Properties

Label 1156.2.h.f.1001.4
Level $1156$
Weight $2$
Character 1156.1001
Analytic conductor $9.231$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1156,2,Mod(733,1156)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1156.733"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1156, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1156.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(33)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.23070647366\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{48})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 68)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 1001.4
Root \(0.793353 + 0.608761i\) of defining polynomial
Character \(\chi\) \(=\) 1156.1001
Dual form 1156.2.h.f.977.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.04551 + 2.52409i) q^{3} +(-3.20041 + 1.32565i) q^{5} +(-2.52409 - 1.04551i) q^{7} +(-3.15660 + 3.15660i) q^{9} +(0.485223 - 1.17143i) q^{11} -5.46410i q^{13} +(-6.69213 - 6.69213i) q^{15} +(1.03528 + 1.03528i) q^{19} -7.46410i q^{21} +(-0.485223 + 1.17143i) q^{23} +(4.94975 - 4.94975i) q^{25} +(-3.69552 - 1.53073i) q^{27} +(-3.20041 + 1.32565i) q^{29} +(-1.60580 - 3.87674i) q^{31} +3.46410 q^{33} +9.46410 q^{35} +(1.73581 + 4.19062i) q^{37} +(13.7919 - 5.71278i) q^{39} +(-5.54328 - 2.29610i) q^{41} +(5.93426 - 5.93426i) q^{43} +(5.91786 - 14.2870i) q^{45} +6.92820i q^{47} +(0.328169 + 0.328169i) q^{49} +(-9.14162 - 9.14162i) q^{53} +4.39230i q^{55} +(-1.53073 + 3.69552i) q^{57} +(1.79315 - 1.79315i) q^{59} +(0.495106 + 0.205079i) q^{61} +(11.2678 - 4.66727i) q^{63} +(7.24351 + 17.4874i) q^{65} -14.9282 q^{67} -3.46410 q^{69} +(-3.13653 - 7.57226i) q^{71} +(1.84776 - 0.765367i) q^{73} +(17.6686 + 7.31857i) q^{75} +(-2.44949 + 2.44949i) q^{77} +(4.66727 - 11.2678i) q^{79} +2.46410i q^{81} +(-1.79315 - 1.79315i) q^{83} +(-6.69213 - 6.69213i) q^{87} +2.53590i q^{89} +(-5.71278 + 13.7919i) q^{91} +(8.10634 - 8.10634i) q^{93} +(-4.68573 - 1.94089i) q^{95} +(4.55307 - 1.88594i) q^{97} +(2.16609 + 5.22939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 96 q^{35} - 128 q^{67}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04551 + 2.52409i 0.603626 + 1.45728i 0.869823 + 0.493363i \(0.164233\pi\)
−0.266198 + 0.963918i \(0.585767\pi\)
\(4\) 0 0
\(5\) −3.20041 + 1.32565i −1.43127 + 0.592851i −0.957664 0.287887i \(-0.907047\pi\)
−0.473604 + 0.880738i \(0.657047\pi\)
\(6\) 0 0
\(7\) −2.52409 1.04551i −0.954015 0.395166i −0.149276 0.988796i \(-0.547694\pi\)
−0.804738 + 0.593630i \(0.797694\pi\)
\(8\) 0 0
\(9\) −3.15660 + 3.15660i −1.05220 + 1.05220i
\(10\) 0 0
\(11\) 0.485223 1.17143i 0.146300 0.353200i −0.833694 0.552227i \(-0.813778\pi\)
0.979994 + 0.199027i \(0.0637781\pi\)
\(12\) 0 0
\(13\) 5.46410i 1.51547i −0.652563 0.757735i \(-0.726306\pi\)
0.652563 0.757735i \(-0.273694\pi\)
\(14\) 0 0
\(15\) −6.69213 6.69213i −1.72790 1.72790i
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 1.03528 + 1.03528i 0.237509 + 0.237509i 0.815818 0.578309i \(-0.196287\pi\)
−0.578309 + 0.815818i \(0.696287\pi\)
\(20\) 0 0
\(21\) 7.46410i 1.62880i
\(22\) 0 0
\(23\) −0.485223 + 1.17143i −0.101176 + 0.244261i −0.966360 0.257195i \(-0.917202\pi\)
0.865184 + 0.501455i \(0.167202\pi\)
\(24\) 0 0
\(25\) 4.94975 4.94975i 0.989949 0.989949i
\(26\) 0 0
\(27\) −3.69552 1.53073i −0.711203 0.294590i
\(28\) 0 0
\(29\) −3.20041 + 1.32565i −0.594302 + 0.246168i −0.659500 0.751704i \(-0.729232\pi\)
0.0651984 + 0.997872i \(0.479232\pi\)
\(30\) 0 0
\(31\) −1.60580 3.87674i −0.288410 0.696283i 0.711570 0.702615i \(-0.247984\pi\)
−0.999980 + 0.00633216i \(0.997984\pi\)
\(32\) 0 0
\(33\) 3.46410 0.603023
\(34\) 0 0
\(35\) 9.46410 1.59973
\(36\) 0 0
\(37\) 1.73581 + 4.19062i 0.285366 + 0.688934i 0.999944 0.0106218i \(-0.00338110\pi\)
−0.714578 + 0.699556i \(0.753381\pi\)
\(38\) 0 0
\(39\) 13.7919 5.71278i 2.20847 0.914776i
\(40\) 0 0
\(41\) −5.54328 2.29610i −0.865714 0.358591i −0.0947747 0.995499i \(-0.530213\pi\)
−0.770940 + 0.636908i \(0.780213\pi\)
\(42\) 0 0
\(43\) 5.93426 5.93426i 0.904966 0.904966i −0.0908950 0.995860i \(-0.528973\pi\)
0.995860 + 0.0908950i \(0.0289728\pi\)
\(44\) 0 0
\(45\) 5.91786 14.2870i 0.882182 2.12978i
\(46\) 0 0
\(47\) 6.92820i 1.01058i 0.862949 + 0.505291i \(0.168615\pi\)
−0.862949 + 0.505291i \(0.831385\pi\)
\(48\) 0 0
\(49\) 0.328169 + 0.328169i 0.0468813 + 0.0468813i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.14162 9.14162i −1.25570 1.25570i −0.953127 0.302571i \(-0.902155\pi\)
−0.302571 0.953127i \(-0.597845\pi\)
\(54\) 0 0
\(55\) 4.39230i 0.592258i
\(56\) 0 0
\(57\) −1.53073 + 3.69552i −0.202751 + 0.489483i
\(58\) 0 0
\(59\) 1.79315 1.79315i 0.233448 0.233448i −0.580682 0.814130i \(-0.697214\pi\)
0.814130 + 0.580682i \(0.197214\pi\)
\(60\) 0 0
\(61\) 0.495106 + 0.205079i 0.0633918 + 0.0262577i 0.414154 0.910207i \(-0.364077\pi\)
−0.350762 + 0.936465i \(0.614077\pi\)
\(62\) 0 0
\(63\) 11.2678 4.66727i 1.41961 0.588020i
\(64\) 0 0
\(65\) 7.24351 + 17.4874i 0.898447 + 2.16904i
\(66\) 0 0
\(67\) −14.9282 −1.82377 −0.911885 0.410445i \(-0.865373\pi\)
−0.911885 + 0.410445i \(0.865373\pi\)
\(68\) 0 0
\(69\) −3.46410 −0.417029
\(70\) 0 0
\(71\) −3.13653 7.57226i −0.372238 0.898662i −0.993371 0.114956i \(-0.963327\pi\)
0.621133 0.783705i \(-0.286673\pi\)
\(72\) 0 0
