572\) 3.27356e11 0.127861
\(573\) 0 0
\(574\) 1.83848e11 0.0706896
\(575\) −4.57297e12 −1.74459
\(576\) 0 0
\(577\) −1.44021e12 −0.540921 −0.270461 0.962731i \(-0.587176\pi\)
−0.270461 + 0.962731i \(0.587176\pi\)
\(578\) 3.28181e11 0.122303
\(579\) 0 0
\(580\) −3.28251e11 −0.120443
\(581\) −3.88726e12 −1.41531
\(582\) 0 0
\(583\) 6.03874e11 0.216490
\(584\) 1.79112e12 0.637187
\(585\) 0 0
\(586\) 1.01738e11 0.0356407
\(587\) 2.13185e11 0.0741116 0.0370558 0.999313i \(-0.488202\pi\)
0.0370558 + 0.999313i \(0.488202\pi\)
\(588\) 0 0
\(589\) −1.71322e12 −0.586536
\(590\) −4.39889e11 −0.149455
\(591\) 0 0
\(592\) 2.64128e12 0.883825
\(593\) 1.76049e12 0.584640 0.292320 0.956321i \(-0.405573\pi\)
0.292320 + 0.956321i \(0.405573\pi\)
\(594\) 0 0
\(595\) 7.51253e11 0.245731
\(596\) −1.88194e12 −0.610940
\(597\) 0 0
\(598\) 1.99455e12 0.637808
\(599\) 2.06753e12 0.656191 0.328096 0.944644i \(-0.393593\pi\)
0.328096 + 0.944644i \(0.393593\pi\)
\(600\) 0 0
\(601\) −1.24403e12 −0.388951 −0.194476 0.980907i \(-0.562301\pi\)
−0.194476 + 0.980907i \(0.562301\pi\)
\(602\) −1.05484e13 −3.27344
\(603\) 0 0
\(604\) −3.41639e12 −1.04448
\(605\) −2.73312e11 −0.0829391
\(606\) 0 0
\(607\) −1.31511e12 −0.393200 −0.196600 0.980484i \(-0.562990\pi\)
−0.196600 + 0.980484i \(0.562990\pi\)
\(608\) 1.71583e12 0.509223
\(609\) 0 0
\(610\) −9.60406e11 −0.280847
\(611\) 1.04924e12 0.304573
\(612\) 0 0
\(613\) −3.08252e12 −0.881726 −0.440863 0.897574i \(-0.645328\pi\)
−0.440863 + 0.897574i \(0.645328\pi\)
\(614\) 5.24301e12 1.48876
\(615\) 0 0
\(616\) 1.79074e12 0.501094
\(617\) 2.29075e10 0.00636348 0.00318174 0.999995i \(-0.498987\pi\)
0.00318174 + 0.999995i \(0.498987\pi\)
\(618\) 0 0
\(619\) −4.45350e12 −1.21925 −0.609626 0.792689i \(-0.708680\pi\)
−0.609626 + 0.792689i \(0.708680\pi\)
\(620\) −5.30576e11 −0.144207
\(621\) 0 0
\(622\) −4.37535e12 −1.17208
\(623\) −7.00424e12 −1.86279
\(624\) 0 0
\(625\) 3.42640e12 0.898210
\(626\) −1.75753e12 −0.457423
\(627\) 0 0
\(628\) 2.81915e12 0.723270
\(629\) 2.66998e12 0.680111
\(630\) 0 0
\(631\) 3.83831e12 0.963847 0.481923 0.876213i \(-0.339938\pi\)
0.481923 + 0.876213i \(0.339938\pi\)
\(632\) 1.36804e12 0.341092
\(633\) 0 0
\(634\) 1.98517e12 0.487973
\(635\) −3.73148e11 −0.0910749
\(636\) 0 0
\(637\) −1.09064e12 −0.262455
\(638\) −4.14919e12 −0.991449
\(639\) 0 0
\(640\) −7.05279e11 −0.166169
\(641\) −9.09238e11 −0.212724 −0.106362 0.994327i \(-0.533920\pi\)
−0.106362 + 0.994327i \(0.533920\pi\)
\(642\) 0 0
