Properties

Label 1160.2.bl.d.737.17
Level $1160$
Weight $2$
Character 1160.737
Analytic conductor $9.263$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1160,2,Mod(713,1160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1160.713"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(21\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 737.17
Character \(\chi\) \(=\) 1160.737
Dual form 1160.2.bl.d.713.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.10106 q^{3} +(-2.18421 + 0.478777i) q^{5} +(1.94771 + 1.94771i) q^{7} +1.41447 q^{9} +(0.883443 + 0.883443i) q^{11} +(2.69535 + 2.69535i) q^{13} +(-4.58916 + 1.00594i) q^{15} +0.326749i q^{17} +(-5.28573 + 5.28573i) q^{19} +(4.09225 + 4.09225i) q^{21} +(-0.557485 + 0.557485i) q^{23} +(4.54155 - 2.09150i) q^{25} -3.33130 q^{27} +(-1.35994 - 5.21062i) q^{29} +(3.27551 + 3.27551i) q^{31} +(1.85617 + 1.85617i) q^{33} +(-5.18672 - 3.32168i) q^{35} +6.69183 q^{37} +(5.66311 + 5.66311i) q^{39} +(-6.35601 + 6.35601i) q^{41} -2.44518 q^{43} +(-3.08949 + 0.677214i) q^{45} +11.9618 q^{47} +0.587117i q^{49} +0.686521i q^{51} +(1.79572 - 1.79572i) q^{53} +(-2.35260 - 1.50665i) q^{55} +(-11.1057 + 11.1057i) q^{57} +6.73630i q^{59} +(5.50590 + 5.50590i) q^{61} +(2.75497 + 2.75497i) q^{63} +(-7.17769 - 4.59674i) q^{65} +(3.12885 - 3.12885i) q^{67} +(-1.17131 + 1.17131i) q^{69} +3.62645i q^{71} +11.1192i q^{73} +(9.54207 - 4.39437i) q^{75} +3.44137i q^{77} +(5.17391 - 5.17391i) q^{79} -11.2427 q^{81} +(3.60182 - 3.60182i) q^{83} +(-0.156440 - 0.713689i) q^{85} +(-2.85732 - 10.9478i) q^{87} +(10.8840 - 10.8840i) q^{89} +10.4995i q^{91} +(6.88206 + 6.88206i) q^{93} +(9.01446 - 14.0758i) q^{95} -3.89805 q^{97} +(1.24960 + 1.24960i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 4 q^{3} - 2 q^{7} + 42 q^{9} - 4 q^{13} - 4 q^{15} - 6 q^{19} - 8 q^{21} + 10 q^{23} + 8 q^{25} + 32 q^{27} - 30 q^{29} - 4 q^{31} - 22 q^{33} + 2 q^{35} - 32 q^{37} - 38 q^{39} + 10 q^{41} + 30 q^{45}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.10106 1.21305 0.606525 0.795065i \(-0.292563\pi\)
0.606525 + 0.795065i \(0.292563\pi\)
\(4\) 0 0
\(5\) −2.18421 + 0.478777i −0.976808 + 0.214116i
\(6\) 0 0
\(7\) 1.94771 + 1.94771i 0.736164 + 0.736164i 0.971833 0.235670i \(-0.0757283\pi\)
−0.235670 + 0.971833i \(0.575728\pi\)
\(8\) 0 0
\(9\) 1.41447 0.471489
\(10\) 0 0
\(11\) 0.883443 + 0.883443i 0.266368 + 0.266368i 0.827635 0.561267i \(-0.189686\pi\)
−0.561267 + 0.827635i \(0.689686\pi\)
\(12\) 0 0
\(13\) 2.69535 + 2.69535i 0.747556 + 0.747556i 0.974020 0.226463i \(-0.0727164\pi\)
−0.226463 + 0.974020i \(0.572716\pi\)
\(14\) 0 0
\(15\) −4.58916 + 1.00594i −1.18492 + 0.259733i
\(16\) 0 0
\(17\) 0.326749i 0.0792484i 0.999215 + 0.0396242i \(0.0126161\pi\)
−0.999215 + 0.0396242i \(0.987384\pi\)
\(18\) 0 0
\(19\) −5.28573 + 5.28573i −1.21263 + 1.21263i −0.242472 + 0.970158i \(0.577958\pi\)
−0.970158 + 0.242472i \(0.922042\pi\)
\(20\) 0 0
\(21\) 4.09225 + 4.09225i 0.893003 + 0.893003i
\(22\) 0 0
\(23\) −0.557485 + 0.557485i −0.116244 + 0.116244i −0.762836 0.646592i \(-0.776194\pi\)
0.646592 + 0.762836i \(0.276194\pi\)
\(24\) 0 0
\(25\) 4.54155 2.09150i 0.908309 0.418300i
\(26\) 0 0
\(27\) −3.33130 −0.641110
\(28\) 0 0
\(29\) −1.35994 5.21062i −0.252535 0.967588i
\(30\) 0 0
\(31\) 3.27551 + 3.27551i 0.588300 + 0.588300i 0.937171 0.348871i \(-0.113435\pi\)
−0.348871 + 0.937171i \(0.613435\pi\)
\(32\) 0 0
\(33\) 1.85617 + 1.85617i 0.323118 + 0.323118i
\(34\) 0 0
\(35\) −5.18672 3.32168i −0.876715 0.561467i
\(36\) 0 0
\(37\) 6.69183 1.10013 0.550065 0.835122i \(-0.314603\pi\)
0.550065 + 0.835122i \(0.314603\pi\)
\(38\) 0 0
\(39\) 5.66311 + 5.66311i 0.906823 + 0.906823i
\(40\) 0 0
\(41\) −6.35601 + 6.35601i −0.992641 + 0.992641i −0.999973 0.00733177i \(-0.997666\pi\)
0.00733177 + 0.999973i \(0.497666\pi\)
\(42\) 0 0
\(43\) −2.44518 −0.372887 −0.186444 0.982466i \(-0.559696\pi\)
−0.186444 + 0.982466i \(0.559696\pi\)
\(44\) 0 0
\(45\) −3.08949 + 0.677214i −0.460554 + 0.100953i
\(46\) 0 0
\(47\) 11.9618 1.74480 0.872401 0.488791i \(-0.162562\pi\)
0.872401 + 0.488791i \(0.162562\pi\)
\(48\) 0 0
\(49\) 0.587117i 0.0838738i
\(50\) 0 0
\(51\) 0.686521i 0.0961322i
\(52\) 0 0
\(53\) 1.79572 1.79572i 0.246661 0.246661i −0.572938 0.819599i \(-0.694196\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(54\) 0 0
\(55\) −2.35260 1.50665i −0.317224 0.203157i
\(56\) 0 0
\(57\) −11.1057 + 11.1057i −1.47098 + 1.47098i
\(58\) 0 0
\(59\) 6.73630i 0.876991i 0.898733 + 0.438495i \(0.144488\pi\)
−0.898733 + 0.438495i \(0.855512\pi\)
\(60\) 0 0
\(61\) 5.50590 + 5.50590i 0.704958 + 0.704958i 0.965471 0.260512i \(-0.0838914\pi\)
−0.260512 + 0.965471i \(0.583891\pi\)
\(62\) 0 0
\(63\) 2.75497 + 2.75497i 0.347093 + 0.347093i
\(64\) 0 0
\(65\) −7.17769 4.59674i −0.890283 0.570156i
\(66\) 0 0
\(67\) 3.12885 3.12885i 0.382250 0.382250i −0.489663 0.871912i \(-0.662880\pi\)
0.871912 + 0.489663i \(0.162880\pi\)
\(68\) 0 0
\(69\) −1.17131 + 1.17131i −0.141009 + 0.141009i
\(70\) 0 0
\(71\) 3.62645i 0.430380i 0.976572 + 0.215190i \(0.0690371\pi\)
