Properties

Label 1156.1.f
Level $1156$
Weight $1$
Character orbit 1156.f
Rep. character $\chi_{1156}(251,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $4$
Newform subspaces $2$
Sturm bound $153$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.f (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 68 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 2 \)
Sturm bound: \(153\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1156, [\chi])\).

Total New Old
Modular forms 44 32 12
Cusp forms 8 4 4
Eisenstein series 36 28 8

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 4 q^{4} + 2 q^{5} + O(q^{10}) \) \( 4 q - 4 q^{4} + 2 q^{5} - 2 q^{10} + 4 q^{13} + 4 q^{16} - 2 q^{20} - 2 q^{29} + 2 q^{37} + 2 q^{40} - 2 q^{41} - 2 q^{45} - 4 q^{50} - 4 q^{52} + 2 q^{58} + 2 q^{61} - 4 q^{64} - 2 q^{73} - 2 q^{74} + 2 q^{80} - 4 q^{81} - 2 q^{82} + 4 q^{89} - 2 q^{90} + 2 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1156, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1156.1.f.a 1156.f 68.f $2$ $0.577$ \(\Q(\sqrt{-1}) \) $D_{2}$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-17}) \) \(\Q(\sqrt{17}) \) 68.1.d.a \(0\) \(0\) \(0\) \(0\) \(q+iq^{2}-q^{4}-iq^{8}-iq^{9}+q^{13}+\cdots\)
1156.1.f.b 1156.f 68.f $2$ $0.577$ \(\Q(\sqrt{-1}) \) $D_{4}$ \(\Q(\sqrt{-1}) \) None 68.1.f.a \(0\) \(0\) \(2\) \(0\) \(q-iq^{2}-q^{4}+(1-i)q^{5}+iq^{8}-iq^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1156, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1156, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(68, [\chi])\)\(^{\oplus 2}\)