\(73\) 1.84776 0.765367i 0.216264 0.0895794i −0.271921 0.962319i \(-0.587659\pi\)
0.488185 + 0.872740i \(0.337659\pi\)
\(74\) 0 0
\(75\) 17.6686 + 7.31857i 2.04019 + 0.845076i
\(76\) 0 0
\(77\) −2.44949 + 2.44949i −0.279145 + 0.279145i
\(78\) 0 0
\(79\) 4.66727 11.2678i 0.525108 1.26772i −0.409586 0.912271i \(-0.634327\pi\)
0.934694 0.355452i \(-0.115673\pi\)
\(80\) 0 0
\(81\) 2.46410i 0.273789i
\(82\) 0 0
\(83\) −1.79315 1.79315i −0.196824 0.196824i 0.601813 0.798637i \(-0.294445\pi\)
−0.798637 + 0.601813i \(0.794445\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −6.69213 6.69213i −0.717472 0.717472i
\(88\) 0 0
\(89\) 2.53590i 0.268805i 0.990927 + 0.134402i \(0.0429115\pi\)
−0.990927 + 0.134402i \(0.957089\pi\)
\(90\) 0 0
\(91\) −5.71278 + 13.7919i −0.598862 + 1.44578i
\(92\) 0 0
\(93\) 8.10634 8.10634i 0.840589 0.840589i
\(94\) 0 0
\(95\) −4.68573 1.94089i −0.480746 0.199131i
\(96\) 0 0
\(97\) 4.55307 1.88594i 0.462294 0.191488i −0.139366 0.990241i \(-0.544506\pi\)
0.601660 + 0.798753i \(0.294506\pi\)
\(98\) 0 0
\(99\) 2.16609 + 5.22939i 0.217700 + 0.525574i
\(100\) 0 0
\(101\) 2.53590 0.252331 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(102\) 0 0
\(103\) −10.9282 −1.07679 −0.538394 0.842693i \(-0.680969\pi\)
−0.538394 + 0.842693i \(0.680969\pi\)
\(104\) 0 0
\(105\) 9.89482 + 23.8882i 0.965635 + 2.33125i
\(106\) 0 0
\(107\) 9.91512 4.10698i 0.958531 0.397037i 0.152100 0.988365i \(-0.451396\pi\)
0.806431 + 0.591329i \(0.201396\pi\)
\(108\) 0 0
\(109\) −13.2968 5.50770i −1.27360 0.527542i −0.359542 0.933129i \(-0.617067\pi\)
−0.914056 + 0.405587i \(0.867067\pi\)
\(110\) 0 0
\(111\) −8.76268 + 8.76268i −0.831717 + 0.831717i
\(112\) 0 0
\(113\) −7.59872 + 18.3449i −0.714827 + 1.72575i −0.0272562 + 0.999628i \(0.508677\pi\)
−0.687571 + 0.726117i \(0.741323\pi\)
\(114\) 0 0
\(115\) 4.39230i 0.409585i
\(116\) 0 0
\(117\) 17.2480 + 17.2480i 1.59457 + 1.59457i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 6.64136 + 6.64136i 0.603760 + 0.603760i
\(122\) 0 0
\(123\) 16.3923i 1.47804i
\(124\) 0 0
\(125\) −2.65131 + 6.40083i −0.237140 + 0.572507i
\(126\) 0 0
\(127\) 0.277401 0.277401i 0.0246154 0.0246154i −0.694692 0.719307i \(-0.744459\pi\)
0.719307 + 0.694692i \(0.244459\pi\)
\(128\) 0 0
\(129\) 21.1829 + 8.77424i 1.86505 + 0.772529i
\(130\) 0 0
\(131\) −5.22939 + 2.16609i −0.456894 + 0.189252i −0.599247 0.800564i \(-0.704533\pi\)
0.142353 + 0.989816i \(0.454533\pi\)
\(132\) 0 0
\(133\) −1.53073 3.69552i −0.132731 0.320442i
\(134\) 0 0
\(135\) 13.8564 1.19257
\(136\) 0 0
\(137\) 2.53590 0.216656 0.108328 0.994115i \(-0.465450\pi\)
0.108328 + 0.994115i \(0.465450\pi\)
\(138\) 0 0
\(139\) −5.63771 13.6106i −0.478184 1.15444i −0.960460 0.278420i \(-0.910189\pi\)
0.482275 0.876020i \(-0.339811\pi\)
\(140\) 0 0
\(141\) −17.4874 + 7.24351i −1.47270 + 0.610014i
\(142\) 0 0
\(143\) −6.40083 2.65131i −0.535264 0.221714i
\(144\) 0 0
\(145\) 8.48528 8.48528i 0.704664 0.704664i
\(146\) 0 0
\(147\) −0.485223 + 1.17143i −0.0400205 + 0.0966181i
\(148\) 0 0
\(149\) 6.00000i 0.491539i −0.969328 0.245770i \(-0.920959\pi\)
0.969328 0.245770i \(-0.0790407\pi\)
\(150\) 0 0
\(151\) −9.52056 9.52056i −0.774772 0.774772i 0.204165 0.978937i \(-0.434552\pi\)
−0.978937 + 0.204165i \(0.934552\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.2784 + 10.2784i 0.825584 + 0.825584i
\(156\) 0 0
\(157\) 2.00000i 0.159617i 0.996810 + 0.0798087i \(0.0254309\pi\)
−0.996810 + 0.0798087i \(0.974569\pi\)
\(158\) 0 0
\(159\) 13.5166 32.6319i 1.07193 2.58788i
\(160\) 0 0
\(161\) 2.44949 2.44949i 0.193047 0.193047i
\(162\) 0 0
\(163\) −19.0213 7.87886i −1.48986 0.617120i −0.518573 0.855033i \(-0.673537\pi\)
−0.971286 + 0.237913i \(0.923537\pi\)
\(164\) 0 0
\(165\) −11.0866 + 4.59220i −0.863087 + 0.357502i
\(166\) 0 0
\(167\) −2.16609 5.22939i −0.167617 0.404663i 0.817643 0.575725i \(-0.195280\pi\)
−0.985260 + 0.171062i \(0.945280\pi\)
\(168\) 0 0
\(169\) −16.8564 −1.29665
\(170\) 0 0
\(171\) −6.53590 −0.499813
\(172\) 0 0
\(173\) −5.91786 14.2870i −0.449926 1.08622i −0.972349 0.233532i \(-0.924972\pi\)
0.522423 0.852686i \(-0.325028\pi\)
\(174\) 0 0
\(175\) −17.6686 + 7.31857i −1.33562 + 0.553232i
\(176\) 0 0
\(177\) 6.40083 + 2.65131i 0.481115 + 0.199285i
\(178\) 0 0
\(179\) −10.2784 + 10.2784i −0.768246 + 0.768246i −0.977798 0.209552i \(-0.932800\pi\)
0.209552 + 0.977798i \(0.432800\pi\)
\(180\) 0 0
\(181\) −1.73581 + 4.19062i −0.129022 + 0.311487i −0.975169 0.221463i \(-0.928917\pi\)
0.846147 + 0.532950i \(0.178917\pi\)
\(182\) 0 0
\(183\) 1.46410i 0.108230i
\(184\) 0 0
\(185\) −11.1106 11.1106i −0.816870 0.816870i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 7.72741 + 7.72741i 0.562086 + 0.562086i
\(190\) 0 0
\(191\) 12.0000i 0.868290i 0.900843 + 0.434145i \(0.142949\pi\)
−0.900843 + 0.434145i \(0.857051\pi\)
\(192\) 0 0
\(193\) 8.00888 19.3351i 0.576492 1.39177i −0.319451 0.947603i \(-0.603498\pi\)
0.895942 0.444171i \(-0.146502\pi\)
\(194\) 0 0
\(195\) −36.5665 + 36.5665i −2.61858 + 2.61858i
\(196\) 0 0
\(197\) −3.20041 1.32565i −0.228020 0.0944490i 0.265748 0.964042i \(-0.414381\pi\)
−0.493768 + 0.869593i \(0.664381\pi\)
\(198\) 0 0
\(199\) −3.87674 + 1.60580i −0.274815 + 0.113832i −0.515835 0.856688i \(-0.672518\pi\)
0.241020 + 0.970520i \(0.422518\pi\)
\(200\) 0 0
\(201\) −15.6076 37.6801i −1.10087 2.65775i
\(202\) 0 0
\(203\) 9.46410 0.664250
\(204\) 0 0
