Properties

Label 1160.2.bl.c.737.7
Level $1160$
Weight $2$
Character 1160.737
Analytic conductor $9.263$
Analytic rank $0$
Dimension $42$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1160,2,Mod(713,1160)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1160.713"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1160, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1160 = 2^{3} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1160.bl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [42,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.26264663447\)
Analytic rank: \(0\)
Dimension: \(42\)
Relative dimension: \(21\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 737.7
Character \(\chi\) \(=\) 1160.737
Dual form 1160.2.bl.c.713.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.70895 q^{3} +(-1.82020 + 1.29879i) q^{5} +(1.24431 + 1.24431i) q^{7} -0.0795021 q^{9} +(-2.03329 - 2.03329i) q^{11} +(-2.26136 - 2.26136i) q^{13} +(3.11063 - 2.21956i) q^{15} +1.14490i q^{17} +(2.14303 - 2.14303i) q^{19} +(-2.12645 - 2.12645i) q^{21} +(-4.92034 + 4.92034i) q^{23} +(1.62629 - 4.72813i) q^{25} +5.26270 q^{27} +(-5.07745 - 1.79431i) q^{29} +(5.72978 + 5.72978i) q^{31} +(3.47479 + 3.47479i) q^{33} +(-3.88098 - 0.648798i) q^{35} +5.71262 q^{37} +(3.86454 + 3.86454i) q^{39} +(4.87222 - 4.87222i) q^{41} +4.09667 q^{43} +(0.144710 - 0.103257i) q^{45} +4.43658 q^{47} -3.90341i q^{49} -1.95657i q^{51} +(4.75857 - 4.75857i) q^{53} +(6.34183 + 1.06019i) q^{55} +(-3.66232 + 3.66232i) q^{57} +7.13518i q^{59} +(-7.52807 - 7.52807i) q^{61} +(-0.0989249 - 0.0989249i) q^{63} +(7.05317 + 1.17910i) q^{65} +(4.81206 - 4.81206i) q^{67} +(8.40860 - 8.40860i) q^{69} -0.429835i q^{71} +6.67557i q^{73} +(-2.77924 + 8.08012i) q^{75} -5.06007i q^{77} +(4.85454 - 4.85454i) q^{79} -8.75517 q^{81} +(11.9524 - 11.9524i) q^{83} +(-1.48698 - 2.08394i) q^{85} +(8.67708 + 3.06637i) q^{87} +(5.43313 - 5.43313i) q^{89} -5.62765i q^{91} +(-9.79189 - 9.79189i) q^{93} +(-1.11740 + 6.68409i) q^{95} +2.84180 q^{97} +(0.161651 + 0.161651i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 42 q - 8 q^{3} - 2 q^{5} + 4 q^{7} + 34 q^{9} + 2 q^{11} + 4 q^{13} - 4 q^{15} + 8 q^{19} + 4 q^{21} - 20 q^{23} + 4 q^{25} - 8 q^{27} + 20 q^{29} + 2 q^{31} - 10 q^{33} + 16 q^{35} - 12 q^{37} + 10 q^{39}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1160\mathbb{Z}\right)^\times\).

\(n\) \(321\) \(581\) \(697\) \(871\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.70895 −0.986661 −0.493330 0.869842i \(-0.664221\pi\)
−0.493330 + 0.869842i \(0.664221\pi\)
\(4\) 0 0
\(5\) −1.82020 + 1.29879i −0.814020 + 0.580837i
\(6\) 0 0
\(7\) 1.24431 + 1.24431i 0.470303 + 0.470303i 0.902013 0.431709i \(-0.142089\pi\)
−0.431709 + 0.902013i \(0.642089\pi\)
\(8\) 0 0
\(9\) −0.0795021 −0.0265007
\(10\) 0 0
\(11\) −2.03329 2.03329i −0.613061 0.613061i 0.330682 0.943742i \(-0.392721\pi\)
−0.943742 + 0.330682i \(0.892721\pi\)
\(12\) 0 0
\(13\) −2.26136 2.26136i −0.627188 0.627188i 0.320171 0.947360i \(-0.396260\pi\)
−0.947360 + 0.320171i \(0.896260\pi\)
\(14\) 0 0
\(15\) 3.11063 2.21956i 0.803162 0.573089i
\(16\) 0 0
\(17\) 1.14490i 0.277678i 0.990315 + 0.138839i \(0.0443370\pi\)
−0.990315 + 0.138839i \(0.955663\pi\)
\(18\) 0 0
\(19\) 2.14303 2.14303i 0.491644 0.491644i −0.417180 0.908824i \(-0.636981\pi\)
0.908824 + 0.417180i \(0.136981\pi\)
\(20\) 0 0
\(21\) −2.12645 2.12645i −0.464030 0.464030i
\(22\) 0 0
\(23\) −4.92034 + 4.92034i −1.02596 + 1.02596i −0.0263081 + 0.999654i \(0.508375\pi\)
−0.999654 + 0.0263081i \(0.991625\pi\)
\(24\) 0 0
\(25\) 1.62629 4.72813i 0.325257 0.945626i
\(26\) 0 0
\(27\) 5.26270 1.01281
\(28\) 0 0
\(29\) −5.07745 1.79431i −0.942858 0.333194i
\(30\) 0 0
\(31\) 5.72978 + 5.72978i 1.02910 + 1.02910i 0.999564 + 0.0295358i \(0.00940291\pi\)
0.0295358 + 0.999564i \(0.490597\pi\)
\(32\) 0 0
\(33\) 3.47479 + 3.47479i 0.604883 + 0.604883i
\(34\) 0 0
\(35\) −3.88098 0.648798i −0.656006 0.109667i
\(36\) 0 0
\(37\) 5.71262 0.939149 0.469574 0.882893i \(-0.344407\pi\)
0.469574 + 0.882893i \(0.344407\pi\)
\(38\) 0 0
\(39\) 3.86454 + 3.86454i 0.618822 + 0.618822i
\(40\) 0 0
\(41\) 4.87222 4.87222i 0.760912 0.760912i −0.215575 0.976487i \(-0.569163\pi\)
0.976487 + 0.215575i \(0.0691625\pi\)
\(42\) 0 0
\(43\) 4.09667 0.624736 0.312368 0.949961i \(-0.398878\pi\)
0.312368 + 0.949961i \(0.398878\pi\)
\(44\) 0 0
\(45\) 0.144710 0.103257i 0.0215721 0.0153926i
\(46\) 0 0
\(47\) 4.43658 0.647141 0.323571 0.946204i \(-0.395117\pi\)
0.323571 + 0.946204i \(0.395117\pi\)
\(48\) 0 0
\(49\) 3.90341i 0.557630i
\(50\) 0 0
\(51\) 1.95657i 0.273974i
\(52\) 0 0
\(53\) 4.75857 4.75857i 0.653640 0.653640i −0.300228 0.953868i \(-0.597063\pi\)
0.953868 + 0.300228i \(0.0970627\pi\)
\(54\) 0 0
\(55\) 6.34183 + 1.06019i 0.855132 + 0.142955i
\(56\) 0 0
\(57\) −3.66232 + 3.66232i −0.485086 + 0.485086i
\(58\) 0 0
\(59\) 7.13518i 0.928922i 0.885594 + 0.464461i \(0.153752\pi\)
−0.885594 + 0.464461i \(0.846248\pi\)
\(60\) 0 0
\(61\) −7.52807 7.52807i −0.963870 0.963870i 0.0354995 0.999370i \(-0.488698\pi\)
−0.999370 + 0.0354995i \(0.988698\pi\)
\(62\) 0 0