\(643\) 8.23839e12 1.90061 0.950305 0.311321i \(-0.100771\pi\)
0.950305 + 0.311321i \(0.100771\pi\)
\(644\) −6.82444e12 −1.56344
\(645\) 0 0
\(646\) 2.50395e12 0.565691
\(647\) 8.73559e12 1.95985 0.979925 0.199365i \(-0.0638880\pi\)
0.979925 + 0.199365i \(0.0638880\pi\)
\(648\) 0 0
\(649\) −2.12870e12 −0.470992
\(650\) −1.55157e12 −0.340926
\(651\) 0 0
\(652\) 8.73573e11 0.189315
\(653\) 6.13232e11 0.131982 0.0659911 0.997820i \(-0.478979\pi\)
0.0659911 + 0.997820i \(0.478979\pi\)
\(654\) 0 0
\(655\) 1.17787e12 0.250042
\(656\) −2.33275e11 −0.0491815
\(657\) 0 0
\(658\) −9.37742e12 −1.95015
\(659\) 8.83233e12 1.82428 0.912139 0.409882i \(-0.134430\pi\)
0.912139 + 0.409882i \(0.134430\pi\)
\(660\) 0 0
\(661\) −5.61801e12 −1.14466 −0.572329 0.820024i \(-0.693960\pi\)
−0.572329 + 0.820024i \(0.693960\pi\)
\(662\) −1.35495e12 −0.274196
\(663\) 0 0
\(664\) 2.45597e12 0.490306
\(665\) −6.09265e11 −0.120812
\(666\) 0 0
\(667\) −9.67839e12 −1.89338
\(668\) 2.91511e12 0.566450
\(669\) 0 0
\(670\) 1.42788e12 0.273751
\(671\) −4.64757e12 −0.885064
\(672\) 0 0
\(673\) 4.50151e12 0.845844 0.422922 0.906166i \(-0.361004\pi\)
0.422922 + 0.906166i \(0.361004\pi\)
\(674\) 1.08503e13 2.02523
\(675\) 0 0
\(676\) 2.59079e11 0.0477168
\(677\) −4.33098e12 −0.792387 −0.396193 0.918167i \(-0.629669\pi\)
−0.396193 + 0.918167i \(0.629669\pi\)
\(678\) 0 0
\(679\) 1.46844e12 0.265120
\(680\) −4.74641e11 −0.0851285
\(681\) 0 0
\(682\) −6.70664e12 −1.18707
\(683\) −6.25107e12 −1.09916 −0.549580 0.835441i \(-0.685212\pi\)
−0.549580 + 0.835441i \(0.685212\pi\)
\(684\) 0 0
\(685\) 5.17161e11 0.0897466
\(686\) −5.53193e11 −0.0953715
\(687\) 0 0
\(688\) 1.33844e13 2.27746
\(689\) 4.77923e11 0.0807926
\(690\) 0 0
\(691\) 7.34082e12 1.22488 0.612440 0.790517i \(-0.290188\pi\)
0.612440 + 0.790517i \(0.290188\pi\)
\(692\) −3.09679e11 −0.0513374
\(693\) 0 0
\(694\) 4.84841e12 0.793381
\(695\) 9.19986e10 0.0149572
\(696\) 0 0
\(697\) −2.35810e11 −0.0378456
\(698\) 2.69631e12 0.429952
\(699\) 0 0
\(700\) 5.30875e12 0.835701
\(701\) 1.71509e11 0.0268259 0.0134130 0.999910i \(-0.495730\pi\)
0.0134130 + 0.999910i \(0.495730\pi\)
\(702\) 0 0
\(703\) −2.16535e12 −0.334372
\(704\) 7.32421e11 0.112379
\(705\) 0 0
\(706\) −1.00534e13 −1.52297
\(707\) −6.57259e12 −0.989348
\(708\) 0 0
\(709\) −1.00896e13 −1.49956 −0.749780 0.661687i \(-0.769841\pi\)
−0.749780 + 0.661687i \(0.769841\pi\)
\(710\) 2.54199e12 0.375414
\(711\) 0 0
\(712\) 4.42527e12 0.645327
\(713\) −1.56439e13 −2.26695
\(714\) 0 0
\(715\) 2.66865e11 0.0381868