\(205\) 20.7846 1.45166
\(206\) 0 0
\(207\) −2.16609 5.22939i −0.150553 0.363468i
\(208\) 0 0
\(209\) 1.71510 0.710416i 0.118636 0.0491405i
\(210\) 0 0
\(211\) 2.16164 + 0.895382i 0.148814 + 0.0616406i 0.455847 0.890058i \(-0.349336\pi\)
−0.307033 + 0.951699i \(0.599336\pi\)
\(212\) 0 0
\(213\) 15.8338 15.8338i 1.08491 1.08491i
\(214\) 0 0
\(215\) −11.1253 + 26.8588i −0.758739 + 1.83176i
\(216\) 0 0
\(217\) 11.4641i 0.778234i
\(218\) 0 0
\(219\) 3.86370 + 3.86370i 0.261085 + 0.261085i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −8.76268 8.76268i −0.586793 0.586793i 0.349969 0.936761i \(-0.386192\pi\)
−0.936761 + 0.349969i \(0.886192\pi\)
\(224\) 0 0
\(225\) 31.2487i 2.08325i
\(226\) 0 0
\(227\) −7.72873 + 18.6588i −0.512974 + 1.23843i 0.429171 + 0.903223i \(0.358806\pi\)
−0.942145 + 0.335206i \(0.891194\pi\)
\(228\) 0 0
\(229\) −14.4195 + 14.4195i −0.952870 + 0.952870i −0.998938 0.0460685i \(-0.985331\pi\)
0.0460685 + 0.998938i \(0.485331\pi\)
\(230\) 0 0
\(231\) −8.74369 3.62175i −0.575293 0.238294i
\(232\) 0 0
\(233\) −5.54328 + 2.29610i −0.363152 + 0.150423i −0.556796 0.830649i \(-0.687969\pi\)
0.193644 + 0.981072i \(0.437969\pi\)
\(234\) 0 0
\(235\) −9.18440 22.1731i −0.599124 1.44641i
\(236\) 0 0
\(237\) 33.3205 2.16440
\(238\) 0 0
\(239\) 20.7846 1.34444 0.672222 0.740349i \(-0.265340\pi\)
0.672222 + 0.740349i \(0.265340\pi\)
\(240\) 0 0
\(241\) 0.765367 + 1.84776i 0.0493016 + 0.119025i 0.946612 0.322376i \(-0.104482\pi\)
−0.897310 + 0.441401i \(0.854482\pi\)
\(242\) 0 0
\(243\) −17.3062 + 7.16845i −1.11019 + 0.459856i
\(244\) 0 0
\(245\) −1.48532 0.615238i −0.0948934 0.0393061i
\(246\) 0 0
\(247\) 5.65685 5.65685i 0.359937 0.359937i
\(248\) 0 0
\(249\) 2.65131 6.40083i 0.168020 0.405636i
\(250\) 0 0
\(251\) 6.92820i 0.437304i −0.975803 0.218652i \(-0.929834\pi\)
0.975803 0.218652i \(-0.0701660\pi\)
\(252\) 0 0
\(253\) 1.13681 + 1.13681i 0.0714708 + 0.0714708i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.0764 + 20.0764i 1.25233 + 1.25233i 0.954672 + 0.297658i \(0.0962057\pi\)
0.297658 + 0.954672i \(0.403794\pi\)
\(258\) 0 0
\(259\) 12.3923i 0.770020i
\(260\) 0 0
\(261\) 5.91786 14.2870i 0.366306 0.884341i
\(262\) 0 0
\(263\) 8.00481 8.00481i 0.493598 0.493598i −0.415840 0.909438i \(-0.636512\pi\)
0.909438 + 0.415840i \(0.136512\pi\)
\(264\) 0 0
\(265\) 41.3756 + 17.1383i 2.54168 + 1.05280i
\(266\) 0 0
\(267\) −6.40083 + 2.65131i −0.391724 + 0.162257i
\(268\) 0 0
\(269\) 10.5101 + 25.3735i 0.640809 + 1.54705i 0.825590 + 0.564271i \(0.190843\pi\)
−0.184780 + 0.982780i \(0.559157\pi\)
\(270\) 0 0
\(271\) −1.07180 −0.0651070 −0.0325535 0.999470i \(-0.510364\pi\)
−0.0325535 + 0.999470i \(0.510364\pi\)
\(272\) 0 0
\(273\) −40.7846 −2.46840
\(274\) 0 0
\(275\) −3.39656 8.20003i −0.204820 0.494480i
\(276\) 0 0
\(277\) 5.90572 2.44623i 0.354840 0.146980i −0.198141 0.980174i \(-0.563490\pi\)
0.552981 + 0.833194i \(0.313490\pi\)
\(278\) 0 0
\(279\) 17.3062 + 7.16845i 1.03609 + 0.429164i
\(280\) 0 0
\(281\) 14.0406 14.0406i 0.837592 0.837592i −0.150950 0.988541i \(-0.548233\pi\)
0.988541 + 0.150950i \(0.0482331\pi\)
\(282\) 0 0
\(283\) −7.87886 + 19.0213i −0.468350 + 1.13070i 0.496534 + 0.868017i \(0.334606\pi\)
−0.964883 + 0.262679i \(0.915394\pi\)
\(284\) 0 0
\(285\) 13.8564i 0.820783i
\(286\) 0 0
\(287\) 11.5911 + 11.5911i 0.684202 + 0.684202i
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) 9.52056 + 9.52056i 0.558105 + 0.558105i
\(292\) 0 0
\(293\) 30.0000i 1.75262i 0.481749 + 0.876309i \(0.340002\pi\)
−0.481749 + 0.876309i \(0.659998\pi\)
\(294\) 0 0
\(295\) −3.36172 + 8.11592i −0.195727 + 0.472527i
\(296\) 0 0
\(297\) −3.58630 + 3.58630i −0.208098 + 0.208098i
\(298\) 0 0
\(299\) 6.40083 + 2.65131i 0.370169 + 0.153329i
\(300\) 0 0
\(301\) −21.1829 + 8.77424i −1.22096 + 0.505739i
\(302\) 0 0
\(303\) 2.65131 + 6.40083i 0.152314 + 0.367718i
\(304\) 0 0
\(305\) −1.85641 −0.106298
\(306\) 0 0
\(307\) −24.7846 −1.41453 −0.707266 0.706947i \(-0.750072\pi\)
−0.707266 + 0.706947i \(0.750072\pi\)
\(308\) 0 0
\(309\) −11.4256 27.5837i −0.649977 1.56918i
\(310\) 0 0
\(311\) −2.88653 + 1.19564i −0.163680 + 0.0677985i −0.463019 0.886348i \(-0.653234\pi\)
0.299339 + 0.954147i \(0.403234\pi\)
\(312\) 0 0
\(313\) 19.3351 + 8.00888i 1.09289 + 0.452688i 0.855012 0.518607i \(-0.173549\pi\)
0.237874 + 0.971296i \(0.423549\pi\)
\(314\) 0 0
\(315\) −29.8744 + 29.8744i −1.68323 + 1.68323i
\(316\) 0 0
\(317\) −3.26655 + 7.88614i −0.183468 + 0.442930i −0.988677 0.150061i \(-0.952053\pi\)
0.805209 + 0.592991i \(0.202053\pi\)
\(318\) 0 0
\(319\) 4.39230i 0.245922i
\(320\) 0 0
\(321\) 20.7327 + 20.7327i 1.15719 + 1.15719i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −27.0459 27.0459i −1.50024 1.50024i
\(326\) 0 0
\(327\) 39.3205i 2.17443i
\(328\) 0 0
\(329\) 7.24351 17.4874i 0.399348 0.964110i
\(330\) 0 0
\(331\) 13.6617 13.6617i 0.750913 0.750913i −0.223737 0.974650i \(-0.571826\pi\)
0.974650 + 0.223737i \(0.0718256\pi\)
\(332\) 0 0
\(333\) −18.7074 7.74885i −1.02516 0.424634i
\(334\) 0 0
\(335\) 47.7764 19.7896i 2.61030 1.08122i
\(336\) 0 0
\(337\) 2.59636 + 6.26816i 0.141433 + 0.341449i 0.978685 0.205369i \(-0.0658393\pi\)
−0.837252 + 0.546817i \(0.815839\pi\)
\(338\) 0 0
\(339\) −54.2487 −2.94639
\(340\) 0 0
\(341\) −5.32051 −0.288122
\(342\) 0 0
\(343\) 6.83335 + 16.4972i 0.368966 + 0.890763i
\(344\) 0 0