\(63\) −0.0989249 0.0989249i −0.0124634 0.0124634i
\(64\) 0 0
\(65\) 7.05317 + 1.17910i 0.874838 + 0.146250i
\(66\) 0 0
\(67\) 4.81206 4.81206i 0.587887 0.587887i −0.349172 0.937059i \(-0.613537\pi\)
0.937059 + 0.349172i \(0.113537\pi\)
\(68\) 0 0
\(69\) 8.40860 8.40860i 1.01228 1.01228i
\(70\) 0 0
\(71\) 0.429835i 0.0510120i −0.999675 0.0255060i \(-0.991880\pi\)
0.999675 0.0255060i \(-0.00811970\pi\)
\(72\) 0 0
\(73\) 6.67557i 0.781316i 0.920536 + 0.390658i \(0.127752\pi\)
−0.920536 + 0.390658i \(0.872248\pi\)
\(74\) 0 0
\(75\) −2.77924 + 8.08012i −0.320919 + 0.933012i
\(76\) 0 0
\(77\) 5.06007i 0.576649i
\(78\) 0 0
\(79\) 4.85454 4.85454i 0.546178 0.546178i −0.379155 0.925333i \(-0.623785\pi\)
0.925333 + 0.379155i \(0.123785\pi\)
\(80\) 0 0
\(81\) −8.75517 −0.972797
\(82\) 0 0
\(83\) 11.9524 11.9524i 1.31194 1.31194i 0.391959 0.919983i \(-0.371797\pi\)
0.919983 0.391959i \(-0.128203\pi\)
\(84\) 0 0
\(85\) −1.48698 2.08394i −0.161286 0.226035i
\(86\) 0 0
\(87\) 8.67708 + 3.06637i 0.930281 + 0.328750i
\(88\) 0 0
\(89\) 5.43313 5.43313i 0.575911 0.575911i −0.357863 0.933774i \(-0.616495\pi\)
0.933774 + 0.357863i \(0.116495\pi\)
\(90\) 0 0
\(91\) 5.62765i 0.589938i
\(92\) 0 0
\(93\) −9.79189 9.79189i −1.01537 1.01537i
\(94\) 0 0
\(95\) −1.11740 + 6.68409i −0.114643 + 0.685773i
\(96\) 0 0
\(97\) 2.84180 0.288542 0.144271 0.989538i \(-0.453916\pi\)
0.144271 + 0.989538i \(0.453916\pi\)
\(98\) 0 0
\(99\) 0.161651 + 0.161651i 0.0162465 + 0.0162465i
\(100\) 0 0
\(101\) −12.4565 12.4565i −1.23947 1.23947i −0.960218 0.279253i \(-0.909913\pi\)
−0.279253 0.960218i \(-0.590087\pi\)
\(102\) 0 0
\(103\) −0.387432 + 0.387432i −0.0381748 + 0.0381748i −0.725937 0.687762i \(-0.758593\pi\)
0.687762 + 0.725937i \(0.258593\pi\)
\(104\) 0 0
\(105\) 6.63239 + 1.10876i 0.647255 + 0.108204i
\(106\) 0 0
\(107\) 8.10940 + 8.10940i 0.783966 + 0.783966i 0.980497 0.196532i \(-0.0629679\pi\)
−0.196532 + 0.980497i \(0.562968\pi\)
\(108\) 0 0
\(109\) 11.2902 1.08141 0.540703 0.841214i \(-0.318158\pi\)
0.540703 + 0.841214i \(0.318158\pi\)
\(110\) 0 0
\(111\) −9.76256 −0.926621
\(112\) 0 0
\(113\) 5.97851i 0.562411i −0.959648 0.281205i \(-0.909266\pi\)
0.959648 0.281205i \(-0.0907342\pi\)
\(114\) 0 0
\(115\) 2.56553 15.3465i 0.239237 1.43107i
\(116\) 0 0
\(117\) 0.179783 + 0.179783i 0.0166209 + 0.0166209i
\(118\) 0 0
\(119\) −1.42460 + 1.42460i −0.130593 + 0.130593i
\(120\) 0 0
\(121\) 2.73145i 0.248314i
\(122\) 0 0
\(123\) −8.32636 + 8.32636i −0.750762 + 0.750762i
\(124\) 0 0
\(125\) 3.18067 + 10.7184i 0.284488 + 0.958680i
\(126\) 0 0
\(127\) 10.0059i 0.887883i 0.896056 + 0.443942i \(0.146420\pi\)
−0.896056 + 0.443942i \(0.853580\pi\)
\(128\) 0 0
\(129\) −7.00098 −0.616402
\(130\) 0 0
\(131\) −1.46901 + 1.46901i −0.128348 + 0.128348i −0.768363 0.640015i \(-0.778928\pi\)
0.640015 + 0.768363i \(0.278928\pi\)
\(132\) 0 0
\(133\) 5.33316 0.462444
\(134\) 0 0
\(135\) −9.57920 + 6.83515i −0.824446 + 0.588276i
\(136\) 0 0
\(137\) 17.0897i 1.46007i 0.683411 + 0.730034i \(0.260496\pi\)
−0.683411 + 0.730034i \(0.739504\pi\)
\(138\) 0 0
\(139\) 14.2352i 1.20742i −0.797206 0.603708i \(-0.793689\pi\)
0.797206 0.603708i \(-0.206311\pi\)
\(140\) 0 0
\(141\) −7.58187 −0.638509
\(142\) 0 0
\(143\) 9.19601i 0.769009i
\(144\) 0 0
\(145\) 11.5724 3.32853i 0.961037 0.276420i
\(146\) 0 0
\(147\) 6.67071i 0.550191i
\(148\) 0 0
\(149\) −5.49541 −0.450201 −0.225101 0.974336i \(-0.572271\pi\)
−0.225101 + 0.974336i \(0.572271\pi\)
\(150\) 0 0
\(151\) 9.75739i 0.794045i 0.917809 + 0.397022i \(0.129957\pi\)
−0.917809 + 0.397022i \(0.870043\pi\)
\(152\) 0 0
\(153\) 0.0910216i 0.00735866i
\(154\) 0 0
\(155\) −17.8712 2.98759i −1.43545 0.239969i
\(156\) 0 0
\(157\) −19.4741 −1.55420 −0.777102 0.629375i \(-0.783311\pi\)
−0.777102 + 0.629375i \(0.783311\pi\)
\(158\) 0 0
\(159\) −8.13214 + 8.13214i −0.644921 + 0.644921i
\(160\) 0 0
\(161\) −12.2448 −0.965027
\(162\) 0 0
\(163\) 4.60847i 0.360963i 0.983578 + 0.180481i \(0.0577656\pi\)
−0.983578 + 0.180481i \(0.942234\pi\)
\(164\) 0 0
\(165\) −10.8378 1.81180i −0.843725 0.141049i
\(166\) 0 0
\(167\) −5.23112 + 5.23112i −0.404796 + 0.404796i −0.879919 0.475123i \(-0.842404\pi\)
0.475123 + 0.879919i \(0.342404\pi\)
\(168\) 0 0
\(169\) 2.77250i 0.213269i
\(170\) 0 0
\(171\) −0.170375 + 0.170375i −0.0130289 + 0.0130289i
\(172\) 0 0
\(173\) 14.7626 + 14.7626i 1.12238 + 1.12238i 0.991383 + 0.130994i \(0.0418169\pi\)
0.130994 + 0.991383i \(0.458183\pi\)
\(174\) 0 0
\(175\) 7.90683 3.85964i 0.597700 0.291761i
\(176\) 0 0
\(177\) 12.1936i 0.916531i
\(178\) 0 0
\(179\) −10.6268 −0.794281 −0.397141 0.917758i \(-0.629998\pi\)
−0.397141 + 0.917758i \(0.629998\pi\)
\(180\) 0 0
\(181\) 1.80363 0.134063 0.0670314 0.997751i \(-0.478647\pi\)
0.0670314 + 0.997751i \(0.478647\pi\)
\(182\) 0 0
\(183\) 12.8651 + 12.8651i 0.951013 + 0.951013i
\(184\) 0 0
\(185\) −10.3981 + 7.41949i −0.764486 + 0.545492i
\(186\) 0 0
\(187\) 2.32791 2.32791i 0.170233 0.170233i
\(188\) 0 0
\(189\) 6.54841 + 6.54841i 0.476327 + 0.476327i
\(190\) 0 0
\(191\) −0.513771 0.513771i −0.0371752 0.0371752i 0.688275 0.725450i \(-0.258368\pi\)
−0.725450 + 0.688275i \(0.758368\pi\)