−0.976572 + 0.215190i \(0.930963\pi\)
\(72\) 0 0
\(73\) 11.1192i 1.30141i 0.759332 + 0.650704i \(0.225526\pi\)
−0.759332 + 0.650704i \(0.774474\pi\)
\(74\) 0 0
\(75\) 9.54207 4.39437i 1.10182 0.507418i
\(76\) 0 0
\(77\) 3.44137i 0.392181i
\(78\) 0 0
\(79\) 5.17391 5.17391i 0.582110 0.582110i −0.353372 0.935483i \(-0.614965\pi\)
0.935483 + 0.353372i \(0.114965\pi\)
\(80\) 0 0
\(81\) −11.2427 −1.24919
\(82\) 0 0
\(83\) 3.60182 3.60182i 0.395351 0.395351i −0.481238 0.876590i \(-0.659813\pi\)
0.876590 + 0.481238i \(0.159813\pi\)
\(84\) 0 0
\(85\) −0.156440 0.713689i −0.0169683 0.0774105i
\(86\) 0 0
\(87\) −2.85732 10.9478i −0.306337 1.17373i
\(88\) 0 0
\(89\) 10.8840 10.8840i 1.15370 1.15370i 0.167898 0.985804i \(-0.446302\pi\)
0.985804 0.167898i \(-0.0536979\pi\)
\(90\) 0 0
\(91\) 10.4995i 1.10065i
\(92\) 0 0
\(93\) 6.88206 + 6.88206i 0.713636 + 0.713636i
\(94\) 0 0
\(95\) 9.01446 14.0758i 0.924865 1.44415i
\(96\) 0 0
\(97\) −3.89805 −0.395787 −0.197894 0.980224i \(-0.563410\pi\)
−0.197894 + 0.980224i \(0.563410\pi\)
\(98\) 0 0
\(99\) 1.24960 + 1.24960i 0.125590 + 0.125590i
\(100\) 0 0
\(101\) −7.74849 7.74849i −0.771003 0.771003i 0.207279 0.978282i \(-0.433539\pi\)
−0.978282 + 0.207279i \(0.933539\pi\)
\(102\) 0 0
\(103\) 4.79779 4.79779i 0.472740 0.472740i −0.430060 0.902800i \(-0.641508\pi\)
0.902800 + 0.430060i \(0.141508\pi\)
\(104\) 0 0
\(105\) −10.8976 6.97906i −1.06350 0.681087i
\(106\) 0 0
\(107\) −10.7751 10.7751i −1.04167 1.04167i −0.999093 0.0425795i \(-0.986442\pi\)
−0.0425795 0.999093i \(-0.513558\pi\)
\(108\) 0 0
\(109\) −14.3723 −1.37662 −0.688311 0.725416i \(-0.741647\pi\)
−0.688311 + 0.725416i \(0.741647\pi\)
\(110\) 0 0
\(111\) 14.0600 1.33451
\(112\) 0 0
\(113\) 0.237524i 0.0223444i 0.999938 + 0.0111722i \(0.00355629\pi\)
−0.999938 + 0.0111722i \(0.996444\pi\)
\(114\) 0 0
\(115\) 0.950753 1.48457i 0.0886582 0.138437i
\(116\) 0 0
\(117\) 3.81249 + 3.81249i 0.352465 + 0.352465i
\(118\) 0 0
\(119\) −0.636412 + 0.636412i −0.0583398 + 0.0583398i
\(120\) 0 0
\(121\) 9.43906i 0.858096i
\(122\) 0 0
\(123\) −13.3544 + 13.3544i −1.20412 + 1.20412i
\(124\) 0 0
\(125\) −8.91833 + 6.74266i −0.797679 + 0.603082i
\(126\) 0 0
\(127\) 5.00723i 0.444320i −0.975010 0.222160i \(-0.928689\pi\)
0.975010 0.222160i \(-0.0713107\pi\)
\(128\) 0 0
\(129\) −5.13749 −0.452330
\(130\) 0 0
\(131\) 12.8392 12.8392i 1.12177 1.12177i 0.130292 0.991476i \(-0.458409\pi\)
0.991476 0.130292i \(-0.0415913\pi\)
\(132\) 0 0
\(133\) −20.5901 −1.78539
\(134\) 0 0
\(135\) 7.27627 1.59495i 0.626242 0.137272i
\(136\) 0 0
\(137\) 13.4656i 1.15045i −0.817996 0.575224i \(-0.804915\pi\)
0.817996 0.575224i \(-0.195085\pi\)
\(138\) 0 0
\(139\) 10.2882i 0.872637i 0.899792 + 0.436319i \(0.143718\pi\)
−0.899792 + 0.436319i \(0.856282\pi\)
\(140\) 0 0
\(141\) 25.1324 2.11653
\(142\) 0 0
\(143\) 4.76238i 0.398250i
\(144\) 0 0
\(145\) 5.46512 + 10.7300i 0.453854 + 0.891076i
\(146\) 0 0
\(147\) 1.23357i 0.101743i
\(148\) 0 0
\(149\) −15.6963 −1.28589 −0.642944 0.765913i \(-0.722287\pi\)
−0.642944 + 0.765913i \(0.722287\pi\)
\(150\) 0 0
\(151\) 8.21302i 0.668366i −0.942508 0.334183i \(-0.891540\pi\)
0.942508 0.334183i \(-0.108460\pi\)
\(152\) 0 0
\(153\) 0.462176i 0.0373647i
\(154\) 0 0
\(155\) −8.72265 5.58617i −0.700620 0.448692i
\(156\) 0 0
\(157\) 11.3146 0.903006 0.451503 0.892270i \(-0.350888\pi\)
0.451503 + 0.892270i \(0.350888\pi\)
\(158\) 0 0
\(159\) 3.77292 3.77292i 0.299212 0.299212i
\(160\) 0 0
\(161\) −2.17163 −0.171149
\(162\) 0 0
\(163\) 18.0379i 1.41284i 0.707793 + 0.706420i \(0.249691\pi\)
−0.707793 + 0.706420i \(0.750309\pi\)
\(164\) 0 0
\(165\) −4.94296 3.16557i −0.384809 0.246440i
\(166\) 0 0
\(167\) 8.11754 8.11754i 0.628154 0.628154i −0.319449 0.947603i \(-0.603498\pi\)
0.947603 + 0.319449i \(0.103498\pi\)
\(168\) 0 0
\(169\) 1.52985i 0.117681i
\(170\) 0 0
\(171\) −7.47650 + 7.47650i −0.571742 + 0.571742i
\(172\) 0 0
\(173\) −0.288382 0.288382i −0.0219253 0.0219253i 0.696059 0.717984i \(-0.254935\pi\)
−0.717984 + 0.696059i \(0.754935\pi\)
\(174\) 0 0
\(175\) 12.9192 + 4.77197i 0.976601 + 0.360727i
\(176\) 0 0
\(177\) 14.1534i 1.06383i
\(178\) 0 0
\(179\) 4.24083 0.316974 0.158487 0.987361i \(-0.449338\pi\)
0.158487 + 0.987361i \(0.449338\pi\)
\(180\) 0 0
\(181\) 7.99022 0.593908 0.296954 0.954892i \(-0.404029\pi\)
0.296954 + 0.954892i \(0.404029\pi\)
\(182\) 0 0
\(183\) 11.5682 + 11.5682i 0.855150 + 0.855150i
\(184\) 0 0
\(185\) −14.6164 + 3.20389i −1.07462 + 0.235555i
\(186\) 0 0
\(187\) −0.288664 + 0.288664i −0.0211092 + 0.0211092i
\(188\) 0 0
\(189\) −6.48840 6.48840i −0.471962 0.471962i
\(190\) 0 0
\(191\) −9.91272 9.91272i −0.717260 0.717260i 0.250784 0.968043i \(-0.419312\pi\)
−0.968043 + 0.250784i \(0.919312\pi\)
\(192\) 0 0
\(193\) −23.3002 −1.67719 −0.838593 0.544758i \(-0.816621\pi\)
−0.838593 + 0.544758i \(0.816621\pi\)
\(194\) 0 0
\(195\) −15.0808 9.65805i −1.07996 0.691627i
\(196\) 0 0
\(197\) −0.108668 0.108668i −0.00774225 0.00774225i 0.703225 0.710967i \(-0.251743\pi\)
−0.710967 + 0.703225i \(0.751743\pi\)
\(198\) 0 0