\(345\) 11.0866 4.59220i 0.596880 0.247236i
\(346\) 0 0
\(347\) −31.4605 13.0314i −1.68889 0.699560i −0.689199 0.724572i \(-0.742037\pi\)
−0.999687 + 0.0250126i \(0.992037\pi\)
\(348\) 0 0
\(349\) −7.62587 + 7.62587i −0.408203 + 0.408203i −0.881112 0.472908i \(-0.843204\pi\)
0.472908 + 0.881112i \(0.343204\pi\)
\(350\) 0 0
\(351\) −8.36408 + 20.1927i −0.446442 + 1.07781i
\(352\) 0 0
\(353\) 19.8564i 1.05685i 0.848980 + 0.528425i \(0.177217\pi\)
−0.848980 + 0.528425i \(0.822783\pi\)
\(354\) 0 0
\(355\) 20.0764 + 20.0764i 1.06554 + 1.06554i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.4901 + 16.4901i 0.870314 + 0.870314i 0.992506 0.122193i \(-0.0389926\pi\)
−0.122193 + 0.992506i \(0.538993\pi\)
\(360\) 0 0
\(361\) 16.8564i 0.887179i
\(362\) 0 0
\(363\) −9.81975 + 23.7070i −0.515403 + 1.24429i
\(364\) 0 0
\(365\) −4.89898 + 4.89898i −0.256424 + 0.256424i
\(366\) 0 0
\(367\) −2.16164 0.895382i −0.112837 0.0467386i 0.325551 0.945525i \(-0.394450\pi\)
−0.438388 + 0.898786i \(0.644450\pi\)
\(368\) 0 0
\(369\) 24.7458 10.2500i 1.28821 0.533595i
\(370\) 0 0
\(371\) 13.5166 + 32.6319i 0.701746 + 1.69416i
\(372\) 0 0
\(373\) 8.39230 0.434537 0.217269 0.976112i \(-0.430285\pi\)
0.217269 + 0.976112i \(0.430285\pi\)
\(374\) 0 0
\(375\) −18.9282 −0.977448
\(376\) 0 0
\(377\) 7.24351 + 17.4874i 0.373060 + 0.900646i
\(378\) 0 0
\(379\) −4.86695 + 2.01596i −0.249998 + 0.103553i −0.504164 0.863608i \(-0.668199\pi\)
0.254165 + 0.967161i \(0.418199\pi\)
\(380\) 0 0
\(381\) 0.990211 + 0.410159i 0.0507301 + 0.0210131i
\(382\) 0 0
\(383\) 1.79315 1.79315i 0.0916257 0.0916257i −0.659808 0.751434i \(-0.729363\pi\)
0.751434 + 0.659808i \(0.229363\pi\)
\(384\) 0 0
\(385\) 4.59220 11.0866i 0.234040 0.565023i
\(386\) 0 0
\(387\) 37.4641i 1.90441i
\(388\) 0 0
\(389\) 26.2880 + 26.2880i 1.33286 + 1.33286i 0.902803 + 0.430054i \(0.141505\pi\)
0.430054 + 0.902803i \(0.358495\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −10.9348 10.9348i −0.551586 0.551586i
\(394\) 0 0
\(395\) 42.2487i 2.12576i
\(396\) 0 0
\(397\) −2.14597 + 5.18083i −0.107703 + 0.260019i −0.968538 0.248866i \(-0.919942\pi\)
0.860835 + 0.508885i \(0.169942\pi\)
\(398\) 0 0
\(399\) 7.72741 7.72741i 0.386854 0.386854i
\(400\) 0 0
\(401\) −29.4315 12.1909i −1.46974 0.608785i −0.502939 0.864322i \(-0.667748\pi\)
−0.966799 + 0.255537i \(0.917748\pi\)
\(402\) 0 0
\(403\) −21.1829 + 8.77424i −1.05520 + 0.437076i
\(404\) 0 0
\(405\) −3.26655 7.88614i −0.162316 0.391866i
\(406\) 0 0
\(407\) 5.75129 0.285081
\(408\) 0 0
\(409\) 17.7128 0.875842 0.437921 0.899013i \(-0.355715\pi\)
0.437921 + 0.899013i \(0.355715\pi\)
\(410\) 0 0
\(411\) 2.65131 + 6.40083i 0.130779 + 0.315729i
\(412\) 0 0
\(413\) −6.40083 + 2.65131i −0.314964 + 0.130462i
\(414\) 0 0
\(415\) 8.11592 + 3.36172i 0.398395 + 0.165021i
\(416\) 0 0
\(417\) 28.4601 28.4601i 1.39370 1.39370i
\(418\) 0 0
\(419\) 9.40960 22.7168i 0.459689 1.10979i −0.508835 0.860864i \(-0.669924\pi\)
0.968523 0.248923i \(-0.0800765\pi\)
\(420\) 0 0
\(421\) 22.2487i 1.08434i 0.840270 + 0.542168i \(0.182396\pi\)
−0.840270 + 0.542168i \(0.817604\pi\)
\(422\) 0 0
\(423\) −21.8695 21.8695i −1.06333 1.06333i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −1.03528 1.03528i −0.0501005 0.0501005i
\(428\) 0 0
\(429\) 18.9282i 0.913862i
\(430\) 0 0
\(431\) 6.75829 16.3159i 0.325535 0.785912i −0.673378 0.739299i \(-0.735157\pi\)
0.998913 0.0466130i \(-0.0148428\pi\)
\(432\) 0 0
\(433\) 2.55103 2.55103i 0.122594 0.122594i −0.643148 0.765742i \(-0.722372\pi\)
0.765742 + 0.643148i \(0.222372\pi\)
\(434\) 0 0
\(435\) 30.2890 + 12.5461i 1.45225 + 0.601541i
\(436\) 0 0
\(437\) −1.71510 + 0.710416i −0.0820442 + 0.0339838i
\(438\) 0 0
\(439\) 9.25947 + 22.3543i 0.441930 + 1.06691i 0.975271 + 0.221013i \(0.0709364\pi\)
−0.533341 + 0.845901i \(0.679064\pi\)
\(440\) 0 0
\(441\) −2.07180 −0.0986570
\(442\) 0 0
\(443\) −20.7846 −0.987507 −0.493753 0.869602i \(-0.664375\pi\)
−0.493753 + 0.869602i \(0.664375\pi\)
\(444\) 0 0
\(445\) −3.36172 8.11592i −0.159361 0.384732i
\(446\) 0 0
\(447\) 15.1445 6.27306i 0.716311 0.296706i
\(448\) 0 0
\(449\) 5.54328 + 2.29610i 0.261603 + 0.108360i 0.509630 0.860393i \(-0.329782\pi\)
−0.248027 + 0.968753i \(0.579782\pi\)
\(450\) 0 0
\(451\) −5.37945 + 5.37945i −0.253309 + 0.253309i
\(452\) 0 0
\(453\) 14.0769 33.9845i 0.661389 1.59673i
\(454\) 0 0
\(455\) 51.7128i 2.42433i
\(456\) 0 0
\(457\) −14.4195 14.4195i −0.674517 0.674517i 0.284237 0.958754i \(-0.408260\pi\)
−0.958754 + 0.284237i \(0.908260\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −18.9396 18.9396i −0.882104 0.882104i 0.111644 0.993748i \(-0.464388\pi\)
−0.993748 + 0.111644i \(0.964388\pi\)
\(462\) 0 0
\(463\) 2.14359i 0.0996212i −0.998759 0.0498106i \(-0.984138\pi\)
0.998759 0.0498106i \(-0.0158618\pi\)
\(464\) 0 0
\(465\) −15.1974 + 36.6899i −0.704764 + 1.70145i
\(466\) 0 0
\(467\) 10.2784 10.2784i 0.475629 0.475629i −0.428102 0.903731i \(-0.640817\pi\)
0.903731 + 0.428102i \(0.140817\pi\)
\(468\) 0 0
\(469\) 37.6801 + 15.6076i 1.73990 + 0.720692i
\(470\) 0 0
\(471\) −5.04817 + 2.09102i −0.232607 + 0.0963492i
\(472\) 0 0
\(473\) −4.07214 9.83102i −0.187237 0.452031i
\(474\) 0 0
\(475\) 10.2487 0.470243
\(476\) 0 0
\(477\) 57.7128 2.64249
\(478\) 0 0
\(479\) −6.75829 16.3159i −0.308794 0.745495i −0.999745 0.0225928i \(-0.992808\pi\)
0.690951 0.722902i \(-0.257192\pi\)