\(192\) 0 0
\(193\) 6.44608 0.463999 0.232000 0.972716i \(-0.425473\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(194\) 0 0
\(195\) −12.0535 2.01503i −0.863168 0.144299i
\(196\) 0 0
\(197\) 1.03684 + 1.03684i 0.0738717 + 0.0738717i 0.743077 0.669206i \(-0.233365\pi\)
−0.669206 + 0.743077i \(0.733365\pi\)
\(198\) 0 0
\(199\) 25.8568i 1.83294i −0.400108 0.916468i \(-0.631027\pi\)
0.400108 0.916468i \(-0.368973\pi\)
\(200\) 0 0
\(201\) −8.22356 + 8.22356i −0.580045 + 0.580045i
\(202\) 0 0
\(203\) −4.08523 8.55056i −0.286727 0.600132i
\(204\) 0 0
\(205\) −2.54044 + 15.1964i −0.177432 + 1.06136i
\(206\) 0 0
\(207\) 0.391177 0.391177i 0.0271887 0.0271887i
\(208\) 0 0
\(209\) −8.71480 −0.602815
\(210\) 0 0
\(211\) 7.25757 7.25757i 0.499632 0.499632i −0.411692 0.911323i \(-0.635062\pi\)
0.911323 + 0.411692i \(0.135062\pi\)
\(212\) 0 0
\(213\) 0.734565i 0.0503316i
\(214\) 0 0
\(215\) −7.45677 + 5.32071i −0.508547 + 0.362869i
\(216\) 0 0
\(217\) 14.2592i 0.967978i
\(218\) 0 0
\(219\) 11.4082i 0.770894i
\(220\) 0 0
\(221\) 2.58902 2.58902i 0.174156 0.174156i
\(222\) 0 0
\(223\) 11.0343 11.0343i 0.738914 0.738914i −0.233454 0.972368i \(-0.575003\pi\)
0.972368 + 0.233454i \(0.0750028\pi\)
\(224\) 0 0
\(225\) −0.129293 + 0.375896i −0.00861954 + 0.0250597i
\(226\) 0 0
\(227\) 4.64245 + 4.64245i 0.308130 + 0.308130i 0.844184 0.536054i \(-0.180086\pi\)
−0.536054 + 0.844184i \(0.680086\pi\)
\(228\) 0 0
\(229\) 11.4348 + 11.4348i 0.755634 + 0.755634i 0.975525 0.219891i \(-0.0705700\pi\)
−0.219891 + 0.975525i \(0.570570\pi\)
\(230\) 0 0
\(231\) 8.64739i 0.568957i
\(232\) 0 0
\(233\) 15.1974 15.1974i 0.995617 0.995617i −0.00437330 0.999990i \(-0.501392\pi\)
0.999990 + 0.00437330i \(0.00139207\pi\)
\(234\) 0 0
\(235\) −8.07548 + 5.76219i −0.526786 + 0.375884i
\(236\) 0 0
\(237\) −8.29615 + 8.29615i −0.538893 + 0.538893i
\(238\) 0 0
\(239\) 10.0305i 0.648817i −0.945917 0.324408i \(-0.894835\pi\)
0.945917 0.324408i \(-0.105165\pi\)
\(240\) 0 0
\(241\) 3.99577i 0.257390i 0.991684 + 0.128695i \(0.0410789\pi\)
−0.991684 + 0.128695i \(0.958921\pi\)
\(242\) 0 0
\(243\) −0.825990 −0.0529873
\(244\) 0 0
\(245\) 5.06971 + 7.10500i 0.323892 + 0.453922i
\(246\) 0 0
\(247\) −9.69232 −0.616707
\(248\) 0 0
\(249\) −20.4259 + 20.4259i −1.29444 + 1.29444i
\(250\) 0 0
\(251\) −17.7882 17.7882i −1.12278 1.12278i −0.991321 0.131460i \(-0.958033\pi\)
−0.131460 0.991321i \(-0.541967\pi\)
\(252\) 0 0
\(253\) 20.0090 1.25795
\(254\) 0 0
\(255\) 2.54117 + 3.56135i 0.159134 + 0.223020i
\(256\) 0 0
\(257\) −17.9083 17.9083i −1.11709 1.11709i −0.992166 0.124926i \(-0.960131\pi\)
−0.124926 0.992166i \(-0.539869\pi\)
\(258\) 0 0
\(259\) 7.10824 + 7.10824i 0.441685 + 0.441685i
\(260\) 0 0
\(261\) 0.403668 + 0.142651i 0.0249864 + 0.00882989i
\(262\) 0 0
\(263\) −6.44568 −0.397458 −0.198729 0.980055i \(-0.563681\pi\)
−0.198729 + 0.980055i \(0.563681\pi\)
\(264\) 0 0
\(265\) −2.48118 + 14.8420i −0.152418 + 0.911734i
\(266\) 0 0
\(267\) −9.28494 + 9.28494i −0.568229 + 0.568229i
\(268\) 0 0
\(269\) −17.3354 17.3354i −1.05696 1.05696i −0.998277 0.0586816i \(-0.981310\pi\)
−0.0586816 0.998277i \(-0.518690\pi\)
\(270\) 0 0
\(271\) −15.5018 + 15.5018i −0.941669 + 0.941669i −0.998390 0.0567213i \(-0.981935\pi\)
0.0567213 + 0.998390i \(0.481935\pi\)
\(272\) 0 0
\(273\) 9.61735i 0.582068i
\(274\) 0 0
\(275\) −12.9204 + 6.30695i −0.779128 + 0.380323i
\(276\) 0 0
\(277\) 4.40524 + 4.40524i 0.264685 + 0.264685i 0.826954 0.562269i \(-0.190072\pi\)
−0.562269 + 0.826954i \(0.690072\pi\)
\(278\) 0 0
\(279\) −0.455530 0.455530i −0.0272719 0.0272719i
\(280\) 0 0
\(281\) −9.80190 −0.584732 −0.292366 0.956306i \(-0.594443\pi\)
−0.292366 + 0.956306i \(0.594443\pi\)
\(282\) 0 0
\(283\) −10.1118 10.1118i −0.601085 0.601085i 0.339515 0.940601i \(-0.389737\pi\)
−0.940601 + 0.339515i \(0.889737\pi\)
\(284\) 0 0
\(285\) 1.90958 11.4228i 0.113114 0.676626i
\(286\) 0 0
\(287\) 12.1251 0.715719
\(288\) 0 0
\(289\) 15.6892 0.922895
\(290\) 0 0
\(291\) −4.85649 −0.284693
\(292\) 0 0
\(293\) −16.3980 −0.957984 −0.478992 0.877819i \(-0.658998\pi\)
−0.478992 + 0.877819i \(0.658998\pi\)
\(294\) 0 0
\(295\) −9.26711 12.9875i −0.539552 0.756161i
\(296\) 0 0
\(297\) −10.7006 10.7006i −0.620913 0.620913i
\(298\) 0 0
\(299\) 22.2533 1.28694
\(300\) 0 0
\(301\) 5.09750 + 5.09750i 0.293815 + 0.293815i
\(302\) 0 0
\(303\) 21.2875 + 21.2875i 1.22294 + 1.22294i
\(304\) 0 0
\(305\) 23.4800 + 3.92524i 1.34446 + 0.224758i
\(306\) 0 0
\(307\) 7.71576i 0.440362i −0.975459 0.220181i \(-0.929335\pi\)
0.975459 0.220181i \(-0.0706647\pi\)
\(308\) 0 0
\(309\) 0.662100 0.662100i 0.0376656 0.0376656i
\(310\) 0 0
\(311\) 19.4387 + 19.4387i 1.10227 + 1.10227i 0.994137 + 0.108132i \(0.0344868\pi\)
0.108132 + 0.994137i \(0.465513\pi\)
\(312\) 0 0
\(313\) 3.79941 3.79941i 0.214755 0.214755i −0.591529 0.806284i \(-0.701475\pi\)
0.806284 + 0.591529i \(0.201475\pi\)
\(314\) 0 0
\(315\) 0.308546 + 0.0515808i 0.0173846 + 0.00290625i
\(316\) 0 0
\(317\) −9.67291 −0.543285 −0.271642 0.962398i \(-0.587567\pi\)
−0.271642 + 0.962398i \(0.587567\pi\)
\(318\) 0 0
\(319\) 6.67558 + 13.9723i 0.373761 + 0.782298i