\(199\) 6.43805i 0.456382i 0.973616 + 0.228191i \(0.0732810\pi\)
−0.973616 + 0.228191i \(0.926719\pi\)
\(200\) 0 0
\(201\) 6.57391 6.57391i 0.463688 0.463688i
\(202\) 0 0
\(203\) 7.49999 12.7975i 0.526396 0.898210i
\(204\) 0 0
\(205\) 10.8397 16.9260i 0.757080 1.18216i
\(206\) 0 0
\(207\) −0.788544 + 0.788544i −0.0548076 + 0.0548076i
\(208\) 0 0
\(209\) −9.33929 −0.646012
\(210\) 0 0
\(211\) 15.3334 15.3334i 1.05559 1.05559i 0.0572336 0.998361i \(-0.481772\pi\)
0.998361 0.0572336i \(-0.0182280\pi\)
\(212\) 0 0
\(213\) 7.61940i 0.522072i
\(214\) 0 0
\(215\) 5.34080 1.17070i 0.364239 0.0798409i
\(216\) 0 0
\(217\) 12.7595i 0.866169i
\(218\) 0 0
\(219\) 23.3622i 1.57867i
\(220\) 0 0
\(221\) −0.880705 + 0.880705i −0.0592426 + 0.0592426i
\(222\) 0 0
\(223\) −0.698377 + 0.698377i −0.0467668 + 0.0467668i −0.730103 0.683337i \(-0.760528\pi\)
0.683337 + 0.730103i \(0.260528\pi\)
\(224\) 0 0
\(225\) 6.42387 2.95836i 0.428258 0.197224i
\(226\) 0 0
\(227\) −4.90838 4.90838i −0.325780 0.325780i 0.525199 0.850979i \(-0.323991\pi\)
−0.850979 + 0.525199i \(0.823991\pi\)
\(228\) 0 0
\(229\) 10.6218 + 10.6218i 0.701906 + 0.701906i 0.964819 0.262913i \(-0.0846834\pi\)
−0.262913 + 0.964819i \(0.584683\pi\)
\(230\) 0 0
\(231\) 7.23055i 0.475735i
\(232\) 0 0
\(233\) −2.89799 + 2.89799i −0.189854 + 0.189854i −0.795633 0.605779i \(-0.792862\pi\)
0.605779 + 0.795633i \(0.292862\pi\)
\(234\) 0 0
\(235\) −26.1270 + 5.72701i −1.70434 + 0.373589i
\(236\) 0 0
\(237\) 10.8707 10.8707i 0.706129 0.706129i
\(238\) 0 0
\(239\) 7.30996i 0.472842i 0.971651 + 0.236421i \(0.0759745\pi\)
−0.971651 + 0.236421i \(0.924026\pi\)
\(240\) 0 0
\(241\) 3.62739i 0.233661i 0.993152 + 0.116830i \(0.0372734\pi\)
−0.993152 + 0.116830i \(0.962727\pi\)
\(242\) 0 0
\(243\) −13.6277 −0.874216
\(244\) 0 0
\(245\) −0.281098 1.28239i −0.0179587 0.0819287i
\(246\) 0 0
\(247\) −28.4938 −1.81302
\(248\) 0 0
\(249\) 7.56765 7.56765i 0.479581 0.479581i
\(250\) 0 0
\(251\) 4.11985 + 4.11985i 0.260043 + 0.260043i 0.825071 0.565028i \(-0.191135\pi\)
−0.565028 + 0.825071i \(0.691135\pi\)
\(252\) 0 0
\(253\) −0.985012 −0.0619272
\(254\) 0 0
\(255\) −0.328690 1.49951i −0.0205834 0.0939027i
\(256\) 0 0
\(257\) 7.92255 + 7.92255i 0.494195 + 0.494195i 0.909625 0.415430i \(-0.136369\pi\)
−0.415430 + 0.909625i \(0.636369\pi\)
\(258\) 0 0
\(259\) 13.0337 + 13.0337i 0.809876 + 0.809876i
\(260\) 0 0
\(261\) −1.92359 7.37025i −0.119067 0.456207i
\(262\) 0 0
\(263\) 23.6548 1.45862 0.729308 0.684185i \(-0.239842\pi\)
0.729308 + 0.684185i \(0.239842\pi\)
\(264\) 0 0
\(265\) −3.06248 + 4.78198i −0.188127 + 0.293755i
\(266\) 0 0
\(267\) 22.8680 22.8680i 1.39950 1.39950i
\(268\) 0 0
\(269\) −9.81352 9.81352i −0.598341 0.598341i 0.341530 0.939871i \(-0.389055\pi\)
−0.939871 + 0.341530i \(0.889055\pi\)
\(270\) 0 0
\(271\) 13.5466 13.5466i 0.822899 0.822899i −0.163624 0.986523i \(-0.552318\pi\)
0.986523 + 0.163624i \(0.0523184\pi\)
\(272\) 0 0
\(273\) 22.0601i 1.33514i
\(274\) 0 0
\(275\) 5.85992 + 2.16448i 0.353366 + 0.130523i
\(276\) 0 0
\(277\) −3.77310 3.77310i −0.226703 0.226703i 0.584611 0.811314i \(-0.301247\pi\)
−0.811314 + 0.584611i \(0.801247\pi\)
\(278\) 0 0
\(279\) 4.63311 + 4.63311i 0.277377 + 0.277377i
\(280\) 0 0
\(281\) 33.1089 1.97511 0.987554 0.157278i \(-0.0502718\pi\)
0.987554 + 0.157278i \(0.0502718\pi\)
\(282\) 0 0
\(283\) −18.9994 18.9994i −1.12940 1.12940i −0.990275 0.139121i \(-0.955572\pi\)
−0.139121 0.990275i \(-0.544428\pi\)
\(284\) 0 0
\(285\) 18.9400 29.5742i 1.12191 1.75183i
\(286\) 0 0
\(287\) −24.7593 −1.46149
\(288\) 0 0
\(289\) 16.8932 0.993720
\(290\) 0 0
\(291\) −8.19005 −0.480109
\(292\) 0 0
\(293\) −12.7648 −0.745728 −0.372864 0.927886i \(-0.621624\pi\)
−0.372864 + 0.927886i \(0.621624\pi\)
\(294\) 0 0
\(295\) −3.22518 14.7135i −0.187777 0.856652i
\(296\) 0 0
\(297\) −2.94302 2.94302i −0.170771 0.170771i
\(298\) 0 0
\(299\) −3.00524 −0.173797
\(300\) 0 0
\(301\) −4.76250 4.76250i −0.274506 0.274506i
\(302\) 0 0
\(303\) −16.2801 16.2801i −0.935265 0.935265i
\(304\) 0 0
\(305\) −14.6621 9.38995i −0.839552 0.537667i
\(306\) 0 0
\(307\) 31.0310i 1.77103i −0.464607 0.885517i \(-0.653804\pi\)
0.464607 0.885517i \(-0.346196\pi\)
\(308\) 0 0
\(309\) 10.0805 10.0805i 0.573458 0.573458i
\(310\) 0 0
\(311\) 9.20844 + 9.20844i 0.522162 + 0.522162i 0.918224 0.396062i \(-0.129623\pi\)
−0.396062 + 0.918224i \(0.629623\pi\)
\(312\) 0 0
\(313\) −15.1195 + 15.1195i −0.854604 + 0.854604i −0.990696 0.136092i \(-0.956546\pi\)
0.136092 + 0.990696i \(0.456546\pi\)
\(314\) 0 0
\(315\) −7.33644 4.69841i −0.413361 0.264725i
\(316\) 0 0
\(317\) −9.15875 −0.514406 −0.257203 0.966357i \(-0.582801\pi\)
−0.257203 + 0.966357i \(0.582801\pi\)
\(318\) 0 0
\(319\) 3.40185 5.80472i 0.190467 0.325002i
\(320\) 0 0
\(321\) −22.6393 22.6393i −1.26360 1.26360i
\(322\) 0 0
\(323\) −1.72711 1.72711i −0.0960990 0.0960990i
\(324\) 0 0
\(325\) 17.8784 + 6.60374i 0.991715 + 0.366310i
\(326\) 0 0
\(327\) −30.1972 −1.66991
\(328\) 0 0
\(329\) 23.2980 + 23.2980i 1.28446 + 1.28446i
\(330\) 0 0