\(480\) 0 0
\(481\) 22.8980 9.48466i 1.04406 0.432463i
\(482\) 0 0
\(483\) 8.74369 + 3.62175i 0.397852 + 0.164796i
\(484\) 0 0
\(485\) −12.0716 + 12.0716i −0.548142 + 0.548142i
\(486\) 0 0
\(487\) −2.31621 + 5.59184i −0.104958 + 0.253390i −0.967630 0.252373i \(-0.918789\pi\)
0.862672 + 0.505763i \(0.168789\pi\)
\(488\) 0 0
\(489\) 56.2487i 2.54365i
\(490\) 0 0
\(491\) −26.2880 26.2880i −1.18636 1.18636i −0.978066 0.208298i \(-0.933208\pi\)
−0.208298 0.978066i \(-0.566792\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −13.8647 13.8647i −0.623173 0.623173i
\(496\) 0 0
\(497\) 22.3923i 1.00443i
\(498\) 0 0
\(499\) 9.55972 23.0792i 0.427952 1.03317i −0.551984 0.833855i \(-0.686129\pi\)
0.979936 0.199313i \(-0.0638710\pi\)
\(500\) 0 0
\(501\) 10.9348 10.9348i 0.488530 0.488530i
\(502\) 0 0
\(503\) −25.0596 10.3800i −1.11735 0.462823i −0.253890 0.967233i \(-0.581710\pi\)
−0.863464 + 0.504410i \(0.831710\pi\)
\(504\) 0 0
\(505\) −8.11592 + 3.36172i −0.361154 + 0.149595i
\(506\) 0 0
\(507\) −17.6236 42.5470i −0.782689 1.88958i
\(508\) 0 0
\(509\) 21.7128 0.962404 0.481202 0.876610i \(-0.340200\pi\)
0.481202 + 0.876610i \(0.340200\pi\)
\(510\) 0 0
\(511\) −5.46410 −0.241718
\(512\) 0 0
\(513\) −2.24115 5.41061i −0.0989492 0.238884i
\(514\) 0 0
\(515\) 34.9748 14.4870i 1.54117 0.638374i
\(516\) 0 0
\(517\) 8.11592 + 3.36172i 0.356938 + 0.147848i
\(518\) 0 0
\(519\) 29.8744 29.8744i 1.31134 1.31134i
\(520\) 0 0
\(521\) 2.29610 5.54328i 0.100594 0.242855i −0.865568 0.500791i \(-0.833042\pi\)
0.966162 + 0.257936i \(0.0830424\pi\)
\(522\) 0 0
\(523\) 12.7846i 0.559032i 0.960141 + 0.279516i \(0.0901740\pi\)
−0.960141 + 0.279516i \(0.909826\pi\)
\(524\) 0 0
\(525\) −36.9454 36.9454i −1.61243 1.61243i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 15.1266 + 15.1266i 0.657680 + 0.657680i
\(530\) 0 0
\(531\) 11.3205i 0.491268i
\(532\) 0 0
\(533\) −12.5461 + 30.2890i −0.543433 + 1.31196i
\(534\) 0 0
\(535\) −26.2880 + 26.2880i −1.13653 + 1.13653i
\(536\) 0 0
\(537\) −36.6899 15.1974i −1.58328 0.655818i
\(538\) 0 0
\(539\) 0.543664 0.225193i 0.0234173 0.00969974i
\(540\) 0 0
\(541\) −7.03843 16.9923i −0.302606 0.730555i −0.999905 0.0137749i \(-0.995615\pi\)
0.697299 0.716780i \(-0.254385\pi\)
\(542\) 0 0
\(543\) −12.3923 −0.531805
\(544\) 0 0
\(545\) 49.8564 2.13561
\(546\) 0 0
\(547\) 16.3528 + 39.4793i 0.699197 + 1.68801i 0.725375 + 0.688354i \(0.241667\pi\)
−0.0261774 + 0.999657i \(0.508333\pi\)
\(548\) 0 0
\(549\) −2.21020 + 0.915495i −0.0943291 + 0.0390724i
\(550\) 0 0
\(551\) −4.68573 1.94089i −0.199619 0.0826848i
\(552\) 0 0
\(553\) −23.5612 + 23.5612i −1.00192 + 1.00192i
\(554\) 0 0
\(555\) 16.4279 39.6605i 0.697326 1.68349i
\(556\) 0 0
\(557\) 26.5359i 1.12436i 0.827014 + 0.562181i \(0.190038\pi\)
−0.827014 + 0.562181i \(0.809962\pi\)
\(558\) 0 0
\(559\) −32.4254 32.4254i −1.37145 1.37145i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.9754 + 24.9754i 1.05259 + 1.05259i 0.998538 + 0.0540480i \(0.0172124\pi\)
0.0540480 + 0.998538i \(0.482788\pi\)
\(564\) 0 0
\(565\) 68.7846i 2.89379i
\(566\) 0 0
\(567\) 2.57624 6.21960i 0.108192 0.261199i
\(568\) 0 0
\(569\) −5.55532 + 5.55532i −0.232891 + 0.232891i −0.813898 0.581007i \(-0.802659\pi\)
0.581007 + 0.813898i \(0.302659\pi\)
\(570\) 0 0
\(571\) −10.2776 4.25711i −0.430103 0.178154i 0.157120 0.987579i \(-0.449779\pi\)
−0.587223 + 0.809425i \(0.699779\pi\)
\(572\) 0 0
\(573\) −30.2890 + 12.5461i −1.26534 + 0.524122i
\(574\) 0 0
\(575\) 3.39656 + 8.20003i 0.141646 + 0.341965i
\(576\) 0 0
\(577\) 13.4641 0.560518 0.280259 0.959924i \(-0.409580\pi\)
0.280259 + 0.959924i \(0.409580\pi\)
\(578\) 0 0
\(579\) 57.1769 2.37619
\(580\) 0 0
\(581\) 2.65131 + 6.40083i 0.109995 + 0.265551i
\(582\) 0 0
\(583\) −15.1445 + 6.27306i −0.627222 + 0.259804i
\(584\) 0 0
\(585\) −78.0654 32.3358i −3.22761 1.33692i
\(586\) 0 0
\(587\) −20.0764 + 20.0764i −0.828641 + 0.828641i −0.987329 0.158688i \(-0.949274\pi\)
0.158688 + 0.987329i \(0.449274\pi\)
\(588\) 0 0
\(589\) 2.35105 5.67594i 0.0968734 0.233873i
\(590\) 0 0
\(591\) 9.46410i 0.389301i
\(592\) 0 0
\(593\) −2.92996 2.92996i −0.120319 0.120319i 0.644383 0.764703i \(-0.277114\pi\)
−0.764703 + 0.644383i \(0.777114\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.10634 8.10634i −0.331771 0.331771i
\(598\) 0 0
\(599\) 27.7128i 1.13231i −0.824297 0.566157i \(-0.808429\pi\)
0.824297 0.566157i \(-0.191571\pi\)
\(600\) 0 0
\(601\) 4.12709 9.96368i 0.168348 0.406427i −0.817080 0.576525i \(-0.804408\pi\)
0.985427 + 0.170098i \(0.0544084\pi\)
\(602\) 0 0
\(603\) 47.1223 47.1223i 1.91897 1.91897i
\(604\) 0 0
\(605\) −30.0593 12.4509i −1.22208 0.506203i
\(606\) 0 0
\(607\) 35.7837 14.8221i 1.45242 0.601611i 0.489645 0.871922i \(-0.337127\pi\)
0.962773 + 0.270311i \(0.0871266\pi\)
\(608\) 0 0
\(609\) 9.89482 + 23.8882i 0.400958 + 0.967999i
\(610\) 0 0
\(611\) 37.8564 1.53151
\(612\) 0 0
\(613\) −47.8564 −1.93290 −0.966451 0.256851i \(-0.917315\pi\)
−0.966451 + 0.256851i \(0.917315\pi\)
\(614\) 0 0
\(615\) 21.7305 + 52.4621i 0.876260 + 2.11548i
\(616\) 0 0
\(617\) −32.8617 + 13.6118i −1.32296 + 0.547988i −0.928639 0.370984i \(-0.879020\pi\)
−0.394322 + 0.918972i \(0.629020\pi\)
\(618\) 0 0
\(619\) 10.9053 + 4.51714i 0.438322 + 0.181559i 0.590921 0.806729i \(-0.298764\pi\)
−0.152599 + 0.988288i \(0.548764\pi\)
\(620\) 0 0