\(320\) 0 0
\(321\) −13.8585 13.8585i −0.773508 0.773508i
\(322\) 0 0
\(323\) 2.45354 + 2.45354i 0.136519 + 0.136519i
\(324\) 0 0
\(325\) −14.3696 + 7.01438i −0.797083 + 0.389088i
\(326\) 0 0
\(327\) −19.2943 −1.06698
\(328\) 0 0
\(329\) 5.52046 + 5.52046i 0.304353 + 0.304353i
\(330\) 0 0
\(331\) −15.0790 + 15.0790i −0.828815 + 0.828815i −0.987353 0.158538i \(-0.949322\pi\)
0.158538 + 0.987353i \(0.449322\pi\)
\(332\) 0 0
\(333\) −0.454165 −0.0248881
\(334\) 0 0
\(335\) −2.50908 + 15.0088i −0.137085 + 0.820018i
\(336\) 0 0
\(337\) −7.46187 −0.406474 −0.203237 0.979130i \(-0.565146\pi\)
−0.203237 + 0.979130i \(0.565146\pi\)
\(338\) 0 0
\(339\) 10.2170i 0.554909i
\(340\) 0 0
\(341\) 23.3006i 1.26180i
\(342\) 0 0
\(343\) 13.5672 13.5672i 0.732558 0.732558i
\(344\) 0 0
\(345\) −4.38436 + 26.2264i −0.236046 + 1.41198i
\(346\) 0 0
\(347\) 2.76542 2.76542i 0.148456 0.148456i −0.628972 0.777428i \(-0.716524\pi\)
0.777428 + 0.628972i \(0.216524\pi\)
\(348\) 0 0
\(349\) 24.5732i 1.31538i −0.753291 0.657688i \(-0.771535\pi\)
0.753291 0.657688i \(-0.228465\pi\)
\(350\) 0 0
\(351\) −11.9009 11.9009i −0.635221 0.635221i
\(352\) 0 0
\(353\) −19.1964 19.1964i −1.02172 1.02172i −0.999759 0.0219603i \(-0.993009\pi\)
−0.0219603 0.999759i \(-0.506991\pi\)
\(354\) 0 0
\(355\) 0.558266 + 0.782388i 0.0296297 + 0.0415248i
\(356\) 0 0
\(357\) 2.43457 2.43457i 0.128851 0.128851i
\(358\) 0 0
\(359\) 17.0947 17.0947i 0.902222 0.902222i −0.0934058 0.995628i \(-0.529775\pi\)
0.995628 + 0.0934058i \(0.0297754\pi\)
\(360\) 0 0
\(361\) 9.81486i 0.516572i
\(362\) 0 0
\(363\) 4.66790i 0.245001i
\(364\) 0 0
\(365\) −8.67016 12.1509i −0.453817 0.636007i
\(366\) 0 0
\(367\) 30.7491i 1.60509i −0.596591 0.802545i \(-0.703479\pi\)
0.596591 0.802545i \(-0.296521\pi\)
\(368\) 0 0
\(369\) −0.387351 + 0.387351i −0.0201647 + 0.0201647i
\(370\) 0 0
\(371\) 11.8422 0.614818
\(372\) 0 0
\(373\) −18.1021 + 18.1021i −0.937292 + 0.937292i −0.998147 0.0608545i \(-0.980617\pi\)
0.0608545 + 0.998147i \(0.480617\pi\)
\(374\) 0 0
\(375\) −5.43560 18.3171i −0.280693 0.945891i
\(376\) 0 0
\(377\) 7.42436 + 15.5395i 0.382374 + 0.800325i
\(378\) 0 0
\(379\) 2.45786 2.45786i 0.126252 0.126252i −0.641157 0.767409i \(-0.721545\pi\)
0.767409 + 0.641157i \(0.221545\pi\)
\(380\) 0 0
\(381\) 17.0996i 0.876039i
\(382\) 0 0
\(383\) 13.7759 + 13.7759i 0.703914 + 0.703914i 0.965248 0.261334i \(-0.0841626\pi\)
−0.261334 + 0.965248i \(0.584163\pi\)
\(384\) 0 0
\(385\) 6.57197 + 9.21037i 0.334939 + 0.469404i
\(386\) 0 0
\(387\) −0.325693 −0.0165559
\(388\) 0 0
\(389\) 21.4018 + 21.4018i 1.08511 + 1.08511i 0.996024 + 0.0890895i \(0.0283957\pi\)
0.0890895 + 0.996024i \(0.471604\pi\)
\(390\) 0 0
\(391\) −5.63328 5.63328i −0.284887 0.284887i
\(392\) 0 0
\(393\) 2.51046 2.51046i 0.126636 0.126636i
\(394\) 0 0
\(395\) −2.53122 + 15.1413i −0.127360 + 0.761840i
\(396\) 0 0
\(397\) 11.7919 + 11.7919i 0.591819 + 0.591819i 0.938123 0.346304i \(-0.112563\pi\)
−0.346304 + 0.938123i \(0.612563\pi\)
\(398\) 0 0
\(399\) −9.11409 −0.456275
\(400\) 0 0
\(401\) 12.5541 0.626921 0.313461 0.949601i \(-0.398512\pi\)
0.313461 + 0.949601i \(0.398512\pi\)
\(402\) 0 0
\(403\) 25.9142i 1.29088i
\(404\) 0 0
\(405\) 15.9362 11.3711i 0.791876 0.565036i
\(406\) 0 0
\(407\) −11.6154 11.6154i −0.575755 0.575755i
\(408\) 0 0
\(409\) 4.61147 4.61147i 0.228023 0.228023i −0.583844 0.811866i \(-0.698452\pi\)
0.811866 + 0.583844i \(0.198452\pi\)
\(410\) 0 0
\(411\) 29.2053i 1.44059i
\(412\) 0 0
\(413\) −8.87835 + 8.87835i −0.436875 + 0.436875i
\(414\) 0 0
\(415\) −6.23212 + 37.2793i −0.305923 + 1.82997i
\(416\) 0 0
\(417\) 24.3272i 1.19131i
\(418\) 0 0
\(419\) −21.4262 −1.04674 −0.523368 0.852106i \(-0.675325\pi\)
−0.523368 + 0.852106i \(0.675325\pi\)
\(420\) 0 0
\(421\) 12.5331 12.5331i 0.610825 0.610825i −0.332336 0.943161i \(-0.607837\pi\)
0.943161 + 0.332336i \(0.107837\pi\)
\(422\) 0 0
\(423\) −0.352717 −0.0171497
\(424\) 0 0
\(425\) 5.41321 + 1.86193i 0.262579 + 0.0903168i
\(426\) 0 0
\(427\) 18.7344i 0.906623i
\(428\) 0 0
\(429\) 15.7155i 0.758751i
\(430\) 0 0
\(431\) 25.4498 1.22587 0.612936 0.790132i \(-0.289988\pi\)
0.612936 + 0.790132i \(0.289988\pi\)
\(432\) 0 0
\(433\) 32.5610i 1.56478i −0.622787 0.782391i \(-0.714000\pi\)
0.622787 0.782391i \(-0.286000\pi\)
\(434\) 0 0
\(435\) −19.7766 + 5.68829i −0.948217 + 0.272732i
\(436\) 0 0
\(437\) 21.0889i 1.00882i
\(438\) 0 0
\(439\) 21.1677 1.01028 0.505140 0.863037i \(-0.331441\pi\)
0.505140 + 0.863037i \(0.331441\pi\)
\(440\) 0 0
\(441\) 0.310329i 0.0147776i
\(442\) 0 0
\(443\) 36.7379i 1.74547i 0.488194 + 0.872735i \(0.337656\pi\)
−0.488194 + 0.872735i \(0.662344\pi\)
\(444\) 0 0
\(445\) −2.83291 + 16.9459i −0.134293 + 0.803314i
\(446\) 0 0
\(447\) 9.39136 0.444196
\(448\) 0 0
\(449\) 1.33479 1.33479i 0.0629927 0.0629927i −0.674909 0.737901i \(-0.735817\pi\)
0.737901 + 0.674909i \(0.235817\pi\)
\(450\) 0 0
\(451\) −19.8133 −0.932971
\(452\) 0 0
\(453\) 16.6749i 0.783453i
\(454\) 0 0
\(455\) 7.30913 + 10.2435i 0.342657 + 0.480221i
\(456\) 0 0
\(457\) 3.45211 3.45211i 0.161483 0.161483i −0.621740 0.783223i \(-0.713574\pi\)