\(331\) −5.48552 + 5.48552i −0.301511 + 0.301511i −0.841605 0.540094i \(-0.818389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(332\) 0 0
\(333\) 9.46537 0.518699
\(334\) 0 0
\(335\) −5.33604 + 8.33208i −0.291539 + 0.455230i
\(336\) 0 0
\(337\) −21.9596 −1.19622 −0.598108 0.801416i \(-0.704081\pi\)
−0.598108 + 0.801416i \(0.704081\pi\)
\(338\) 0 0
\(339\) 0.499053i 0.0271048i
\(340\) 0 0
\(341\) 5.78746i 0.313408i
\(342\) 0 0
\(343\) 12.4904 12.4904i 0.674419 0.674419i
\(344\) 0 0
\(345\) 1.99759 3.11918i 0.107547 0.167931i
\(346\) 0 0
\(347\) −14.1927 + 14.1927i −0.761904 + 0.761904i −0.976666 0.214763i \(-0.931102\pi\)
0.214763 + 0.976666i \(0.431102\pi\)
\(348\) 0 0
\(349\) 11.5541i 0.618476i −0.950985 0.309238i \(-0.899926\pi\)
0.950985 0.309238i \(-0.100074\pi\)
\(350\) 0 0
\(351\) −8.97904 8.97904i −0.479266 0.479266i
\(352\) 0 0
\(353\) −22.9709 22.9709i −1.22262 1.22262i −0.966699 0.255917i \(-0.917623\pi\)
−0.255917 0.966699i \(-0.582377\pi\)
\(354\) 0 0
\(355\) −1.73626 7.92092i −0.0921511 0.420399i
\(356\) 0 0
\(357\) −1.33714 + 1.33714i −0.0707690 + 0.0707690i
\(358\) 0 0
\(359\) 14.3952 14.3952i 0.759748 0.759748i −0.216528 0.976276i \(-0.569473\pi\)
0.976276 + 0.216528i \(0.0694734\pi\)
\(360\) 0 0
\(361\) 36.8780i 1.94095i
\(362\) 0 0
\(363\) 19.8321i 1.04091i
\(364\) 0 0
\(365\) −5.32363 24.2867i −0.278651 1.27123i
\(366\) 0 0
\(367\) 9.65343i 0.503905i 0.967740 + 0.251953i \(0.0810727\pi\)
−0.967740 + 0.251953i \(0.918927\pi\)
\(368\) 0 0
\(369\) −8.99036 + 8.99036i −0.468020 + 0.468020i
\(370\) 0 0
\(371\) 6.99507 0.363166
\(372\) 0 0
\(373\) −5.81049 + 5.81049i −0.300856 + 0.300856i −0.841349 0.540493i \(-0.818238\pi\)
0.540493 + 0.841349i \(0.318238\pi\)
\(374\) 0 0
\(375\) −18.7380 + 14.1668i −0.967625 + 0.731568i
\(376\) 0 0
\(377\) 10.3789 17.7100i 0.534542 0.912110i
\(378\) 0 0
\(379\) −21.5192 + 21.5192i −1.10537 + 1.10537i −0.111618 + 0.993751i \(0.535603\pi\)
−0.993751 + 0.111618i \(0.964397\pi\)
\(380\) 0 0
\(381\) 10.5205i 0.538982i
\(382\) 0 0
\(383\) −7.15942 7.15942i −0.365829 0.365829i 0.500124 0.865954i \(-0.333288\pi\)
−0.865954 + 0.500124i \(0.833288\pi\)
\(384\) 0 0
\(385\) −1.64765 7.51668i −0.0839720 0.383086i
\(386\) 0 0
\(387\) −3.45863 −0.175812
\(388\) 0 0
\(389\) 12.3444 + 12.3444i 0.625887 + 0.625887i 0.947030 0.321144i \(-0.104067\pi\)
−0.321144 + 0.947030i \(0.604067\pi\)
\(390\) 0 0
\(391\) −0.182158 0.182158i −0.00921211 0.00921211i
\(392\) 0 0
\(393\) 26.9760 26.9760i 1.36076 1.36076i
\(394\) 0 0
\(395\) −8.82376 + 13.7781i −0.443971 + 0.693249i
\(396\) 0 0
\(397\) 9.88573 + 9.88573i 0.496151 + 0.496151i 0.910237 0.414087i \(-0.135899\pi\)
−0.414087 + 0.910237i \(0.635899\pi\)
\(398\) 0 0
\(399\) −43.2611 −2.16577
\(400\) 0 0
\(401\) −4.42061 −0.220755 −0.110377 0.993890i \(-0.535206\pi\)
−0.110377 + 0.993890i \(0.535206\pi\)
\(402\) 0 0
\(403\) 17.6573i 0.879574i
\(404\) 0 0
\(405\) 24.5564 5.38274i 1.22022 0.267470i
\(406\) 0 0
\(407\) 5.91185 + 5.91185i 0.293040 + 0.293040i
\(408\) 0 0
\(409\) 18.3976 18.3976i 0.909702 0.909702i −0.0865462 0.996248i \(-0.527583\pi\)
0.996248 + 0.0865462i \(0.0275830\pi\)
\(410\) 0 0
\(411\) 28.2922i 1.39555i
\(412\) 0 0
\(413\) −13.1203 + 13.1203i −0.645609 + 0.645609i
\(414\) 0 0
\(415\) −6.14266 + 9.59160i −0.301532 + 0.470833i
\(416\) 0 0
\(417\) 21.6162i 1.05855i
\(418\) 0 0
\(419\) 11.9789 0.585208 0.292604 0.956234i \(-0.405478\pi\)
0.292604 + 0.956234i \(0.405478\pi\)
\(420\) 0 0
\(421\) 13.1646 13.1646i 0.641605 0.641605i −0.309345 0.950950i \(-0.600110\pi\)
0.950950 + 0.309345i \(0.100110\pi\)
\(422\) 0 0
\(423\) 16.9195 0.822655
\(424\) 0 0
\(425\) 0.683396 + 1.48395i 0.0331496 + 0.0719820i
\(426\) 0 0
\(427\) 21.4478i 1.03793i
\(428\) 0 0
\(429\) 10.0061i 0.483097i
\(430\) 0 0
\(431\) 33.9147 1.63361 0.816807 0.576911i \(-0.195742\pi\)
0.816807 + 0.576911i \(0.195742\pi\)
\(432\) 0 0
\(433\) 24.8729i 1.19531i 0.801752 + 0.597657i \(0.203902\pi\)
−0.801752 + 0.597657i \(0.796098\pi\)
\(434\) 0 0
\(435\) 11.4826 + 22.5444i 0.550547 + 1.08092i
\(436\) 0 0
\(437\) 5.89343i 0.281921i
\(438\) 0 0
\(439\) 21.5991 1.03087 0.515433 0.856930i \(-0.327631\pi\)
0.515433 + 0.856930i \(0.327631\pi\)
\(440\) 0 0
\(441\) 0.830457i 0.0395456i
\(442\) 0 0
\(443\) 5.25883i 0.249855i −0.992166 0.124927i \(-0.960130\pi\)
0.992166 0.124927i \(-0.0398698\pi\)
\(444\) 0 0
\(445\) −18.5619 + 28.9840i −0.879920 + 1.37397i
\(446\) 0 0
\(447\) −32.9788 −1.55985
\(448\) 0 0
\(449\) 20.2305 20.2305i 0.954738 0.954738i −0.0442813 0.999019i \(-0.514100\pi\)
0.999019 + 0.0442813i \(0.0140998\pi\)
\(450\) 0 0
\(451\) −11.2303 −0.528816
\(452\) 0 0
\(453\) 17.2561i 0.810762i
\(454\) 0 0
\(455\) −5.02692 22.9331i −0.235666 1.07512i
\(456\) 0 0
\(457\) 2.36773 2.36773i 0.110758 0.110758i −0.649556 0.760314i \(-0.725045\pi\)
0.760314 + 0.649556i \(0.225045\pi\)
\(458\) 0 0
\(459\) 1.08850i 0.0508069i
\(460\) 0 0
\(461\) −18.0665 + 18.0665i −0.841441 + 0.841441i −0.989046 0.147605i \(-0.952843\pi\)
0.147605 + 0.989046i \(0.452843\pi\)
\(462\) 0 0
\(463\) 23.6401 + 23.6401i 1.09865 + 1.09865i 0.994569 + 0.104080i \(0.0331899\pi\)