\(621\) 3.58630 3.58630i 0.143913 0.143913i
\(622\) 0 0
\(623\) 2.65131 6.40083i 0.106222 0.256444i
\(624\) 0 0
\(625\) 11.0000i 0.440000i
\(626\) 0 0
\(627\) 3.58630 + 3.58630i 0.143223 + 0.143223i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −29.3195 29.3195i −1.16719 1.16719i −0.982865 0.184328i \(-0.940989\pi\)
−0.184328 0.982865i \(-0.559011\pi\)
\(632\) 0 0
\(633\) 6.39230i 0.254071i
\(634\) 0 0
\(635\) −0.520061 + 1.25554i −0.0206380 + 0.0498245i
\(636\) 0 0
\(637\) 1.79315 1.79315i 0.0710472 0.0710472i
\(638\) 0 0
\(639\) 33.8033 + 14.0018i 1.33724 + 0.553903i
\(640\) 0 0
\(641\) 11.9441 4.94741i 0.471764 0.195411i −0.134119 0.990965i \(-0.542820\pi\)
0.605882 + 0.795554i \(0.292820\pi\)
\(642\) 0 0
\(643\) −12.4711 30.1078i −0.491811 1.18734i −0.953798 0.300449i \(-0.902863\pi\)
0.461987 0.886887i \(-0.347137\pi\)
\(644\) 0 0
\(645\) −79.4256 −3.12738
\(646\) 0 0
\(647\) 17.0718 0.671162 0.335581 0.942011i \(-0.391067\pi\)
0.335581 + 0.942011i \(0.391067\pi\)
\(648\) 0 0
\(649\) −1.23048 2.97063i −0.0483004 0.116608i
\(650\) 0 0
\(651\) −28.9364 + 11.9858i −1.13411 + 0.469762i
\(652\) 0 0
\(653\) −9.60124 3.97696i −0.375725 0.155631i 0.186826 0.982393i \(-0.440180\pi\)
−0.562551 + 0.826763i \(0.690180\pi\)
\(654\) 0 0
\(655\) 13.8647 13.8647i 0.541740 0.541740i
\(656\) 0 0
\(657\) −3.41668 + 8.24858i −0.133297 + 0.321808i
\(658\) 0 0
\(659\) 42.9282i 1.67225i −0.548542 0.836123i \(-0.684817\pi\)
0.548542 0.836123i \(-0.315183\pi\)
\(660\) 0 0
\(661\) −10.6574 10.6574i −0.414524 0.414524i 0.468787 0.883311i \(-0.344691\pi\)
−0.883311 + 0.468787i \(0.844691\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.79796 + 9.79796i 0.379949 + 0.379949i
\(666\) 0 0
\(667\) 4.39230i 0.170071i
\(668\) 0 0
\(669\) 12.9563 31.2792i 0.500919 1.20933i
\(670\) 0 0
\(671\) 0.480473 0.480473i 0.0185485 0.0185485i
\(672\) 0 0
\(673\) −0.132663 0.0549509i −0.00511379 0.00211820i 0.380125 0.924935i \(-0.375881\pi\)
−0.385239 + 0.922817i \(0.625881\pi\)
\(674\) 0 0
\(675\) −25.8686 + 10.7151i −0.995684 + 0.412426i
\(676\) 0 0
\(677\) 9.27958 + 22.4029i 0.356643 + 0.861013i 0.995767 + 0.0919093i \(0.0292970\pi\)
−0.639124 + 0.769104i \(0.720703\pi\)
\(678\) 0 0
\(679\) −13.4641 −0.516705
\(680\) 0 0
\(681\) −55.1769 −2.11438
\(682\) 0 0
\(683\) −17.6236 42.5470i −0.674346 1.62802i −0.774145 0.633009i \(-0.781820\pi\)
0.0997983 0.995008i \(-0.468180\pi\)
\(684\) 0 0
\(685\) −8.11592 + 3.36172i −0.310093 + 0.128445i
\(686\) 0 0
\(687\) −51.4719 21.3204i −1.96378 0.813423i
\(688\) 0 0
\(689\) −49.9507 + 49.9507i −1.90297 + 1.90297i
\(690\) 0 0
\(691\) 13.8517 33.4409i 0.526942 1.27215i −0.406575 0.913618i \(-0.633277\pi\)
0.933517 0.358534i \(-0.116723\pi\)
\(692\) 0 0
\(693\) 15.4641i 0.587433i
\(694\) 0 0
\(695\) 36.0860 + 36.0860i 1.36882 + 1.36882i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −11.5911 11.5911i −0.438416 0.438416i
\(700\) 0 0
\(701\) 16.3923i 0.619129i −0.950878 0.309564i \(-0.899817\pi\)
0.950878 0.309564i \(-0.100183\pi\)
\(702\) 0 0
\(703\) −2.54141 + 6.13550i −0.0958510 + 0.231405i
\(704\) 0 0
\(705\) 46.3644 46.3644i 1.74619 1.74619i
\(706\) 0 0
\(707\) −6.40083 2.65131i −0.240728 0.0997127i
\(708\) 0 0
\(709\) 15.0119 6.21811i 0.563782 0.233526i −0.0825442 0.996587i \(-0.526305\pi\)
0.646326 + 0.763061i \(0.276305\pi\)
\(710\) 0 0
\(711\) 20.8351 + 50.3005i 0.781379 + 1.88642i
\(712\) 0 0
\(713\) 5.32051 0.199255
\(714\) 0 0
\(715\) 24.0000 0.897549
\(716\) 0 0
\(717\) 21.7305 + 52.4621i 0.811541 + 1.95923i
\(718\) 0 0
\(719\) 40.2042 16.6531i 1.49936 0.621056i 0.526032 0.850465i \(-0.323679\pi\)
0.973330 + 0.229409i \(0.0736793\pi\)
\(720\) 0 0
\(721\) 27.5837 + 11.4256i 1.02727 + 0.425510i
\(722\) 0 0
\(723\) −3.86370 + 3.86370i −0.143693 + 0.143693i
\(724\) 0 0
\(725\) −9.27958 + 22.4029i −0.344635 + 0.832022i
\(726\) 0 0
\(727\) 4.78461i 0.177451i −0.996056 0.0887257i \(-0.971721\pi\)
0.996056 0.0887257i \(-0.0282794\pi\)
\(728\) 0 0
\(729\) −30.9604 30.9604i −1.14668 1.14668i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 13.2827 + 13.2827i 0.490609 + 0.490609i 0.908498 0.417889i \(-0.137230\pi\)
−0.417889 + 0.908498i \(0.637230\pi\)
\(734\) 0 0
\(735\) 4.39230i 0.162013i
\(736\) 0 0
\(737\) −7.24351 + 17.4874i −0.266818 + 0.644156i
\(738\) 0 0
\(739\) 8.76268 8.76268i 0.322340 0.322340i −0.527324 0.849664i \(-0.676805\pi\)
0.849664 + 0.527324i \(0.176805\pi\)
\(740\) 0 0
\(741\) 20.1927 + 8.36408i 0.741797 + 0.307262i
\(742\) 0 0
\(743\) −22.0890 + 9.14956i −0.810367 + 0.335665i −0.749100 0.662456i \(-0.769514\pi\)
−0.0612665 + 0.998121i \(0.519514\pi\)
\(744\) 0 0
\(745\) 7.95393 + 19.2025i 0.291409 + 0.703524i
\(746\) 0 0
\(747\) 11.3205 0.414196
\(748\) 0 0
\(749\) −29.3205 −1.07135
\(750\) 0 0
\(751\) 7.16845 + 17.3062i 0.261580 + 0.631511i 0.999037 0.0438841i \(-0.0139732\pi\)
−0.737456 + 0.675395i \(0.763973\pi\)
\(752\) 0 0
\(753\) 17.4874 7.24351i 0.637276 0.263968i
\(754\) 0 0
\(755\) 43.0907 + 17.8487i 1.56823 + 0.649582i
\(756\) 0 0
\(757\) −12.3490 + 12.3490i −0.448831 + 0.448831i −0.894966 0.446134i \(-0.852800\pi\)
0.446134 + 0.894966i \(0.352800\pi\)
\(758\) 0 0
\(759\) −1.68086 + 4.05796i −0.0610114 + 0.147295i
\(760\) 0 0
\(761\) 16.3923i 0.594221i −0.954843 0.297110i \(-0.903977\pi\)
0.954843 0.297110i \(-0.0960229\pi\)
\(762\) 0 0