\(716\) 2.82145e12 0.401202
\(717\) 0 0
\(718\) 1.67970e13 2.35870
\(719\) −8.18068e12 −1.14159 −0.570794 0.821093i \(-0.693365\pi\)
−0.570794 + 0.821093i \(0.693365\pi\)
\(720\) 0 0
\(721\) −1.25999e13 −1.73644
\(722\) 7.26362e12 0.994800
\(723\) 0 0
\(724\) −1.66040e12 −0.224589
\(725\) 7.52885e12 1.01206
\(726\) 0 0
\(727\) −9.98421e11 −0.132559 −0.0662795 0.997801i \(-0.521113\pi\)
−0.0662795 + 0.997801i \(0.521113\pi\)
\(728\) 1.41724e12 0.187005
\(729\) 0 0
\(730\) −2.38556e12 −0.310912
\(731\) 1.35298e13 1.75253
\(732\) 0 0
\(733\) −2.10457e12 −0.269274 −0.134637 0.990895i \(-0.542987\pi\)
−0.134637 + 0.990895i \(0.542987\pi\)
\(734\) −1.52253e13 −1.93613
\(735\) 0 0
\(736\) 1.56677e13 1.96814
\(737\) 6.90977e12 0.862700
\(738\) 0 0
\(739\) −1.28931e13 −1.59023 −0.795113 0.606461i \(-0.792588\pi\)
−0.795113 + 0.606461i \(0.792588\pi\)
\(740\) −6.70599e11 −0.0822092
\(741\) 0 0
\(742\) −4.27135e12 −0.517306
\(743\) −2.72357e11 −0.0327861 −0.0163930 0.999866i \(-0.505218\pi\)
−0.0163930 + 0.999866i \(0.505218\pi\)
\(744\) 0 0
\(745\) −1.53418e12 −0.182463
\(746\) 1.20801e13 1.42805
\(747\) 0 0
\(748\) 3.75259e12 0.438303
\(749\) −1.27790e13 −1.48365
\(750\) 0 0
\(751\) −1.40530e13 −1.61209 −0.806045 0.591855i \(-0.798396\pi\)
−0.806045 + 0.591855i \(0.798396\pi\)
\(752\) 1.18985e13 1.35679
\(753\) 0 0
\(754\) −3.28379e12 −0.370002
\(755\) −2.78508e12 −0.311944
\(756\) 0 0
\(757\) 8.53220e12 0.944342 0.472171 0.881507i \(-0.343470\pi\)
0.472171 + 0.881507i \(0.343470\pi\)
\(758\) −1.22161e13 −1.34407
\(759\) 0 0
\(760\) 3.84933e11 0.0418528
\(761\) −1.13835e13 −1.23039 −0.615197 0.788373i \(-0.710924\pi\)
−0.615197 + 0.788373i \(0.710924\pi\)
\(762\) 0 0
\(763\) 7.46876e11 0.0797789
\(764\) −2.93297e12 −0.311450
\(765\) 0 0
\(766\) 1.87995e12 0.197295
\(767\) −1.68471e12 −0.175771
\(768\) 0 0
\(769\) 1.94858e12 0.200933 0.100466 0.994940i \(-0.467967\pi\)
0.100466 + 0.994940i \(0.467967\pi\)
\(770\) −2.38505e12 −0.244506
\(771\) 0 0
\(772\) 3.40040e12 0.344550
\(773\) 1.09355e13 1.10161 0.550807 0.834633i \(-0.314320\pi\)
0.550807 + 0.834633i \(0.314320\pi\)
\(774\) 0 0
\(775\) 1.21694e13 1.21175
\(776\) −9.27760e11 −0.0918455
\(777\) 0 0
\(778\) −1.70456e13 −1.66803
\(779\) 1.91242e11 0.0186065
\(780\) 0 0
\(781\) 1.23011e13 1.18308
\(782\) 2.28642e13 2.18638
\(783\) 0 0
\(784\) −1.23680e13 −1.16917
\(785\) 2.29821e12 0.216011
\(786\) 0 0
\(787\) 7.50366e12 0.697247 0.348623 0.937263i \(-0.386649\pi\)
0.348623 + 0.937263i \(0.386649\pi\)