0.783223 + 0.621740i \(0.213574\pi\)
\(458\) 0 0
\(459\) 6.02525i 0.281234i
\(460\) 0 0
\(461\) 15.1152 15.1152i 0.703985 0.703985i −0.261279 0.965263i \(-0.584144\pi\)
0.965263 + 0.261279i \(0.0841442\pi\)
\(462\) 0 0
\(463\) 23.3083 + 23.3083i 1.08323 + 1.08323i 0.996206 + 0.0870237i \(0.0277356\pi\)
0.0870237 + 0.996206i \(0.472264\pi\)
\(464\) 0 0
\(465\) 30.5409 + 5.10563i 1.41630 + 0.236768i
\(466\) 0 0
\(467\) 30.6280i 1.41730i −0.705563 0.708648i \(-0.749306\pi\)
0.705563 0.708648i \(-0.250694\pi\)
\(468\) 0 0
\(469\) 11.9754 0.552970
\(470\) 0 0
\(471\) 33.2802 1.53347
\(472\) 0 0
\(473\) −8.32972 8.32972i −0.383001 0.383001i
\(474\) 0 0
\(475\) −6.64733 13.6177i −0.305001 0.624822i
\(476\) 0 0
\(477\) −0.378316 + 0.378316i −0.0173219 + 0.0173219i
\(478\) 0 0
\(479\) 2.93688 + 2.93688i 0.134189 + 0.134189i 0.771011 0.636822i \(-0.219751\pi\)
−0.636822 + 0.771011i \(0.719751\pi\)
\(480\) 0 0
\(481\) −12.9183 12.9183i −0.589023 0.589023i
\(482\) 0 0
\(483\) 20.9257 0.952154
\(484\) 0 0
\(485\) −5.17267 + 3.69091i −0.234879 + 0.167596i
\(486\) 0 0
\(487\) −9.47313 9.47313i −0.429269 0.429269i 0.459111 0.888379i \(-0.348168\pi\)
−0.888379 + 0.459111i \(0.848168\pi\)
\(488\) 0 0
\(489\) 7.87562i 0.356148i
\(490\) 0 0
\(491\) −13.2066 + 13.2066i −0.596004 + 0.596004i −0.939247 0.343243i \(-0.888475\pi\)
0.343243 + 0.939247i \(0.388475\pi\)
\(492\) 0 0
\(493\) 2.05429 5.81315i 0.0925208 0.261811i
\(494\) 0 0
\(495\) −0.504188 0.0842870i −0.0226616 0.00378842i
\(496\) 0 0
\(497\) 0.534846 0.534846i 0.0239911 0.0239911i
\(498\) 0 0
\(499\) −24.3088 −1.08821 −0.544105 0.839017i \(-0.683131\pi\)
−0.544105 + 0.839017i \(0.683131\pi\)
\(500\) 0 0
\(501\) 8.93971 8.93971i 0.399397 0.399397i
\(502\) 0 0
\(503\) 9.00114i 0.401341i −0.979659 0.200670i \(-0.935688\pi\)
0.979659 0.200670i \(-0.0643120\pi\)
\(504\) 0 0
\(505\) 38.8518 + 6.49500i 1.72888 + 0.289024i
\(506\) 0 0
\(507\) 4.73805i 0.210424i
\(508\) 0 0
\(509\) 34.5917i 1.53325i 0.642095 + 0.766625i \(0.278065\pi\)
−0.642095 + 0.766625i \(0.721935\pi\)
\(510\) 0 0
\(511\) −8.30644 + 8.30644i −0.367455 + 0.367455i
\(512\) 0 0
\(513\) 11.2781 11.2781i 0.497941 0.497941i
\(514\) 0 0
\(515\) 0.202012 1.20840i 0.00890172 0.0532484i
\(516\) 0 0
\(517\) −9.02086 9.02086i −0.396737 0.396737i
\(518\) 0 0
\(519\) −25.2284 25.2284i −1.10741 1.10741i
\(520\) 0 0
\(521\) 3.78963i 0.166027i −0.996548 0.0830134i \(-0.973546\pi\)
0.996548 0.0830134i \(-0.0264544\pi\)
\(522\) 0 0
\(523\) 30.1836 30.1836i 1.31983 1.31983i 0.405931 0.913904i \(-0.366947\pi\)
0.913904 0.405931i \(-0.133053\pi\)
\(524\) 0 0
\(525\) −13.5124 + 6.59592i −0.589728 + 0.287869i
\(526\) 0 0
\(527\) −6.56000 + 6.56000i −0.285758 + 0.285758i
\(528\) 0 0
\(529\) 25.4195i 1.10520i
\(530\) 0 0
\(531\) 0.567262i 0.0246171i
\(532\) 0 0
\(533\) −22.0357 −0.954471
\(534\) 0 0
\(535\) −25.2932 4.22835i −1.09352 0.182808i
\(536\) 0 0
\(537\) 18.1606 0.783686
\(538\) 0 0
\(539\) −7.93677 + 7.93677i −0.341861 + 0.341861i
\(540\) 0 0
\(541\) 32.5239 + 32.5239i 1.39831 + 1.39831i 0.804900 + 0.593411i \(0.202219\pi\)
0.593411 + 0.804900i \(0.297781\pi\)
\(542\) 0 0
\(543\) −3.08231 −0.132274
\(544\) 0 0
\(545\) −20.5505 + 14.6636i −0.880285 + 0.628120i
\(546\) 0 0
\(547\) 0.849175 + 0.849175i 0.0363081 + 0.0363081i 0.725028 0.688720i \(-0.241827\pi\)
−0.688720 + 0.725028i \(0.741827\pi\)
\(548\) 0 0
\(549\) 0.598497 + 0.598497i 0.0255432 + 0.0255432i
\(550\) 0 0
\(551\) −14.7264 + 7.03586i −0.627364 + 0.299738i
\(552\) 0 0
\(553\) 12.0811 0.513739
\(554\) 0 0
\(555\) 17.7698 12.6795i 0.754288 0.538216i
\(556\) 0 0
\(557\) 2.78919 2.78919i 0.118182 0.118182i −0.645542 0.763724i \(-0.723369\pi\)
0.763724 + 0.645542i \(0.223369\pi\)
\(558\) 0 0
\(559\) −9.26404 9.26404i −0.391827 0.391827i
\(560\) 0 0
\(561\) −3.97827 + 3.97827i −0.167963 + 0.167963i
\(562\) 0 0
\(563\) 42.4801i 1.79032i −0.445742 0.895161i \(-0.647060\pi\)
0.445742 0.895161i \(-0.352940\pi\)
\(564\) 0 0
\(565\) 7.76483 + 10.8821i 0.326669 + 0.457814i
\(566\) 0 0
\(567\) −10.8941 10.8941i −0.457510 0.457510i
\(568\) 0 0
\(569\) 8.10861 + 8.10861i 0.339930 + 0.339930i 0.856341 0.516411i \(-0.172732\pi\)
−0.516411 + 0.856341i \(0.672732\pi\)
\(570\) 0 0
\(571\) 19.9426 0.834573 0.417286 0.908775i \(-0.362981\pi\)
0.417286 + 0.908775i \(0.362981\pi\)
\(572\) 0 0
\(573\) 0.878008 + 0.878008i 0.0366793 + 0.0366793i
\(574\) 0 0
\(575\) 15.2621 + 31.2659i 0.636474 + 1.30388i
\(576\) 0 0
\(577\) −0.358955 −0.0149435 −0.00747175 0.999972i \(-0.502378\pi\)
−0.00747175 + 0.999972i \(0.502378\pi\)
\(578\) 0 0
\(579\) −11.0160 −0.457810
\(580\) 0 0
\(581\) 29.7448 1.23402
\(582\) 0 0
\(583\) −19.3511 −0.801441
\(584\) 0 0
\(585\) −0.560742 0.0937412i −0.0231838 0.00387572i
\(586\) 0 0
\(587\) 15.2260 + 15.2260i 0.628445 + 0.628445i 0.947677 0.319232i \(-0.103425\pi\)
−0.319232 + 0.947677i \(0.603425\pi\)
\(588\) 0 0
\(589\) 24.5582 1.01190
\(590\) 0 0
\(591\) −1.77190 1.77190i −0.0728863 0.0728863i
\(592\) 0 0
\(593\) −16.2813 16.2813i −0.668594 0.668594i 0.288796 0.957391i \(-0.406745\pi\)
−0.957391 + 0.288796i \(0.906745\pi\)
\(594\) 0 0