0.104080 + 0.994569i \(0.466810\pi\)
\(464\) 0 0
\(465\) −18.3268 11.7369i −0.849887 0.544285i
\(466\) 0 0
\(467\) 0.686553i 0.0317699i 0.999874 + 0.0158849i \(0.00505655\pi\)
−0.999874 + 0.0158849i \(0.994943\pi\)
\(468\) 0 0
\(469\) 12.1881 0.562796
\(470\) 0 0
\(471\) 23.7727 1.09539
\(472\) 0 0
\(473\) −2.16018 2.16018i −0.0993252 0.0993252i
\(474\) 0 0
\(475\) −12.9503 + 35.0605i −0.594200 + 1.60869i
\(476\) 0 0
\(477\) 2.53999 2.53999i 0.116298 0.116298i
\(478\) 0 0
\(479\) −27.6104 27.6104i −1.26155 1.26155i −0.950340 0.311212i \(-0.899265\pi\)
−0.311212 0.950340i \(-0.600735\pi\)
\(480\) 0 0
\(481\) 18.0368 + 18.0368i 0.822409 + 0.822409i
\(482\) 0 0
\(483\) −4.56274 −0.207612
\(484\) 0 0
\(485\) 8.51416 1.86630i 0.386608 0.0847442i
\(486\) 0 0
\(487\) 24.4884 + 24.4884i 1.10968 + 1.10968i 0.993193 + 0.116483i \(0.0371620\pi\)
0.116483 + 0.993193i \(0.462838\pi\)
\(488\) 0 0
\(489\) 37.8988i 1.71384i
\(490\) 0 0
\(491\) −3.63405 + 3.63405i −0.164002 + 0.164002i −0.784337 0.620335i \(-0.786997\pi\)
0.620335 + 0.784337i \(0.286997\pi\)
\(492\) 0 0
\(493\) 1.70257 0.444360i 0.0766797 0.0200130i
\(494\) 0 0
\(495\) −3.32767 2.13111i −0.149568 0.0957863i
\(496\) 0 0
\(497\) −7.06325 + 7.06325i −0.316830 + 0.316830i
\(498\) 0 0
\(499\) 12.7461 0.570592 0.285296 0.958439i \(-0.407908\pi\)
0.285296 + 0.958439i \(0.407908\pi\)
\(500\) 0 0
\(501\) 17.0555 17.0555i 0.761982 0.761982i
\(502\) 0 0
\(503\) 12.2048i 0.544185i 0.962271 + 0.272092i \(0.0877156\pi\)
−0.962271 + 0.272092i \(0.912284\pi\)
\(504\) 0 0
\(505\) 20.6341 + 13.2145i 0.918206 + 0.588039i
\(506\) 0 0
\(507\) 3.21431i 0.142753i
\(508\) 0 0
\(509\) 28.3545i 1.25679i 0.777894 + 0.628396i \(0.216288\pi\)
−0.777894 + 0.628396i \(0.783712\pi\)
\(510\) 0 0
\(511\) −21.6570 + 21.6570i −0.958049 + 0.958049i
\(512\) 0 0
\(513\) 17.6084 17.6084i 0.777429 0.777429i
\(514\) 0 0
\(515\) −8.18231 + 12.7765i −0.360556 + 0.562998i
\(516\) 0 0
\(517\) 10.5675 + 10.5675i 0.464759 + 0.464759i
\(518\) 0 0
\(519\) −0.605909 0.605909i −0.0265964 0.0265964i
\(520\) 0 0
\(521\) 21.8728i 0.958267i 0.877742 + 0.479133i \(0.159049\pi\)
−0.877742 + 0.479133i \(0.840951\pi\)
\(522\) 0 0
\(523\) −4.55629 + 4.55629i −0.199232 + 0.199232i −0.799671 0.600438i \(-0.794993\pi\)
0.600438 + 0.799671i \(0.294993\pi\)
\(524\) 0 0
\(525\) 27.1441 + 10.0262i 1.18467 + 0.437580i
\(526\) 0 0
\(527\) −1.07027 + 1.07027i −0.0466218 + 0.0466218i
\(528\) 0 0
\(529\) 22.3784i 0.972975i
\(530\) 0 0
\(531\) 9.52827i 0.413492i
\(532\) 0 0
\(533\) −34.2634 −1.48411
\(534\) 0 0
\(535\) 28.6941 + 18.3763i 1.24055 + 0.794476i
\(536\) 0 0
\(537\) 8.91024 0.384505
\(538\) 0 0
\(539\) −0.518684 + 0.518684i −0.0223413 + 0.0223413i
\(540\) 0 0
\(541\) 1.47906 + 1.47906i 0.0635899 + 0.0635899i 0.738187 0.674597i \(-0.235682\pi\)
−0.674597 + 0.738187i \(0.735682\pi\)
\(542\) 0 0
\(543\) 16.7880 0.720440
\(544\) 0 0
\(545\) 31.3922 6.88115i 1.34470 0.294756i
\(546\) 0 0
\(547\) −3.08962 3.08962i −0.132103 0.132103i 0.637964 0.770066i \(-0.279777\pi\)
−0.770066 + 0.637964i \(0.779777\pi\)
\(548\) 0 0
\(549\) 7.78792 + 7.78792i 0.332380 + 0.332380i
\(550\) 0 0
\(551\) 34.7302 + 20.3537i 1.47956 + 0.867095i
\(552\) 0 0
\(553\) 20.1545 0.857057
\(554\) 0 0
\(555\) −30.7099 + 6.73158i −1.30356 + 0.285740i
\(556\) 0 0
\(557\) −21.6536 + 21.6536i −0.917492 + 0.917492i −0.996846 0.0793546i \(-0.974714\pi\)
0.0793546 + 0.996846i \(0.474714\pi\)
\(558\) 0 0
\(559\) −6.59063 6.59063i −0.278754 0.278754i
\(560\) 0 0
\(561\) −0.606502 + 0.606502i −0.0256065 + 0.0256065i
\(562\) 0 0
\(563\) 21.2513i 0.895635i 0.894125 + 0.447818i \(0.147799\pi\)
−0.894125 + 0.447818i \(0.852201\pi\)
\(564\) 0 0
\(565\) −0.113721 0.518802i −0.00478428 0.0218262i
\(566\) 0 0
\(567\) −21.8974 21.8974i −0.919606 0.919606i
\(568\) 0 0
\(569\) 6.11396 + 6.11396i 0.256311 + 0.256311i 0.823552 0.567241i \(-0.191989\pi\)
−0.567241 + 0.823552i \(0.691989\pi\)
\(570\) 0 0
\(571\) −34.2533 −1.43345 −0.716727 0.697354i \(-0.754361\pi\)
−0.716727 + 0.697354i \(0.754361\pi\)
\(572\) 0 0
\(573\) −20.8273 20.8273i −0.870071 0.870071i
\(574\) 0 0
\(575\) −1.36586 + 3.69782i −0.0569605 + 0.154210i
\(576\) 0 0
\(577\) 33.2376 1.38370 0.691850 0.722041i \(-0.256796\pi\)
0.691850 + 0.722041i \(0.256796\pi\)
\(578\) 0 0
\(579\) −48.9552 −2.03451
\(580\) 0 0
\(581\) 14.0306 0.582086
\(582\) 0 0
\(583\) 3.17283 0.131405
\(584\) 0 0
\(585\) −10.1526 6.50194i −0.419758 0.268822i
\(586\) 0 0
\(587\) −1.03039 1.03039i −0.0425287 0.0425287i 0.685523 0.728051i \(-0.259574\pi\)
−0.728051 + 0.685523i \(0.759574\pi\)
\(588\) 0 0
\(589\) −34.6270 −1.42678
\(590\) 0 0
\(591\) −0.228318 0.228318i −0.00939173 0.00939173i
\(592\) 0 0
\(593\) 0.937969 + 0.937969i 0.0385178 + 0.0385178i 0.726103 0.687586i \(-0.241329\pi\)
−0.687586 + 0.726103i \(0.741329\pi\)
\(594\) 0 0
\(595\) 1.08536 1.69476i 0.0444953 0.0694782i
\(596\) 0 0
\(597\) 13.5268i 0.553613i
\(598\) 0 0
\(599\) −27.8033 + 27.8033i −1.13601 + 1.13601i −0.146855 + 0.989158i \(0.546915\pi\)