\(788\) 8.79764e12 0.812827
\(789\) 0 0
\(790\) −1.82207e12 −0.166434
\(791\) 7.62369e12 0.692423
\(792\) 0 0
\(793\) −3.67822e12 −0.330300
\(794\) 8.78865e12 0.784747
\(795\) 0 0
\(796\) 1.05539e13 0.931762
\(797\) −1.65844e12 −0.145592 −0.0727962 0.997347i \(-0.523192\pi\)
−0.0727962 + 0.997347i \(0.523192\pi\)
\(798\) 0 0
\(799\) 1.20278e13 1.04406
\(800\) −1.21880e13 −1.05202
\(801\) 0 0
\(802\) 7.39433e12 0.631123
\(803\) −1.15441e13 −0.979810
\(804\) 0 0
\(805\) −5.56337e12 −0.466935
\(806\) −5.30782e12 −0.443005
\(807\) 0 0
\(808\) 4.15256e12 0.342740
\(809\) 7.07921e12 0.581054 0.290527 0.956867i \(-0.406169\pi\)
0.290527 + 0.956867i \(0.406169\pi\)
\(810\) 0 0
\(811\) −1.84596e13 −1.49840 −0.749201 0.662343i \(-0.769562\pi\)
−0.749201 + 0.662343i \(0.769562\pi\)
\(812\) 1.12356e13 0.906973
\(813\) 0 0
\(814\) −8.47657e12 −0.676722
\(815\) 7.12147e11 0.0565406
\(816\) 0 0
\(817\) −1.09727e13 −0.861616
\(818\) 1.31630e13 1.02793
\(819\) 0 0
\(820\) 5.92268e10 0.00457463
\(821\) −2.40377e13 −1.84650 −0.923250 0.384200i \(-0.874477\pi\)
−0.923250 + 0.384200i \(0.874477\pi\)
\(822\) 0 0
\(823\) −1.26494e12 −0.0961104 −0.0480552 0.998845i \(-0.515302\pi\)
−0.0480552 + 0.998845i \(0.515302\pi\)
\(824\) 7.96062e12 0.601554
\(825\) 0 0
\(826\) 1.50568e13 1.12544
\(827\) 9.81229e12 0.729450 0.364725 0.931115i \(-0.381163\pi\)
0.364725 + 0.931115i \(0.381163\pi\)
\(828\) 0 0
\(829\) 1.26128e13 0.927504 0.463752 0.885965i \(-0.346503\pi\)
0.463752 + 0.885965i \(0.346503\pi\)
\(830\) −3.27107e12 −0.239242
\(831\) 0 0
\(832\) 5.79658e11 0.0419389
\(833\) −1.25024e13 −0.899687
\(834\) 0 0
\(835\) 2.37644e12 0.169175
\(836\) −3.04335e12 −0.215488
\(837\) 0 0
\(838\) −4.75441e12 −0.333042
\(839\) 8.53632e12 0.594760 0.297380 0.954759i \(-0.403887\pi\)
0.297380 + 0.954759i \(0.403887\pi\)
\(840\) 0 0
\(841\) 1.42715e12 0.0983759
\(842\) 2.62179e12 0.179760
\(843\) 0 0
\(844\) −4.74056e12 −0.321580
\(845\) 2.11204e11 0.0142511
\(846\) 0 0
\(847\) 9.35511e12 0.624559
\(848\) 5.41970e12 0.359910
\(849\) 0 0
\(850\) −1.77862e13 −1.16868
\(851\) −1.97724e13 −1.29234
\(852\) 0 0
\(853\) −1.12025e13 −0.724507 −0.362254 0.932080i \(-0.617993\pi\)
−0.362254 + 0.932080i \(0.617993\pi\)
\(854\) 3.28734e13 2.11487
\(855\) 0 0
\(856\) 8.07379e12 0.513979
\(857\) 2.23241e13 1.41371 0.706856 0.707357i \(-0.250113\pi\)
0.706856 + 0.707357i \(0.250113\pi\)
\(858\) 0 0
\(859\) −2.11323e13 −1.32428 −0.662138 0.749382i \(-0.730351\pi\)
−0.662138 + 0.749382i \(0.730351\pi\)
\(860\) −3.39819e12 −0.211838