\(595\) 0.742806 4.44332i 0.0304521 0.182158i
\(596\) 0 0
\(597\) 44.1878i 1.80849i
\(598\) 0 0
\(599\) 14.3550 14.3550i 0.586530 0.586530i −0.350160 0.936690i \(-0.613873\pi\)
0.936690 + 0.350160i \(0.113873\pi\)
\(600\) 0 0
\(601\) −10.4458 10.4458i −0.426092 0.426092i 0.461203 0.887295i \(-0.347418\pi\)
−0.887295 + 0.461203i \(0.847418\pi\)
\(602\) 0 0
\(603\) −0.382569 + 0.382569i −0.0155794 + 0.0155794i
\(604\) 0 0
\(605\) 3.54758 + 4.97179i 0.144230 + 0.202132i
\(606\) 0 0
\(607\) −5.09856 −0.206944 −0.103472 0.994632i \(-0.532995\pi\)
−0.103472 + 0.994632i \(0.532995\pi\)
\(608\) 0 0
\(609\) 6.98144 + 14.6125i 0.282902 + 0.592126i
\(610\) 0 0
\(611\) −10.0327 10.0327i −0.405880 0.405880i
\(612\) 0 0
\(613\) 18.0020 + 18.0020i 0.727094 + 0.727094i 0.970040 0.242945i \(-0.0781136\pi\)
−0.242945 + 0.970040i \(0.578114\pi\)
\(614\) 0 0
\(615\) 4.34148 25.9699i 0.175065 1.04721i
\(616\) 0 0
\(617\) 27.6250 1.11214 0.556070 0.831135i \(-0.312309\pi\)
0.556070 + 0.831135i \(0.312309\pi\)
\(618\) 0 0
\(619\) 24.0588 + 24.0588i 0.967006 + 0.967006i 0.999473 0.0324669i \(-0.0103363\pi\)
−0.0324669 + 0.999473i \(0.510336\pi\)
\(620\) 0 0
\(621\) −25.8943 + 25.8943i −1.03910 + 1.03910i
\(622\) 0 0
\(623\) 13.5210 0.541706
\(624\) 0 0
\(625\) −19.7104 15.3786i −0.788415 0.615143i
\(626\) 0 0
\(627\) 14.8931 0.594774
\(628\) 0 0
\(629\) 6.54035i 0.260781i
\(630\) 0 0
\(631\) 5.24104i 0.208642i 0.994544 + 0.104321i \(0.0332670\pi\)
−0.994544 + 0.104321i \(0.966733\pi\)
\(632\) 0 0
\(633\) −12.4028 + 12.4028i −0.492967 + 0.492967i
\(634\) 0 0
\(635\) −12.9956 18.2128i −0.515715 0.722755i
\(636\) 0 0
\(637\) −8.82701 + 8.82701i −0.349739 + 0.349739i
\(638\) 0 0
\(639\) 0.0341728i 0.00135185i
\(640\) 0 0
\(641\) −23.1901 23.1901i −0.915954 0.915954i 0.0807780 0.996732i \(-0.474260\pi\)
−0.996732 + 0.0807780i \(0.974260\pi\)
\(642\) 0 0
\(643\) −18.2760 18.2760i −0.720734 0.720734i 0.248020 0.968755i \(-0.420220\pi\)
−0.968755 + 0.248020i \(0.920220\pi\)
\(644\) 0 0
\(645\) 12.7432 9.09281i 0.501764 0.358029i
\(646\) 0 0
\(647\) 19.0496 19.0496i 0.748916 0.748916i −0.225359 0.974276i \(-0.572356\pi\)
0.974276 + 0.225359i \(0.0723556\pi\)
\(648\) 0 0
\(649\) 14.5079 14.5079i 0.569485 0.569485i
\(650\) 0 0
\(651\) 24.3682i 0.955066i
\(652\) 0 0
\(653\) 28.9526i 1.13300i 0.824060 + 0.566502i \(0.191704\pi\)
−0.824060 + 0.566502i \(0.808296\pi\)
\(654\) 0 0
\(655\) 0.765963 4.58184i 0.0299287 0.179027i
\(656\) 0 0
\(657\) 0.530721i 0.0207054i
\(658\) 0 0
\(659\) −4.90554 + 4.90554i −0.191093 + 0.191093i −0.796168 0.605075i \(-0.793143\pi\)
0.605075 + 0.796168i \(0.293143\pi\)
\(660\) 0 0
\(661\) 9.13285 0.355227 0.177613 0.984100i \(-0.443162\pi\)
0.177613 + 0.984100i \(0.443162\pi\)
\(662\) 0 0
\(663\) −4.42450 + 4.42450i −0.171833 + 0.171833i
\(664\) 0 0
\(665\) −9.70745 + 6.92666i −0.376439 + 0.268604i
\(666\) 0 0
\(667\) 33.8114 16.1542i 1.30918 0.625492i
\(668\) 0 0
\(669\) −18.8571 + 18.8571i −0.729057 + 0.729057i
\(670\) 0 0
\(671\) 30.6135i 1.18182i
\(672\) 0 0
\(673\) −1.47121 1.47121i −0.0567111 0.0567111i 0.678182 0.734894i \(-0.262768\pi\)
−0.734894 + 0.678182i \(0.762768\pi\)
\(674\) 0 0
\(675\) 8.55866 24.8827i 0.329423 0.957737i
\(676\) 0 0
\(677\) 10.6009 0.407424 0.203712 0.979031i \(-0.434699\pi\)
0.203712 + 0.979031i \(0.434699\pi\)
\(678\) 0 0
\(679\) 3.53607 + 3.53607i 0.135702 + 0.135702i
\(680\) 0 0
\(681\) −7.93370 7.93370i −0.304020 0.304020i
\(682\) 0 0
\(683\) −16.7555 + 16.7555i −0.641133 + 0.641133i −0.950834 0.309701i \(-0.899771\pi\)
0.309701 + 0.950834i \(0.399771\pi\)
\(684\) 0 0
\(685\) −22.1959 31.1067i −0.848061 1.18852i
\(686\) 0 0
\(687\) −19.5415 19.5415i −0.745554 0.745554i
\(688\) 0 0
\(689\) −21.5217 −0.819911
\(690\) 0 0
\(691\) −9.00797 −0.342679 −0.171340 0.985212i \(-0.554810\pi\)
−0.171340 + 0.985212i \(0.554810\pi\)
\(692\) 0 0
\(693\) 0.402286i 0.0152816i
\(694\) 0 0
\(695\) 18.4886 + 25.9110i 0.701311 + 0.982860i
\(696\) 0 0
\(697\) 5.57818 + 5.57818i 0.211289 + 0.211289i
\(698\) 0 0
\(699\) −25.9716 + 25.9716i −0.982336 + 0.982336i
\(700\) 0 0
\(701\) 40.8403i 1.54252i −0.636522 0.771259i \(-0.719627\pi\)
0.636522 0.771259i \(-0.280373\pi\)
\(702\) 0 0
\(703\) 12.2423 12.2423i 0.461727 0.461727i
\(704\) 0 0
\(705\) 13.8006 9.84727i 0.519759 0.370869i
\(706\) 0 0
\(707\) 30.9995i 1.16585i
\(708\) 0 0
\(709\) −15.0474 −0.565118 −0.282559 0.959250i \(-0.591183\pi\)
−0.282559 + 0.959250i \(0.591183\pi\)
\(710\) 0 0
\(711\) −0.385946 + 0.385946i −0.0144741 + 0.0144741i
\(712\) 0 0
\(713\) −56.3850 −2.11163
\(714\) 0 0
\(715\) −11.9437 16.7386i −0.446669 0.625989i
\(716\) 0 0
\(717\) 17.1415i 0.640162i
\(718\) 0 0
\(719\) 2.89098i 0.107815i 0.998546 + 0.0539077i \(0.0171677\pi\)
−0.998546 + 0.0539077i \(0.982832\pi\)
\(720\) 0 0
\(721\) −0.964167 −0.0359075
\(722\) 0 0
\(723\) 6.82856i 0.253957i
\(724\) 0 0
\(725\) −16.7411 + 21.0888i −0.621749 + 0.783217i
\(726\) 0 0
\(727\) 5.56121i 0.206254i 0.994668 + 0.103127i \(0.0328848\pi\)
−0.994668 + 0.103127i \(0.967115\pi\)
\(728\) 0 0
\(729\) 27.6771 1.02508
\(730\) 0 0
\(731\) 4.69025i 0.173475i
\(732\) 0 0