−0.989158 + 0.146855i \(0.953085\pi\)
\(600\) 0 0
\(601\) 1.33565 + 1.33565i 0.0544824 + 0.0544824i 0.733823 0.679341i \(-0.237734\pi\)
−0.679341 + 0.733823i \(0.737734\pi\)
\(602\) 0 0
\(603\) 4.42565 4.42565i 0.180226 0.180226i
\(604\) 0 0
\(605\) 4.51920 + 20.6169i 0.183732 + 0.838195i
\(606\) 0 0
\(607\) 4.08518 0.165812 0.0829061 0.996557i \(-0.473580\pi\)
0.0829061 + 0.996557i \(0.473580\pi\)
\(608\) 0 0
\(609\) 15.7580 26.8884i 0.638544 1.08957i
\(610\) 0 0
\(611\) 32.2412 + 32.2412i 1.30434 + 1.30434i
\(612\) 0 0
\(613\) −4.25352 4.25352i −0.171798 0.171798i 0.615971 0.787769i \(-0.288764\pi\)
−0.787769 + 0.615971i \(0.788764\pi\)
\(614\) 0 0
\(615\) 22.7750 35.5625i 0.918376 1.43402i
\(616\) 0 0
\(617\) −27.4779 −1.10622 −0.553110 0.833108i \(-0.686559\pi\)
−0.553110 + 0.833108i \(0.686559\pi\)
\(618\) 0 0
\(619\) 29.7608 + 29.7608i 1.19619 + 1.19619i 0.975300 + 0.220886i \(0.0708949\pi\)
0.220886 + 0.975300i \(0.429105\pi\)
\(620\) 0 0
\(621\) 1.85715 1.85715i 0.0745249 0.0745249i
\(622\) 0 0
\(623\) 42.3977 1.69863
\(624\) 0 0
\(625\) 16.2513 18.9973i 0.650051 0.759891i
\(626\) 0 0
\(627\) −19.6224 −0.783645
\(628\) 0 0
\(629\) 2.18655i 0.0871835i
\(630\) 0 0
\(631\) 6.63723i 0.264224i 0.991235 + 0.132112i \(0.0421758\pi\)
−0.991235 + 0.132112i \(0.957824\pi\)
\(632\) 0 0
\(633\) 32.2164 32.2164i 1.28049 1.28049i
\(634\) 0 0
\(635\) 2.39735 + 10.9368i 0.0951358 + 0.434015i
\(636\) 0 0
\(637\) −1.58249 + 1.58249i −0.0627004 + 0.0627004i
\(638\) 0 0
\(639\) 5.12949i 0.202920i
\(640\) 0 0
\(641\) −23.3527 23.3527i −0.922376 0.922376i 0.0748212 0.997197i \(-0.476161\pi\)
−0.997197 + 0.0748212i \(0.976161\pi\)
\(642\) 0 0
\(643\) −28.2503 28.2503i −1.11408 1.11408i −0.992592 0.121491i \(-0.961232\pi\)
−0.121491 0.992592i \(-0.538768\pi\)
\(644\) 0 0
\(645\) 11.2213 2.45971i 0.441840 0.0968510i
\(646\) 0 0
\(647\) 12.0944 12.0944i 0.475480 0.475480i −0.428203 0.903683i \(-0.640853\pi\)
0.903683 + 0.428203i \(0.140853\pi\)
\(648\) 0 0
\(649\) −5.95113 + 5.95113i −0.233602 + 0.233602i
\(650\) 0 0
\(651\) 26.8085i 1.05071i
\(652\) 0 0
\(653\) 32.2827i 1.26332i 0.775246 + 0.631659i \(0.217626\pi\)
−0.775246 + 0.631659i \(0.782374\pi\)
\(654\) 0 0
\(655\) −21.8964 + 34.1907i −0.855564 + 1.33594i
\(656\) 0 0
\(657\) 15.7278i 0.613599i
\(658\) 0 0
\(659\) 32.9138 32.9138i 1.28214 1.28214i 0.342692 0.939448i \(-0.388661\pi\)
0.939448 0.342692i \(-0.111339\pi\)
\(660\) 0 0
\(661\) −12.4860 −0.485649 −0.242825 0.970070i \(-0.578074\pi\)
−0.242825 + 0.970070i \(0.578074\pi\)
\(662\) 0 0
\(663\) −1.85042 + 1.85042i −0.0718642 + 0.0718642i
\(664\) 0 0
\(665\) 44.9731 9.85807i 1.74398 0.382279i
\(666\) 0 0
\(667\) 3.66299 + 2.14669i 0.141831 + 0.0831203i
\(668\) 0 0
\(669\) −1.46734 + 1.46734i −0.0567305 + 0.0567305i
\(670\) 0 0
\(671\) 9.72830i 0.375557i
\(672\) 0 0
\(673\) 30.5512 + 30.5512i 1.17766 + 1.17766i 0.980338 + 0.197324i \(0.0632250\pi\)
0.197324 + 0.980338i \(0.436775\pi\)
\(674\) 0 0
\(675\) −15.1293 + 6.96742i −0.582326 + 0.268176i
\(676\) 0 0
\(677\) −35.2511 −1.35481 −0.677405 0.735610i \(-0.736895\pi\)
−0.677405 + 0.735610i \(0.736895\pi\)
\(678\) 0 0
\(679\) −7.59226 7.59226i −0.291364 0.291364i
\(680\) 0 0
\(681\) −10.3128 10.3128i −0.395188 0.395188i
\(682\) 0 0
\(683\) 7.41154 7.41154i 0.283595 0.283595i −0.550946 0.834541i \(-0.685733\pi\)
0.834541 + 0.550946i \(0.185733\pi\)
\(684\) 0 0
\(685\) 6.44704 + 29.4118i 0.246329 + 1.12377i
\(686\) 0 0
\(687\) 22.3170 + 22.3170i 0.851447 + 0.851447i
\(688\) 0 0
\(689\) 9.68020 0.368786
\(690\) 0 0
\(691\) 3.46515 0.131820 0.0659102 0.997826i \(-0.479005\pi\)
0.0659102 + 0.997826i \(0.479005\pi\)
\(692\) 0 0
\(693\) 4.86771i 0.184909i
\(694\) 0 0
\(695\) −4.92577 22.4717i −0.186845 0.852399i
\(696\) 0 0
\(697\) −2.07682 2.07682i −0.0786652 0.0786652i
\(698\) 0 0
\(699\) −6.08887 + 6.08887i −0.230302 + 0.230302i
\(700\) 0 0
\(701\) 48.3739i 1.82706i 0.406773 + 0.913529i \(0.366654\pi\)
−0.406773 + 0.913529i \(0.633346\pi\)
\(702\) 0 0
\(703\) −35.3712 + 35.3712i −1.33405 + 1.33405i
\(704\) 0 0
\(705\) −54.8945 + 12.0328i −2.06744 + 0.453182i
\(706\) 0 0
\(707\) 30.1835i 1.13517i
\(708\) 0 0
\(709\) −17.5666 −0.659728 −0.329864 0.944028i \(-0.607003\pi\)
−0.329864 + 0.944028i \(0.607003\pi\)
\(710\) 0 0
\(711\) 7.31832 7.31832i 0.274459 0.274459i
\(712\) 0 0
\(713\) −3.65210 −0.136772
\(714\) 0 0
\(715\) −2.28012 10.4020i −0.0852716 0.389014i
\(716\) 0 0
\(717\) 15.3587i 0.573581i
\(718\) 0 0
\(719\) 42.7327i 1.59366i −0.604202 0.796831i \(-0.706508\pi\)
0.604202 0.796831i \(-0.293492\pi\)
\(720\) 0 0
\(721\) 18.6894 0.696029
\(722\) 0 0
\(723\) 7.62137i 0.283442i
\(724\) 0 0
\(725\) −17.0742 20.8200i −0.634121 0.773234i
\(726\) 0 0
\(727\) 12.8458i 0.476423i −0.971213 0.238211i \(-0.923439\pi\)
0.971213 0.238211i \(-0.0765611\pi\)
\(728\) 0 0
\(729\) 5.09544 0.188720
\(730\) 0 0
\(731\) 0.798962i 0.0295507i
\(732\) 0 0
\(733\) 16.6173i 0.613773i −0.951746 0.306887i \(-0.900713\pi\)
0.951746 0.306887i \(-0.0992873\pi\)
\(734\) 0 0
\(735\) −0.590605 2.69438i −0.0217848 0.0993835i