\(861\) 0 0
\(862\) 2.28869e13 1.41190
\(863\) −1.17061e13 −0.718395 −0.359197 0.933262i \(-0.616950\pi\)
−0.359197 + 0.933262i \(0.616950\pi\)
\(864\) 0 0
\(865\) −2.52454e11 −0.0153324
\(866\) 2.38005e13 1.43799
\(867\) 0 0
\(868\) 1.81609e13 1.08592
\(869\) −8.81730e12 −0.524501
\(870\) 0 0
\(871\) 5.46859e12 0.321954
\(872\) −4.71876e11 −0.0276378
\(873\) 0 0
\(874\) −1.85429e13 −1.07492
\(875\) 8.80934e12 0.508051
\(876\) 0 0
\(877\) 1.17836e13 0.672638 0.336319 0.941748i \(-0.390818\pi\)
0.336319 + 0.941748i \(0.390818\pi\)
\(878\) −3.50134e13 −1.98842
\(879\) 0 0
\(880\) 3.02627e12 0.170113
\(881\) 1.93741e13 1.08350 0.541751 0.840539i \(-0.317762\pi\)
0.541751 + 0.840539i \(0.317762\pi\)
\(882\) 0 0
\(883\) −1.50199e13 −0.831466 −0.415733 0.909487i \(-0.636475\pi\)
−0.415733 + 0.909487i \(0.636475\pi\)
\(884\) 2.96991e12 0.163572
\(885\) 0 0
\(886\) −2.51488e13 −1.37109
\(887\) −1.23661e13 −0.670776 −0.335388 0.942080i \(-0.608867\pi\)
−0.335388 + 0.942080i \(0.608867\pi\)
\(888\) 0 0
\(889\) 1.27723e13 0.685824
\(890\) −5.89394e12 −0.314884
\(891\) 0 0
\(892\) 7.09439e12 0.375209
\(893\) −9.75457e12 −0.513306
\(894\) 0 0
\(895\) 2.30008e12 0.119823
\(896\) 2.41408e13 1.25131
\(897\) 0 0
\(898\) 3.51702e13 1.80481
\(899\) 2.57558e13 1.31509
\(900\) 0 0
\(901\) 5.47860e12 0.276954
\(902\) 7.48644e11 0.0376570
\(903\) 0 0
\(904\) −4.81664e12 −0.239876
\(905\) −1.35358e12 −0.0670757
\(906\) 0 0
\(907\) 9.76708e12 0.479217 0.239608 0.970870i \(-0.422981\pi\)
0.239608 + 0.970870i \(0.422981\pi\)
\(908\) −1.65384e12 −0.0807436
\(909\) 0 0
\(910\) −1.88760e12 −0.0912480
\(911\) 1.91556e13 0.921430 0.460715 0.887548i \(-0.347593\pi\)
0.460715 + 0.887548i \(0.347593\pi\)
\(912\) 0 0
\(913\) −1.58293e13 −0.753949
\(914\) −1.82219e13 −0.863647
\(915\) 0 0
\(916\) 4.30586e12 0.202083
\(917\) −4.03170e13 −1.88290
\(918\) 0 0
\(919\) −2.82464e13 −1.30630 −0.653150 0.757229i \(-0.726553\pi\)
−0.653150 + 0.757229i \(0.726553\pi\)
\(920\) 3.51493e12 0.161760
\(921\) 0 0
\(922\) 2.33049e13 1.06208
\(923\) 9.73546e12 0.441518
\(924\) 0 0
\(925\) 1.53810e13 0.690792
\(926\) −2.21691e13 −0.990830
\(927\) 0 0
\(928\) −2.57950e13 −1.14175
\(929\) −1.81017e13 −0.797348 −0.398674 0.917093i \(-0.630529\pi\)
−0.398674 + 0.917093i \(0.630529\pi\)
\(930\) 0 0
\(931\) 1.01395e13 0.442324
\(932\) −6.54974e10 −0.00284350
\(933\) 0 0
\(934\) 4.60004e13 1.97788
\(935\) 3.05916e12 0.130903
\(936\) 0 0
\(937\) 2.51202e13 1.06462 0.532310 0.846550i \(-0.321324\pi\)