\(763\) 27.8038 + 27.8038i 1.00657 + 1.00657i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.79796 9.79796i −0.353784 0.353784i
\(768\) 0 0
\(769\) 0.392305i 0.0141469i 0.999975 + 0.00707344i \(0.00225156\pi\)
−0.999975 + 0.00707344i \(0.997748\pi\)
\(770\) 0 0
\(771\) −29.6845 + 71.6646i −1.06906 + 2.58094i
\(772\) 0 0
\(773\) −0.480473 + 0.480473i −0.0172814 + 0.0172814i −0.715695 0.698413i \(-0.753890\pi\)
0.698413 + 0.715695i \(0.253890\pi\)
\(774\) 0 0
\(775\) −27.1372 11.2406i −0.974796 0.403774i
\(776\) 0 0
\(777\) 31.2792 12.9563i 1.12214 0.464804i
\(778\) 0 0
\(779\) −3.36172 8.11592i −0.120446 0.290783i
\(780\) 0 0
\(781\) −10.3923 −0.371866
\(782\) 0 0
\(783\) 13.8564 0.495188
\(784\) 0 0
\(785\) −2.65131 6.40083i −0.0946293 0.228455i
\(786\) 0 0
\(787\) 21.3641 8.84931i 0.761549 0.315444i 0.0321048 0.999485i \(-0.489779\pi\)
0.729444 + 0.684041i \(0.239779\pi\)
\(788\) 0 0
\(789\) 28.5739 + 11.8357i 1.01726 + 0.421362i
\(790\) 0 0
\(791\) 38.3596 38.3596i 1.36391 1.36391i
\(792\) 0 0
\(793\) 1.12057 2.70531i 0.0397928 0.0960683i
\(794\) 0 0
\(795\) 122.354i 4.33944i
\(796\) 0 0
\(797\) −1.96902 1.96902i −0.0697461 0.0697461i 0.671373 0.741119i \(-0.265705\pi\)
−0.741119 + 0.671373i \(0.765705\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −8.00481 8.00481i −0.282836 0.282836i
\(802\) 0 0
\(803\) 2.53590i 0.0894899i
\(804\) 0 0
\(805\) −4.59220 + 11.0866i −0.161854 + 0.390750i
\(806\) 0 0
\(807\) −53.0566 + 53.0566i −1.86768 + 1.86768i
\(808\) 0 0
\(809\) 7.25837 + 3.00652i 0.255191 + 0.105703i 0.506612 0.862174i \(-0.330898\pi\)
−0.251421 + 0.967878i \(0.580898\pi\)
\(810\) 0 0
\(811\) 34.5282 14.3021i 1.21245 0.502213i 0.317448 0.948276i \(-0.397174\pi\)
0.895002 + 0.446063i \(0.147174\pi\)
\(812\) 0 0
\(813\) −1.12057 2.70531i −0.0393003 0.0948793i
\(814\) 0 0
\(815\) 71.3205 2.49825
\(816\) 0 0
\(817\) 12.2872 0.429874
\(818\) 0 0
\(819\) −25.5024 61.5683i −0.891126 2.15137i
\(820\) 0 0
\(821\) 41.6054 17.2335i 1.45204 0.601454i 0.489354 0.872085i \(-0.337233\pi\)
0.962683 + 0.270632i \(0.0872325\pi\)
\(822\) 0 0
\(823\) 1.53387 + 0.635352i 0.0534675 + 0.0221470i 0.409257 0.912419i \(-0.365788\pi\)
−0.355789 + 0.934566i \(0.615788\pi\)
\(824\) 0 0
\(825\) 17.1464 17.1464i 0.596962 0.596962i
\(826\) 0 0
\(827\) 7.46870 18.0310i 0.259712 0.627001i −0.739207 0.673478i \(-0.764800\pi\)
0.998919 + 0.0464774i \(0.0147995\pi\)
\(828\) 0 0
\(829\) 39.8564i 1.38427i −0.721768 0.692135i \(-0.756670\pi\)
0.721768 0.692135i \(-0.243330\pi\)
\(830\) 0 0
\(831\) 12.3490 + 12.3490i 0.428382 + 0.428382i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 13.8647 + 13.8647i 0.479809 + 0.479809i
\(836\) 0 0
\(837\) 16.7846i 0.580161i
\(838\) 0 0
\(839\) 1.71570 4.14207i 0.0592325 0.143000i −0.891492 0.453036i \(-0.850341\pi\)
0.950725 + 0.310036i \(0.100341\pi\)
\(840\) 0 0
\(841\) −12.0208 + 12.0208i −0.414511 + 0.414511i
\(842\) 0 0
\(843\) 50.1193 + 20.7601i 1.72620 + 0.715015i
\(844\) 0 0
\(845\) 53.9475 22.3458i 1.85585 0.768718i
\(846\) 0 0
\(847\) −9.81975 23.7070i −0.337411 0.814582i
\(848\) 0 0
\(849\) −56.2487 −1.93045
\(850\) 0 0
\(851\) −5.75129 −0.197152
\(852\) 0 0
\(853\) 3.15665 + 7.62082i 0.108081 + 0.260932i 0.968662 0.248383i \(-0.0798990\pi\)
−0.860581 + 0.509314i \(0.829899\pi\)
\(854\) 0 0
\(855\) 20.9176 8.66434i 0.715366 0.296314i
\(856\) 0 0
\(857\) 15.3743 + 6.36824i 0.525176 + 0.217535i 0.629489 0.777010i \(-0.283264\pi\)
−0.104313 + 0.994545i \(0.533264\pi\)
\(858\) 0 0
\(859\) 19.3185 19.3185i 0.659139 0.659139i −0.296037 0.955176i \(-0.595665\pi\)
0.955176 + 0.296037i \(0.0956652\pi\)
\(860\) 0 0
\(861\) −17.1383 + 41.3756i −0.584073 + 1.41008i
\(862\) 0 0
\(863\) 10.1436i 0.345292i −0.984984 0.172646i \(-0.944768\pi\)
0.984984 0.172646i \(-0.0552317\pi\)
\(864\) 0 0
\(865\) 37.8792 + 37.8792i 1.28793 + 1.28793i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −10.9348 10.9348i −0.370937 0.370937i
\(870\) 0 0
\(871\) 81.5692i 2.76387i
\(872\) 0 0
\(873\) −8.41904 + 20.3253i −0.284941 + 0.687909i
\(874\) 0 0
\(875\) 13.3843 13.3843i 0.452471 0.452471i
\(876\) 0 0
\(877\) −8.87635 3.67671i −0.299733 0.124154i 0.227748 0.973720i \(-0.426864\pi\)
−0.527482 + 0.849566i \(0.676864\pi\)
\(878\) 0 0
\(879\) −75.7226 + 31.3653i −2.55406 + 1.05793i
\(880\) 0 0
\(881\) 14.8422 + 35.8323i 0.500047 + 1.20722i 0.949458 + 0.313896i \(0.101634\pi\)
−0.449410 + 0.893326i \(0.648366\pi\)
\(882\) 0 0
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) 4.36701 + 10.5429i 0.146630 + 0.353996i 0.980081 0.198597i \(-0.0636385\pi\)
−0.833451 + 0.552593i \(0.813639\pi\)
\(888\) 0 0
\(889\) −0.990211 + 0.410159i −0.0332106 + 0.0137563i
\(890\) 0 0
\(891\) 2.88653 + 1.19564i 0.0967023 + 0.0400554i
\(892\) 0 0
\(893\) −7.17260 + 7.17260i −0.240022 + 0.240022i
\(894\) 0 0
\(895\) 19.2696 46.5209i 0.644111 1.55502i
\(896\) 0 0
\(897\) 18.9282i 0.631994i
\(898\) 0 0
\(899\) 10.2784 + 10.2784i 0.342805 + 0.342805i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −44.2939 44.2939i −1.47401 1.47401i
\(904\) 0 0
\(905\) 15.7128i 0.522312i
\(906\) 0 0
\(907\) 13.1815 31.8229i 0.437684 1.05666i −0.539063 0.842266i \(-0.681221\pi\)
0.976747 0.214397i \(-0.0687785\pi\)
\(908\) 0 0
\(909\) −8.00481 + 8.00481i −0.265503 + 0.265503i
\(910\) 0 0
\(911\) 14.6009 + 6.04787i 0.483748 + 0.200375i 0.611210 0.791469i \(-0.290683\pi\)