\(736\) 0 0
\(737\) 5.52832 0.203638
\(738\) 0 0
\(739\) 4.90421 4.90421i 0.180404 0.180404i −0.611128 0.791532i \(-0.709284\pi\)
0.791532 + 0.611128i \(0.209284\pi\)
\(740\) 0 0
\(741\) −59.8673 −2.19928
\(742\) 0 0
\(743\) 5.82549i 0.213716i −0.994274 0.106858i \(-0.965921\pi\)
0.994274 0.106858i \(-0.0340791\pi\)
\(744\) 0 0
\(745\) 34.2839 7.51500i 1.25607 0.275328i
\(746\) 0 0
\(747\) 5.09466 5.09466i 0.186404 0.186404i
\(748\) 0 0
\(749\) 41.9736i 1.53368i
\(750\) 0 0
\(751\) 24.8635 24.8635i 0.907281 0.907281i −0.0887708 0.996052i \(-0.528294\pi\)
0.996052 + 0.0887708i \(0.0282939\pi\)
\(752\) 0 0
\(753\) 8.65607 + 8.65607i 0.315445 + 0.315445i
\(754\) 0 0
\(755\) 3.93221 + 17.9390i 0.143108 + 0.652866i
\(756\) 0 0
\(757\) 13.0727i 0.475134i −0.971371 0.237567i \(-0.923650\pi\)
0.971371 0.237567i \(-0.0763500\pi\)
\(758\) 0 0
\(759\) −2.06957 −0.0751207
\(760\) 0 0
\(761\) 0.295680 0.0107184 0.00535920 0.999986i \(-0.498294\pi\)
0.00535920 + 0.999986i \(0.498294\pi\)
\(762\) 0 0
\(763\) −27.9931 27.9931i −1.01342 1.01342i
\(764\) 0 0
\(765\) −0.221279 1.00949i −0.00800037 0.0364982i
\(766\) 0 0
\(767\) −18.1567 + 18.1567i −0.655600 + 0.655600i
\(768\) 0 0
\(769\) −20.4410 20.4410i −0.737120 0.737120i 0.234899 0.972020i \(-0.424524\pi\)
−0.972020 + 0.234899i \(0.924524\pi\)
\(770\) 0 0
\(771\) 16.6458 + 16.6458i 0.599483 + 0.599483i
\(772\) 0 0
\(773\) −11.2143 −0.403351 −0.201676 0.979452i \(-0.564639\pi\)
−0.201676 + 0.979452i \(0.564639\pi\)
\(774\) 0 0
\(775\) 21.7266 + 8.02516i 0.780443 + 0.288272i
\(776\) 0 0
\(777\) 27.3847 + 27.3847i 0.982419 + 0.982419i
\(778\) 0 0
\(779\) 67.1923i 2.40741i
\(780\) 0 0
\(781\) −3.20376 + 3.20376i −0.114640 + 0.114640i
\(782\) 0 0
\(783\) 4.53038 + 17.3582i 0.161903 + 0.620330i
\(784\) 0 0
\(785\) −24.7135 + 5.41718i −0.882063 + 0.193347i
\(786\) 0 0
\(787\) 22.9932 22.9932i 0.819620 0.819620i −0.166432 0.986053i \(-0.553225\pi\)
0.986053 + 0.166432i \(0.0532248\pi\)
\(788\) 0 0
\(789\) 49.7002 1.76937
\(790\) 0 0
\(791\) −0.462627 + 0.462627i −0.0164491 + 0.0164491i
\(792\) 0 0
\(793\) 29.6807i 1.05399i
\(794\) 0 0
\(795\) −6.43447 + 10.0472i −0.228207 + 0.356339i
\(796\) 0 0
\(797\) 17.6986i 0.626916i −0.949602 0.313458i \(-0.898513\pi\)
0.949602 0.313458i \(-0.101487\pi\)
\(798\) 0 0
\(799\) 3.90850i 0.138273i
\(800\) 0 0
\(801\) 15.3951 15.3951i 0.543958 0.543958i
\(802\) 0 0
\(803\) −9.82320 + 9.82320i −0.346653 + 0.346653i
\(804\) 0 0
\(805\) 4.74330 1.03973i 0.167179 0.0366456i
\(806\) 0 0
\(807\) −20.6188 20.6188i −0.725817 0.725817i
\(808\) 0 0
\(809\) −19.4828 19.4828i −0.684979 0.684979i 0.276139 0.961118i \(-0.410945\pi\)
−0.961118 + 0.276139i \(0.910945\pi\)
\(810\) 0 0
\(811\) 11.9464i 0.419494i −0.977756 0.209747i \(-0.932736\pi\)
0.977756 0.209747i \(-0.0672640\pi\)
\(812\) 0 0
\(813\) 28.4623 28.4623i 0.998217 0.998217i
\(814\) 0 0
\(815\) −8.63614 39.3986i −0.302511 1.38007i
\(816\) 0 0
\(817\) 12.9246 12.9246i 0.452174 0.452174i
\(818\) 0 0
\(819\) 14.8512i 0.518943i
\(820\) 0 0
\(821\) 44.5244i 1.55391i 0.629555 + 0.776956i \(0.283237\pi\)
−0.629555 + 0.776956i \(0.716763\pi\)
\(822\) 0 0
\(823\) 14.9390 0.520741 0.260370 0.965509i \(-0.416155\pi\)
0.260370 + 0.965509i \(0.416155\pi\)
\(824\) 0 0
\(825\) 12.3121 + 4.54770i 0.428651 + 0.158331i
\(826\) 0 0
\(827\) −19.2376 −0.668957 −0.334478 0.942403i \(-0.608560\pi\)
−0.334478 + 0.942403i \(0.608560\pi\)
\(828\) 0 0
\(829\) −29.2184 + 29.2184i −1.01480 + 1.01480i −0.0149076 + 0.999889i \(0.504745\pi\)
−0.999889 + 0.0149076i \(0.995255\pi\)
\(830\) 0 0
\(831\) −7.92751 7.92751i −0.275002 0.275002i
\(832\) 0 0
\(833\) −0.191840 −0.00664686
\(834\) 0 0
\(835\) −13.8439 + 21.6169i −0.479089 + 0.748084i
\(836\) 0 0
\(837\) −10.9117 10.9117i −0.377165 0.377165i
\(838\) 0 0
\(839\) 29.2430 + 29.2430i 1.00958 + 1.00958i 0.999954 + 0.00962721i \(0.00306448\pi\)
0.00962721 + 0.999954i \(0.496936\pi\)
\(840\) 0 0
\(841\) −25.3011 + 14.1723i −0.872452 + 0.488699i
\(842\) 0 0
\(843\) 69.5638 2.39590
\(844\) 0 0
\(845\) −0.732457 3.34151i −0.0251973 0.114952i
\(846\) 0 0
\(847\) 18.3845 18.3845i 0.631699 0.631699i
\(848\) 0 0
\(849\) −39.9189 39.9189i −1.37001 1.37001i
\(850\) 0 0
\(851\) −3.73059 + 3.73059i −0.127883 + 0.127883i
\(852\) 0 0
\(853\) 0.451413i 0.0154561i −0.999970 0.00772804i \(-0.997540\pi\)
0.999970 0.00772804i \(-0.00245994\pi\)
\(854\) 0 0
\(855\) 12.7507 19.9098i 0.436064 0.680901i
\(856\) 0 0
\(857\) 15.4044 + 15.4044i 0.526203 + 0.526203i 0.919438 0.393235i \(-0.128644\pi\)
−0.393235 + 0.919438i \(0.628644\pi\)
\(858\) 0 0
\(859\) 25.5734 + 25.5734i 0.872555 + 0.872555i 0.992750 0.120196i \(-0.0383522\pi\)
−0.120196 + 0.992750i \(0.538352\pi\)
\(860\) 0 0
\(861\) −52.0208 −1.77286
\(862\) 0 0
\(863\) 16.9266 + 16.9266i 0.576188 + 0.576188i 0.933851 0.357663i \(-0.116426\pi\)
−0.357663 + 0.933851i \(0.616426\pi\)
\(864\) 0 0
\(865\) 0.767957 + 0.491816i 0.0261113 + 0.0167222i
\(866\) 0 0
\(867\) 35.4938 1.20543
\(868\) 0 0
\(869\) 9.14171 0.310111
\(870\) 0 0
\(871\) 16.8667 0.571506
\(872\) 0 0