\(733\) 6.33472i 0.233978i −0.993133 0.116989i \(-0.962676\pi\)
0.993133 0.116989i \(-0.0373242\pi\)
\(734\) 0 0
\(735\) −8.66386 12.1421i −0.319571 0.447867i
\(736\) 0 0
\(737\) −19.5687 −0.720821
\(738\) 0 0
\(739\) −16.3799 + 16.3799i −0.602544 + 0.602544i −0.940987 0.338443i \(-0.890100\pi\)
0.338443 + 0.940987i \(0.390100\pi\)
\(740\) 0 0
\(741\) 16.5636 0.608481
\(742\) 0 0
\(743\) 29.7611i 1.09183i 0.837841 + 0.545914i \(0.183818\pi\)
−0.837841 + 0.545914i \(0.816182\pi\)
\(744\) 0 0
\(745\) 10.0028 7.13738i 0.366473 0.261493i
\(746\) 0 0
\(747\) −0.950238 + 0.950238i −0.0347674 + 0.0347674i
\(748\) 0 0
\(749\) 20.1812i 0.737403i
\(750\) 0 0
\(751\) 22.4774 22.4774i 0.820210 0.820210i −0.165927 0.986138i \(-0.553062\pi\)
0.986138 + 0.165927i \(0.0530618\pi\)
\(752\) 0 0
\(753\) 30.3991 + 30.3991i 1.10780 + 1.10780i
\(754\) 0 0
\(755\) −12.6728 17.7604i −0.461211 0.646369i
\(756\) 0 0
\(757\) 24.0025i 0.872387i 0.899853 + 0.436193i \(0.143674\pi\)
−0.899853 + 0.436193i \(0.856326\pi\)
\(758\) 0 0
\(759\) −34.1943 −1.24117
\(760\) 0 0
\(761\) 17.9463 0.650555 0.325277 0.945619i \(-0.394542\pi\)
0.325277 + 0.945619i \(0.394542\pi\)
\(762\) 0 0
\(763\) 14.0485 + 14.0485i 0.508588 + 0.508588i
\(764\) 0 0
\(765\) 0.118218 + 0.165678i 0.00427418 + 0.00599010i
\(766\) 0 0
\(767\) 16.1352 16.1352i 0.582609 0.582609i
\(768\) 0 0
\(769\) 19.2753 + 19.2753i 0.695085 + 0.695085i 0.963346 0.268261i \(-0.0864491\pi\)
−0.268261 + 0.963346i \(0.586449\pi\)
\(770\) 0 0
\(771\) 30.6044 + 30.6044i 1.10219 + 1.10219i
\(772\) 0 0
\(773\) −8.38431 −0.301563 −0.150781 0.988567i \(-0.548179\pi\)
−0.150781 + 0.988567i \(0.548179\pi\)
\(774\) 0 0
\(775\) 36.4094 17.7729i 1.30786 0.638421i
\(776\) 0 0
\(777\) −12.1476 12.1476i −0.435793 0.435793i
\(778\) 0 0
\(779\) 20.8826i 0.748196i
\(780\) 0 0
\(781\) −0.873980 + 0.873980i −0.0312735 + 0.0312735i
\(782\) 0 0
\(783\) −26.7211 9.44291i −0.954934 0.337462i
\(784\) 0 0
\(785\) 35.4469 25.2928i 1.26515 0.902739i
\(786\) 0 0
\(787\) 8.84437 8.84437i 0.315268 0.315268i −0.531678 0.846946i \(-0.678439\pi\)
0.846946 + 0.531678i \(0.178439\pi\)
\(788\) 0 0
\(789\) 11.0153 0.392156
\(790\) 0 0
\(791\) 7.43909 7.43909i 0.264504 0.264504i
\(792\) 0 0
\(793\) 34.0473i 1.20906i
\(794\) 0 0
\(795\) 4.24021 25.3641i 0.150385 0.899572i
\(796\) 0 0
\(797\) 22.7951i 0.807442i −0.914882 0.403721i \(-0.867717\pi\)
0.914882 0.403721i \(-0.132283\pi\)
\(798\) 0 0
\(799\) 5.07942i 0.179697i
\(800\) 0 0
\(801\) −0.431946 + 0.431946i −0.0152620 + 0.0152620i
\(802\) 0 0
\(803\) 13.5734 13.5734i 0.478994 0.478994i
\(804\) 0 0
\(805\) 22.2881 15.9035i 0.785551 0.560523i
\(806\) 0 0
\(807\) 29.6253 + 29.6253i 1.04286 + 1.04286i
\(808\) 0 0
\(809\) −17.6094 17.6094i −0.619113 0.619113i 0.326191 0.945304i \(-0.394235\pi\)
−0.945304 + 0.326191i \(0.894235\pi\)
\(810\) 0 0
\(811\) 17.2999i 0.607482i −0.952755 0.303741i \(-0.901764\pi\)
0.952755 0.303741i \(-0.0982357\pi\)
\(812\) 0 0
\(813\) 26.4918 26.4918i 0.929108 0.929108i
\(814\) 0 0
\(815\) −5.98543 8.38835i −0.209661 0.293831i
\(816\) 0 0
\(817\) 8.77927 8.77927i 0.307148 0.307148i
\(818\) 0 0
\(819\) 0.447410i 0.0156338i
\(820\) 0 0
\(821\) 27.8929i 0.973471i −0.873549 0.486735i \(-0.838188\pi\)
0.873549 0.486735i \(-0.161812\pi\)
\(822\) 0 0
\(823\) −22.9231 −0.799048 −0.399524 0.916723i \(-0.630825\pi\)
−0.399524 + 0.916723i \(0.630825\pi\)
\(824\) 0 0
\(825\) 22.0802 10.7782i 0.768735 0.375250i
\(826\) 0 0
\(827\) −13.3541 −0.464367 −0.232183 0.972672i \(-0.574587\pi\)
−0.232183 + 0.972672i \(0.574587\pi\)
\(828\) 0 0
\(829\) 40.1431 40.1431i 1.39423 1.39423i 0.578651 0.815576i \(-0.303579\pi\)
0.815576 0.578651i \(-0.196421\pi\)
\(830\) 0 0
\(831\) −7.52831 7.52831i −0.261154 0.261154i
\(832\) 0 0
\(833\) 4.46899 0.154841
\(834\) 0 0
\(835\) 2.72758 16.3158i 0.0943917 0.564633i
\(836\) 0 0
\(837\) 30.1542 + 30.1542i 1.04228 + 1.04228i
\(838\) 0 0
\(839\) −10.6523 10.6523i −0.367758 0.367758i 0.498901 0.866659i \(-0.333737\pi\)
−0.866659 + 0.498901i \(0.833737\pi\)
\(840\) 0 0
\(841\) 22.5609 + 18.2210i 0.777963 + 0.628310i
\(842\) 0 0
\(843\) 16.7509 0.576932
\(844\) 0 0
\(845\) 3.60090 + 5.04652i 0.123875 + 0.173605i
\(846\) 0 0
\(847\) 3.39876 3.39876i 0.116783 0.116783i
\(848\) 0 0
\(849\) 17.2806 + 17.2806i 0.593067 + 0.593067i
\(850\) 0 0
\(851\) −28.1080 + 28.1080i −0.963531 + 0.963531i
\(852\) 0 0
\(853\) 27.2150i 0.931822i 0.884831 + 0.465911i \(0.154273\pi\)
−0.884831 + 0.465911i \(0.845727\pi\)
\(854\) 0 0
\(855\) 0.0888359 0.531399i 0.00303813 0.0181735i
\(856\) 0 0
\(857\) 41.0181 + 41.0181i 1.40115 + 1.40115i 0.796461 + 0.604690i \(0.206703\pi\)
0.604690 + 0.796461i \(0.293297\pi\)
\(858\) 0 0
\(859\) 19.1701 + 19.1701i 0.654076 + 0.654076i 0.953972 0.299896i \(-0.0969519\pi\)
−0.299896 + 0.953972i \(0.596952\pi\)
\(860\) 0 0
\(861\) −20.7211 −0.706172
\(862\) 0 0
\(863\) 3.20896 + 3.20896i 0.109234 + 0.109234i 0.759612 0.650377i \(-0.225389\pi\)
−0.650377 + 0.759612i \(0.725389\pi\)
\(864\) 0 0
\(865\) −46.0444 7.69740i −1.56556 0.261720i
\(866\) 0 0
\(867\) −26.8120 −0.910584
\(868\) 0 0
\(869\) −19.7414 −0.669681
\(870\) 0 0
