Defining parameters
Level: | \( N \) | = | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | = | \( 1 \) |
Character orbit: | \([\chi]\) | = | 117.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 13 \) |
Character field: | \(\Q(i)\) | ||
Newforms: | \( 1 \) | ||
Sturm bound: | \(14\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 4 | 6 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 8 | 2 | 6 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(117, [\chi])\) into irreducible Hecke orbits
Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
117.1.j.a | \(2\) | \(0.058\) | \(\Q(\sqrt{-1}) \) | \(D_{4}\) | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q+iq^{4}+(-1-i)q^{7}-iq^{13}-q^{16}+\cdots\) |