Defining parameters
| Level: | \( N \) | \(=\) | \( 116 = 2^{2} \cdot 29 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 116.g (of order \(7\) and degree \(6\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 29 \) |
| Character field: | \(\Q(\zeta_{7})\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(30\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(116, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 108 | 18 | 90 |
| Cusp forms | 72 | 18 | 54 |
| Eisenstein series | 36 | 0 | 36 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(116, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 116.2.g.a | $6$ | $0.926$ | \(\Q(\zeta_{14})\) | None | \(0\) | \(3\) | \(-3\) | \(3\) | \(q+(-1+2\zeta_{14}-2\zeta_{14}^{2}+2\zeta_{14}^{3}+\cdots)q^{3}+\cdots\) |
| 116.2.g.b | $12$ | $0.926$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(-1\) | \(-7\) | \(q+(-\beta _{1}-\beta _{8})q^{3}+(-\beta _{2}+\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(116, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(116, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 2}\)