\(873\) −5.51366 −0.186609
\(874\) 0 0
\(875\) −30.5030 4.23757i −1.03119 0.143256i
\(876\) 0 0
\(877\) 5.79759 + 5.79759i 0.195771 + 0.195771i 0.798184 0.602413i \(-0.205794\pi\)
−0.602413 + 0.798184i \(0.705794\pi\)
\(878\) 0 0
\(879\) −26.8197 −0.904604
\(880\) 0 0
\(881\) −33.4393 33.4393i −1.12660 1.12660i −0.990726 0.135874i \(-0.956616\pi\)
−0.135874 0.990726i \(-0.543384\pi\)
\(882\) 0 0
\(883\) 8.69563 + 8.69563i 0.292631 + 0.292631i 0.838119 0.545488i \(-0.183656\pi\)
−0.545488 + 0.838119i \(0.683656\pi\)
\(884\) 0 0
\(885\) −6.77631 30.9140i −0.227783 1.03916i
\(886\) 0 0
\(887\) 55.5610i 1.86555i −0.360453 0.932777i \(-0.617378\pi\)
0.360453 0.932777i \(-0.382622\pi\)
\(888\) 0 0
\(889\) 9.75261 9.75261i 0.327092 0.327092i
\(890\) 0 0
\(891\) −9.93227 9.93227i −0.332744 0.332744i
\(892\) 0 0
\(893\) −63.2267 + 63.2267i −2.11580 + 2.11580i
\(894\) 0 0
\(895\) −9.26285 + 2.03041i −0.309623 + 0.0678691i
\(896\) 0 0
\(897\) −6.31419 −0.210825
\(898\) 0 0
\(899\) 12.6129 21.5220i 0.420665 0.717798i
\(900\) 0 0
\(901\) 0.586750 + 0.586750i 0.0195475 + 0.0195475i
\(902\) 0 0
\(903\) −10.0063 10.0063i −0.332989 0.332989i
\(904\) 0 0
\(905\) −17.4523 + 3.82553i −0.580134 + 0.127165i
\(906\) 0 0
\(907\) −33.1251 −1.09990 −0.549951 0.835197i \(-0.685353\pi\)
−0.549951 + 0.835197i \(0.685353\pi\)
\(908\) 0 0
\(909\) −10.9600 10.9600i −0.363520 0.363520i
\(910\) 0 0
\(911\) 10.3153 10.3153i 0.341762 0.341762i −0.515267 0.857029i \(-0.672307\pi\)
0.857029 + 0.515267i \(0.172307\pi\)
\(912\) 0 0
\(913\) 6.36401 0.210618
\(914\) 0 0
\(915\) −30.8061 19.7289i −1.01842 0.652216i
\(916\) 0 0
\(917\) 50.0140 1.65161
\(918\) 0 0
\(919\) 1.08806i 0.0358917i −0.999839 0.0179458i \(-0.994287\pi\)
0.999839 0.0179458i \(-0.00571265\pi\)
\(920\) 0 0
\(921\) 65.1982i 2.14835i
\(922\) 0 0
\(923\) −9.77455 + 9.77455i −0.321733 + 0.321733i
\(924\) 0 0
\(925\) 30.3912 13.9959i 0.999258 0.460184i
\(926\) 0 0
\(927\) 6.78632 6.78632i 0.222892 0.222892i
\(928\) 0 0
\(929\) 35.2436i 1.15630i 0.815929 + 0.578152i \(0.196226\pi\)
−0.815929 + 0.578152i \(0.803774\pi\)
\(930\) 0 0
\(931\) −3.10334 3.10334i −0.101708 0.101708i
\(932\) 0 0
\(933\) 19.3475 + 19.3475i 0.633409 + 0.633409i
\(934\) 0 0
\(935\) 0.492298 0.768710i 0.0160999 0.0251395i
\(936\) 0 0
\(937\) −19.4962 + 19.4962i −0.636913 + 0.636913i −0.949793 0.312880i \(-0.898706\pi\)
0.312880 + 0.949793i \(0.398706\pi\)
\(938\) 0 0
\(939\) −31.7670 + 31.7670i −1.03668 + 1.03668i
\(940\) 0 0
\(941\) 12.3219i 0.401681i −0.979624 0.200841i \(-0.935633\pi\)
0.979624 0.200841i \(-0.0643674\pi\)
\(942\) 0 0
\(943\) 7.08675i 0.230776i
\(944\) 0 0
\(945\) 17.2785 + 11.0655i 0.562071 + 0.359962i
\(946\) 0 0
\(947\) 43.7634i 1.42212i 0.703131 + 0.711060i \(0.251785\pi\)
−0.703131 + 0.711060i \(0.748215\pi\)
\(948\) 0 0
\(949\) −29.9702 + 29.9702i −0.972875 + 0.972875i
\(950\) 0 0
\(951\) −19.2431 −0.624000
\(952\) 0 0
\(953\) −8.66865 + 8.66865i −0.280805 + 0.280805i −0.833430 0.552625i \(-0.813626\pi\)
0.552625 + 0.833430i \(0.313626\pi\)
\(954\) 0 0
\(955\) 26.3975 + 16.9055i 0.854202 + 0.547049i
\(956\) 0 0
\(957\) 7.14751 12.1961i 0.231046 0.394243i
\(958\) 0 0
\(959\) 26.2271 26.2271i 0.846917 0.846917i
\(960\) 0 0
\(961\) 9.54203i 0.307807i
\(962\) 0 0
\(963\) −15.2411 15.2411i −0.491137 0.491137i
\(964\) 0 0
\(965\) 50.8926 11.1556i 1.63829 0.359112i
\(966\) 0 0
\(967\) 48.4687 1.55865 0.779324 0.626621i \(-0.215563\pi\)
0.779324 + 0.626621i \(0.215563\pi\)
\(968\) 0 0
\(969\) −3.62877 3.62877i −0.116573 0.116573i
\(970\) 0 0
\(971\) −21.4570 21.4570i −0.688587 0.688587i 0.273333 0.961920i \(-0.411874\pi\)
−0.961920 + 0.273333i \(0.911874\pi\)
\(972\) 0 0
\(973\) −20.0385 + 20.0385i −0.642404 + 0.642404i
\(974\) 0 0
\(975\) 37.5636 + 13.8749i 1.20300 + 0.444352i
\(976\) 0 0
\(977\) −8.07528 8.07528i −0.258351 0.258351i 0.566032 0.824383i \(-0.308478\pi\)
−0.824383 + 0.566032i \(0.808478\pi\)
\(978\) 0 0
\(979\) 19.2308 0.614619
\(980\) 0 0
\(981\) −20.3292 −0.649062
\(982\) 0 0
\(983\) 18.0478i 0.575635i −0.957685 0.287817i \(-0.907070\pi\)
0.957685 0.287817i \(-0.0929296\pi\)
\(984\) 0 0
\(985\) 0.289381 + 0.185325i 0.00922043 + 0.00590496i
\(986\) 0 0
\(987\) 48.9505 + 48.9505i 1.55811 + 1.55811i
\(988\) 0 0
\(989\) 1.36315 1.36315i 0.0433457 0.0433457i
\(990\) 0 0
\(991\) 55.6527i 1.76787i 0.467613 + 0.883933i \(0.345114\pi\)
−0.467613 + 0.883933i \(0.654886\pi\)
\(992\) 0 0
\(993\) −11.5254 + 11.5254i −0.365748 + 0.365748i
\(994\) 0 0
\(995\) −3.08239 14.0621i −0.0977184 0.445797i
\(996\) 0 0
\(997\) 32.6196i 1.03307i −0.856265 0.516537i \(-0.827221\pi\)
0.856265 0.516537i \(-0.172779\pi\)
\(998\) 0 0
\(999\) −22.2925 −0.705304
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.bl.d.737.17 yes 42
5.3 odd 4 1160.2.s.c.273.17 yes 42
29.17 odd 4 1160.2.s.c.17.5 42
145.133 even 4 inner 1160.2.bl.d.713.17 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.s.c.17.5 42 29.17 odd 4
1160.2.s.c.273.17 yes 42 5.3 odd 4
1160.2.bl.d.713.17 yes 42 145.133 even 4 inner
1160.2.bl.d.737.17 yes 42 1.1 even 1 trivial