Properties

Label 116.2.g
Level $116$
Weight $2$
Character orbit 116.g
Rep. character $\chi_{116}(25,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $18$
Newform subspaces $2$
Sturm bound $30$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 116 = 2^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 116.g (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 29 \)
Character field: \(\Q(\zeta_{7})\)
Newform subspaces: \( 2 \)
Sturm bound: \(30\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(116, [\chi])\).

Total New Old
Modular forms 108 18 90
Cusp forms 72 18 54
Eisenstein series 36 0 36

Trace form

\( 18 q - 4 q^{5} - 4 q^{7} - 5 q^{9} + 4 q^{11} - 18 q^{13} + 24 q^{15} + 2 q^{17} + 6 q^{19} + 8 q^{21} - 20 q^{23} - 7 q^{25} - 24 q^{27} - 11 q^{29} - 22 q^{31} - 36 q^{33} + 22 q^{35} - 30 q^{37} - 32 q^{39}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(116, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
116.2.g.a 116.g 29.d $6$ $0.926$ \(\Q(\zeta_{14})\) None 116.2.g.a \(0\) \(3\) \(-3\) \(3\) $\mathrm{SU}(2)[C_{7}]$ \(q+(-1+2\zeta_{14}-2\zeta_{14}^{2}+2\zeta_{14}^{3}+\cdots)q^{3}+\cdots\)
116.2.g.b 116.g 29.d $12$ $0.926$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 116.2.g.b \(0\) \(-3\) \(-1\) \(-7\) $\mathrm{SU}(2)[C_{7}]$ \(q+(-\beta _{1}-\beta _{8})q^{3}+(-\beta _{2}+\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(116, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(116, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(29, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(58, [\chi])\)\(^{\oplus 2}\)