\(871\) −21.7636 −0.737432
\(872\) 0 0
\(873\) −0.225929 −0.00764655
\(874\) 0 0
\(875\) −9.37919 + 17.2947i −0.317074 + 0.584666i
\(876\) 0 0
\(877\) −31.3620 31.3620i −1.05902 1.05902i −0.998145 0.0608744i \(-0.980611\pi\)
−0.0608744 0.998145i \(-0.519389\pi\)
\(878\) 0 0
\(879\) 28.0234 0.945205
\(880\) 0 0
\(881\) 12.6317 + 12.6317i 0.425574 + 0.425574i 0.887117 0.461544i \(-0.152704\pi\)
−0.461544 + 0.887117i \(0.652704\pi\)
\(882\) 0 0
\(883\) −3.67000 3.67000i −0.123505 0.123505i 0.642653 0.766158i \(-0.277834\pi\)
−0.766158 + 0.642653i \(0.777834\pi\)
\(884\) 0 0
\(885\) 15.8370 + 22.1949i 0.532355 + 0.746074i
\(886\) 0 0
\(887\) 19.9052i 0.668351i 0.942511 + 0.334175i \(0.108458\pi\)
−0.942511 + 0.334175i \(0.891542\pi\)
\(888\) 0 0
\(889\) −12.4504 + 12.4504i −0.417574 + 0.417574i
\(890\) 0 0
\(891\) 17.8018 + 17.8018i 0.596383 + 0.596383i
\(892\) 0 0
\(893\) 9.50771 9.50771i 0.318163 0.318163i
\(894\) 0 0
\(895\) 19.3429 13.8019i 0.646561 0.461348i
\(896\) 0 0
\(897\) −38.0297 −1.26978
\(898\) 0 0
\(899\) −18.8117 39.3737i −0.627405 1.31319i
\(900\) 0 0
\(901\) 5.44806 + 5.44806i 0.181501 + 0.181501i
\(902\) 0 0
\(903\) −8.71136 8.71136i −0.289896 0.289896i
\(904\) 0 0
\(905\) −3.28297 + 2.34254i −0.109130 + 0.0778686i
\(906\) 0 0
\(907\) 35.2505 1.17047 0.585237 0.810862i \(-0.301001\pi\)
0.585237 + 0.810862i \(0.301001\pi\)
\(908\) 0 0
\(909\) 0.990320 + 0.990320i 0.0328468 + 0.0328468i
\(910\) 0 0
\(911\) 10.1463 10.1463i 0.336161 0.336161i −0.518760 0.854920i \(-0.673606\pi\)
0.854920 + 0.518760i \(0.173606\pi\)
\(912\) 0 0
\(913\) −48.6053 −1.60860
\(914\) 0 0
\(915\) −40.1261 6.70802i −1.32653 0.221760i
\(916\) 0 0
\(917\) −3.65580 −0.120725
\(918\) 0 0
\(919\) 11.6645i 0.384777i 0.981319 + 0.192389i \(0.0616235\pi\)
−0.981319 + 0.192389i \(0.938377\pi\)
\(920\) 0 0
\(921\) 13.1858i 0.434487i
\(922\) 0 0
\(923\) −0.972012 + 0.972012i −0.0319942 + 0.0319942i
\(924\) 0 0
\(925\) 9.29035 27.0100i 0.305465 0.888083i
\(926\) 0 0
\(927\) 0.0308016 0.0308016i 0.00101166 0.00101166i
\(928\) 0 0
\(929\) 46.2322i 1.51683i −0.651772 0.758415i \(-0.725974\pi\)
0.651772 0.758415i \(-0.274026\pi\)
\(930\) 0 0
\(931\) −8.36511 8.36511i −0.274155 0.274155i
\(932\) 0 0
\(933\) −33.2197 33.2197i −1.08756 1.08756i
\(934\) 0 0
\(935\) −1.21380 + 7.26073i −0.0396956 + 0.237451i
\(936\) 0 0
\(937\) 2.31766 2.31766i 0.0757148 0.0757148i −0.668235 0.743950i \(-0.732950\pi\)
0.743950 + 0.668235i \(0.232950\pi\)
\(938\) 0 0
\(939\) −6.49299 + 6.49299i −0.211891 + 0.211891i
\(940\) 0 0
\(941\) 42.6993i 1.39196i 0.718062 + 0.695979i \(0.245029\pi\)
−0.718062 + 0.695979i \(0.754971\pi\)
\(942\) 0 0
\(943\) 47.9459i 1.56133i
\(944\) 0 0
\(945\) −20.4245 3.41443i −0.664408 0.111071i
\(946\) 0 0
\(947\) 23.7513i 0.771813i 0.922538 + 0.385906i \(0.126111\pi\)
−0.922538 + 0.385906i \(0.873889\pi\)
\(948\) 0 0
\(949\) 15.0959 15.0959i 0.490032 0.490032i
\(950\) 0 0
\(951\) 16.5305 0.536037
\(952\) 0 0
\(953\) 8.39659 8.39659i 0.271992 0.271992i −0.557910 0.829902i \(-0.688396\pi\)
0.829902 + 0.557910i \(0.188396\pi\)
\(954\) 0 0
\(955\) 1.60245 + 0.267887i 0.0518541 + 0.00866863i
\(956\) 0 0
\(957\) −11.4082 23.8779i −0.368775 0.771862i
\(958\) 0 0
\(959\) −21.2648 + 21.2648i −0.686675 + 0.686675i
\(960\) 0 0
\(961\) 34.6608i 1.11809i
\(962\) 0 0
\(963\) −0.644715 0.644715i −0.0207756 0.0207756i
\(964\) 0 0
\(965\) −11.7332 + 8.37211i −0.377705 + 0.269508i
\(966\) 0 0
\(967\) −17.9180 −0.576205 −0.288102 0.957600i \(-0.593024\pi\)
−0.288102 + 0.957600i \(0.593024\pi\)
\(968\) 0 0
\(969\) −4.19297 4.19297i −0.134698 0.134698i
\(970\) 0 0
\(971\) 31.9422 + 31.9422i 1.02507 + 1.02507i 0.999677 + 0.0253957i \(0.00808457\pi\)
0.0253957 + 0.999677i \(0.491915\pi\)
\(972\) 0 0
\(973\) 17.7130 17.7130i 0.567851 0.567851i
\(974\) 0 0
\(975\) 24.5569 11.9872i 0.786451 0.383898i
\(976\) 0 0
\(977\) −36.9641 36.9641i −1.18259 1.18259i −0.979072 0.203514i \(-0.934764\pi\)
−0.203514 0.979072i \(-0.565236\pi\)
\(978\) 0 0
\(979\) −22.0943 −0.706137
\(980\) 0 0
\(981\) −0.897595 −0.0286580
\(982\) 0 0
\(983\) 38.4388i 1.22601i 0.790080 + 0.613004i \(0.210039\pi\)
−0.790080 + 0.613004i \(0.789961\pi\)
\(984\) 0 0
\(985\) −3.23390 0.540622i −0.103041 0.0172257i
\(986\) 0 0
\(987\) −9.43417 9.43417i −0.300293 0.300293i
\(988\) 0 0
\(989\) −20.1570 + 20.1570i −0.640955 + 0.640955i
\(990\) 0 0
\(991\) 32.7734i 1.04108i 0.853837 + 0.520541i \(0.174270\pi\)
−0.853837 + 0.520541i \(0.825730\pi\)
\(992\) 0 0
\(993\) 25.7692 25.7692i 0.817759 0.817759i
\(994\) 0 0
\(995\) 33.5825 + 47.0646i 1.06464 + 1.49205i
\(996\) 0 0
\(997\) 8.19170i 0.259434i −0.991551 0.129717i \(-0.958593\pi\)
0.991551 0.129717i \(-0.0414069\pi\)
\(998\) 0 0
\(999\) 30.0638 0.951177
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1160.2.bl.c.737.7 yes 42
5.3 odd 4 1160.2.s.d.273.7 yes 42
29.17 odd 4 1160.2.s.d.17.15 42
145.133 even 4 inner 1160.2.bl.c.713.7 yes 42
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1160.2.s.d.17.15 42 29.17 odd 4
1160.2.s.d.273.7 yes 42 5.3 odd 4
1160.2.bl.c.713.7 yes 42 145.133 even 4 inner
1160.2.bl.c.737.7 yes 42 1.1 even 1 trivial