−0.127462 + 0.991843i \(0.540683\pi\)
\(912\) 0 0
\(913\) −2.97063 + 1.23048i −0.0983136 + 0.0407228i
\(914\) 0 0
\(915\) −1.94089 4.68573i −0.0641639 0.154905i
\(916\) 0 0
\(917\) 15.4641 0.510670
\(918\) 0 0
\(919\) −52.0000 −1.71532 −0.857661 0.514216i \(-0.828083\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) −25.9126 62.5585i −0.853848 2.06137i
\(922\) 0 0
\(923\) −41.3756 + 17.1383i −1.36189 + 0.564115i
\(924\) 0 0
\(925\) 29.3344 + 12.1507i 0.964508 + 0.399512i
\(926\) 0 0
\(927\) 34.4959 34.4959i 1.13299 1.13299i
\(928\) 0 0
\(929\) 3.71693 8.97347i 0.121949 0.294410i −0.851102 0.525000i \(-0.824065\pi\)
0.973051 + 0.230590i \(0.0740655\pi\)
\(930\) 0 0
\(931\) 0.679492i 0.0222694i
\(932\) 0 0
\(933\) −6.03579 6.03579i −0.197603 0.197603i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.101536 0.101536i −0.00331704 0.00331704i 0.705446 0.708763i \(-0.250747\pi\)
−0.708763 + 0.705446i \(0.750747\pi\)
\(938\) 0 0
\(939\) 57.1769i 1.86590i
\(940\) 0 0
\(941\) 15.8127 38.1752i 0.515478 1.24448i −0.425176 0.905110i \(-0.639788\pi\)
0.940655 0.339365i \(-0.110212\pi\)
\(942\) 0 0
\(943\) 5.37945 5.37945i 0.175179 0.175179i
\(944\) 0 0
\(945\) −34.9748 14.4870i −1.13773 0.471263i
\(946\) 0 0
\(947\) −45.5176 + 18.8540i −1.47912 + 0.612674i −0.968919 0.247379i \(-0.920431\pi\)
−0.510206 + 0.860052i \(0.670431\pi\)
\(948\) 0 0
\(949\) −4.18204 10.0963i −0.135755 0.327741i
\(950\) 0 0
\(951\) −23.3205 −0.756219
\(952\) 0 0
\(953\) 6.24871 0.202416 0.101208 0.994865i \(-0.467729\pi\)
0.101208 + 0.994865i \(0.467729\pi\)
\(954\) 0 0
\(955\) −15.9079 38.4050i −0.514766 1.24276i
\(956\) 0 0
\(957\) −11.0866 + 4.59220i −0.358377 + 0.148445i
\(958\) 0 0
\(959\) −6.40083 2.65131i −0.206693 0.0856152i
\(960\) 0 0
\(961\) 9.46979 9.46979i 0.305477 0.305477i
\(962\) 0 0
\(963\) −18.3340 + 44.2621i −0.590804 + 1.42633i
\(964\) 0 0
\(965\) 72.4974i 2.33377i
\(966\) 0 0
\(967\) 19.5216 + 19.5216i 0.627772 + 0.627772i 0.947507 0.319735i \(-0.103594\pi\)
−0.319735 + 0.947507i \(0.603594\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −14.2165 14.2165i −0.456228 0.456228i 0.441187 0.897415i \(-0.354558\pi\)
−0.897415 + 0.441187i \(0.854558\pi\)
\(972\) 0 0
\(973\) 40.2487i 1.29031i
\(974\) 0 0
\(975\) 39.9894 96.5430i 1.28069 3.09185i
\(976\) 0 0
\(977\) −29.6985 + 29.6985i −0.950139 + 0.950139i −0.998815 0.0486759i \(-0.984500\pi\)
0.0486759 + 0.998815i \(0.484500\pi\)
\(978\) 0 0
\(979\) 2.97063 + 1.23048i 0.0949419 + 0.0393262i
\(980\) 0 0
\(981\) 59.3581 24.5869i 1.89516 0.785000i
\(982\) 0 0
\(983\) 13.7418 + 33.1756i 0.438294 + 1.05814i 0.976538 + 0.215347i \(0.0690881\pi\)
−0.538243 + 0.842789i \(0.680912\pi\)
\(984\) 0 0
\(985\) 12.0000 0.382352
\(986\) 0 0
\(987\) 51.7128 1.64604
\(988\) 0 0
\(989\) 4.07214 + 9.83102i 0.129487 + 0.312608i
\(990\) 0 0
\(991\) −0.181221 + 0.0750643i −0.00575668 + 0.00238450i −0.385560 0.922683i \(-0.625992\pi\)
0.379803 + 0.925067i \(0.375992\pi\)
\(992\) 0 0
\(993\) 48.7666 + 20.1998i 1.54756 + 0.641021i
\(994\) 0 0
\(995\) 10.2784 10.2784i 0.325848 0.325848i
\(996\) 0 0
\(997\) −8.26891 + 19.9629i −0.261879 + 0.632232i −0.999055 0.0434693i \(-0.986159\pi\)
0.737176 + 0.675701i \(0.236159\pi\)
\(998\) 0 0
\(999\) 18.1436i 0.574038i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1156.2.h.f.1001.4 16
17.2 even 8 inner 1156.2.h.f.757.4 16
17.3 odd 16 1156.2.b.c.577.4 4
17.4 even 4 inner 1156.2.h.f.733.4 16
17.5 odd 16 1156.2.a.a.1.1 2
17.6 odd 16 1156.2.e.d.829.4 8
17.7 odd 16 1156.2.e.d.905.4 8
17.8 even 8 inner 1156.2.h.f.977.4 16
17.9 even 8 inner 1156.2.h.f.977.1 16
17.10 odd 16 1156.2.e.d.905.1 8
17.11 odd 16 1156.2.e.d.829.1 8
17.12 odd 16 68.2.a.a.1.2 2
17.13 even 4 inner 1156.2.h.f.733.1 16
17.14 odd 16 1156.2.b.c.577.1 4
17.15 even 8 inner 1156.2.h.f.757.1 16
17.16 even 2 inner 1156.2.h.f.1001.1 16
51.29 even 16 612.2.a.e.1.2 2
68.39 even 16 4624.2.a.x.1.2 2
68.63 even 16 272.2.a.e.1.1 2
85.12 even 16 1700.2.e.c.749.1 4
85.29 odd 16 1700.2.a.d.1.1 2
85.63 even 16 1700.2.e.c.749.4 4
119.97 even 16 3332.2.a.h.1.1 2
136.29 odd 16 1088.2.a.p.1.1 2
136.131 even 16 1088.2.a.t.1.2 2
187.131 even 16 8228.2.a.k.1.2 2
204.131 odd 16 2448.2.a.y.1.2 2
340.199 even 16 6800.2.a.bh.1.2 2
408.29 even 16 9792.2.a.cr.1.1 2
408.131 odd 16 9792.2.a.cs.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
68.2.a.a.1.2 2 17.12 odd 16
272.2.a.e.1.1 2 68.63 even 16
612.2.a.e.1.2 2 51.29 even 16
1088.2.a.p.1.1 2 136.29 odd 16
1088.2.a.t.1.2 2 136.131 even 16
1156.2.a.a.1.1 2 17.5 odd 16
1156.2.b.c.577.1 4 17.14 odd 16
1156.2.b.c.577.4 4 17.3 odd 16
1156.2.e.d.829.1 8 17.11 odd 16
1156.2.e.d.829.4 8 17.6 odd 16
1156.2.e.d.905.1 8 17.10 odd 16
1156.2.e.d.905.4 8 17.7 odd 16
1156.2.h.f.733.1 16 17.13 even 4 inner
1156.2.h.f.733.4 16 17.4 even 4 inner
1156.2.h.f.757.1 16 17.15 even 8 inner
1156.2.h.f.757.4 16 17.2 even 8 inner
1156.2.h.f.977.1 16 17.9 even 8 inner
1156.2.h.f.977.4 16 17.8 even 8 inner
1156.2.h.f.1001.1 16 17.16 even 2 inner
1156.2.h.f.1001.4 16 1.1 even 1 trivial
1700.2.a.d.1.1 2 85.29 odd 16
1700.2.e.c.749.1 4 85.12 even 16
1700.2.e.c.749.4 4 85.63 even 16
2448.2.a.y.1.2 2 204.131 odd 16
3332.2.a.h.1.1 2 119.97 even 16
4624.2.a.x.1.2 2 68.39 even 16
6800.2.a.bh.1.2 2 340.199 even 16
8228.2.a.k.1.2 2 187.131 even 16
9792.2.a.cr.1.1 2 408.29 even 16
9792.2.a.cs.1.1 2 408.131 odd 16