0.532310 + 0.846550i \(0.321324\pi\)
\(938\) −4.88745e13 −2.06143
\(939\) 0 0
\(940\) −3.02095e12 −0.126202
\(941\) −8.09156e11 −0.0336418 −0.0168209 0.999859i \(-0.505355\pi\)
−0.0168209 + 0.999859i \(0.505355\pi\)
\(942\) 0 0
\(943\) 1.74628e12 0.0719138
\(944\) −1.91048e13 −0.783014
\(945\) 0 0
\(946\) −4.29541e13 −1.74379
\(947\) 1.25569e13 0.507349 0.253675 0.967290i \(-0.418361\pi\)
0.253675 + 0.967290i \(0.418361\pi\)
\(948\) 0 0
\(949\) −9.13636e12 −0.365658
\(950\) 1.44246e13 0.574575
\(951\) 0 0
\(952\) 1.62463e13 0.641045
\(953\) 3.64201e13 1.43029 0.715144 0.698977i \(-0.246361\pi\)
0.715144 + 0.698977i \(0.246361\pi\)
\(954\) 0 0
\(955\) −2.39100e12 −0.0930173
\(956\) −6.03087e12 −0.233518
\(957\) 0 0
\(958\) 4.64612e13 1.78216
\(959\) −1.77017e13 −0.675821
\(960\) 0 0
\(961\) 1.51913e13 0.574564
\(962\) −6.70859e12 −0.252548
\(963\) 0 0
\(964\) −1.94225e13 −0.724366
\(965\) 2.77205e12 0.102903
\(966\) 0 0
\(967\) 2.96691e13 1.09115 0.545575 0.838062i \(-0.316311\pi\)
0.545575 + 0.838062i \(0.316311\pi\)
\(968\) −5.91055e12 −0.216366
\(969\) 0 0
\(970\) 1.23567e12 0.0448156
\(971\) 1.05417e13 0.380563 0.190281 0.981730i \(-0.439060\pi\)
0.190281 + 0.981730i \(0.439060\pi\)
\(972\) 0 0
\(973\) −3.14899e12 −0.112632
\(974\) −2.67595e13 −0.952714
\(975\) 0 0
\(976\) −4.17114e13 −1.47140
\(977\) 2.40729e13 0.845285 0.422643 0.906296i \(-0.361103\pi\)
0.422643 + 0.906296i \(0.361103\pi\)
\(978\) 0 0
\(979\) −2.85218e13 −0.992328
\(980\) 3.14014e12 0.108751
\(981\) 0 0
\(982\) −6.64372e13 −2.27987
\(983\) 3.57135e13 1.21995 0.609974 0.792421i \(-0.291180\pi\)
0.609974 + 0.792421i \(0.291180\pi\)
\(984\) 0 0
\(985\) 7.17195e12 0.242758
\(986\) −3.76432e13 −1.26835
\(987\) 0 0
\(988\) −2.40859e12 −0.0804187
\(989\) −1.00195e14 −3.33013
\(990\) 0 0
\(991\) 2.48780e13 0.819376 0.409688 0.912226i \(-0.365638\pi\)
0.409688 + 0.912226i \(0.365638\pi\)
\(992\) −4.16943e13 −1.36702
\(993\) 0 0
\(994\) −8.70089e13 −2.82699
\(995\) 8.60369e12 0.278279
\(996\) 0 0
\(997\) −3.31717e13 −1.06326 −0.531630 0.846977i \(-0.678420\pi\)
−0.531630 + 0.846977i \(0.678420\pi\)
\(998\) 3.78497e12 0.120774
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.10.a.c.1.1 4
3.2 odd 2 13.10.a.a.1.4 4
12.11 even 2 208.10.a.g.1.4 4
15.14 odd 2 325.10.a.a.1.1 4
39.38 odd 2 169.10.a.a.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.10.a.a.1.4 4 3.2 odd 2
117.10.a.c.1.1 4 1.1 even 1 trivial
169.10.a.a.1.1 4 39.38 odd 2
208.10.a.g.1.4 4 12.11 even 2
325.10.a.a.1.1 4 15.14 odd 2