Newspace parameters
Level: | \( N \) | \(=\) | \( 1156 = 2^{2} \cdot 17^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1156.e (of order \(4\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.23070647366\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 68) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).
\(n\) | \(579\) | \(581\) |
\(\chi(n)\) | \(1\) | \(i\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
829.1 |
|
0 | 1.00000 | + | 1.00000i | 0 | −2.00000 | − | 2.00000i | 0 | −3.00000 | + | 3.00000i | 0 | − | 1.00000i | 0 | |||||||||||||||||
905.1 | 0 | 1.00000 | − | 1.00000i | 0 | −2.00000 | + | 2.00000i | 0 | −3.00000 | − | 3.00000i | 0 | 1.00000i | 0 | |||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
17.c | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1156.2.e.b | 2 | |
17.b | even | 2 | 1 | 1156.2.e.a | 2 | ||
17.c | even | 4 | 1 | 1156.2.e.a | 2 | ||
17.c | even | 4 | 1 | inner | 1156.2.e.b | 2 | |
17.d | even | 8 | 2 | 68.2.b.a | ✓ | 2 | |
17.d | even | 8 | 2 | 1156.2.a.c | 2 | ||
17.e | odd | 16 | 8 | 1156.2.h.d | 8 | ||
51.g | odd | 8 | 2 | 612.2.b.a | 2 | ||
68.g | odd | 8 | 2 | 272.2.b.c | 2 | ||
68.g | odd | 8 | 2 | 4624.2.a.n | 2 | ||
85.k | odd | 8 | 2 | 1700.2.g.a | 4 | ||
85.m | even | 8 | 2 | 1700.2.c.a | 2 | ||
85.n | odd | 8 | 2 | 1700.2.g.a | 4 | ||
119.l | odd | 8 | 2 | 3332.2.b.a | 2 | ||
136.o | even | 8 | 2 | 1088.2.b.e | 2 | ||
136.p | odd | 8 | 2 | 1088.2.b.f | 2 | ||
204.p | even | 8 | 2 | 2448.2.c.d | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
68.2.b.a | ✓ | 2 | 17.d | even | 8 | 2 | |
272.2.b.c | 2 | 68.g | odd | 8 | 2 | ||
612.2.b.a | 2 | 51.g | odd | 8 | 2 | ||
1088.2.b.e | 2 | 136.o | even | 8 | 2 | ||
1088.2.b.f | 2 | 136.p | odd | 8 | 2 | ||
1156.2.a.c | 2 | 17.d | even | 8 | 2 | ||
1156.2.e.a | 2 | 17.b | even | 2 | 1 | ||
1156.2.e.a | 2 | 17.c | even | 4 | 1 | ||
1156.2.e.b | 2 | 1.a | even | 1 | 1 | trivial | |
1156.2.e.b | 2 | 17.c | even | 4 | 1 | inner | |
1156.2.h.d | 8 | 17.e | odd | 16 | 8 | ||
1700.2.c.a | 2 | 85.m | even | 8 | 2 | ||
1700.2.g.a | 4 | 85.k | odd | 8 | 2 | ||
1700.2.g.a | 4 | 85.n | odd | 8 | 2 | ||
2448.2.c.d | 2 | 204.p | even | 8 | 2 | ||
3332.2.b.a | 2 | 119.l | odd | 8 | 2 | ||
4624.2.a.n | 2 | 68.g | odd | 8 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{2} - 2T_{3} + 2 \)
acting on \(S_{2}^{\mathrm{new}}(1156, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( T^{2} - 2T + 2 \)
$5$
\( T^{2} + 4T + 8 \)
$7$
\( T^{2} + 6T + 18 \)
$11$
\( T^{2} - 2T + 2 \)
$13$
\( (T - 4)^{2} \)
$17$
\( T^{2} \)
$19$
\( T^{2} + 16 \)
$23$
\( T^{2} - 2T + 2 \)
$29$
\( T^{2} + 4T + 8 \)
$31$
\( T^{2} - 6T + 18 \)
$37$
\( T^{2} + 12T + 72 \)
$41$
\( T^{2} - 16T + 128 \)
$43$
\( T^{2} + 64 \)
$47$
\( (T - 12)^{2} \)
$53$
\( T^{2} + 36 \)
$59$
\( T^{2} \)
$61$
\( T^{2} + 12T + 72 \)
$67$
\( (T + 4)^{2} \)
$71$
\( T^{2} - 10T + 50 \)
$73$
\( T^{2} \)
$79$
\( T^{2} + 6T + 18 \)
$83$
\( T^{2} \)
$89$
\( (T + 12)^{2} \)
$97$
\( T^{2} \)
show more
show less