# Properties

 Label 1156.1.c.a Level $1156$ Weight $1$ Character orbit 1156.c Self dual yes Analytic conductor $0.577$ Analytic rank $0$ Dimension $1$ Projective image $D_{2}$ CM/RM discs -4, -68, 17 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1156,1,Mod(579,1156)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1156, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1156.579");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1156 = 2^{2} \cdot 17^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1156.c (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.576919154604$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 68) Projective image: $$D_{2}$$ Projective field: Galois closure of $$\Q(i, \sqrt{17})$$ Artin image: $D_4$ Artin field: Galois closure of 4.2.19652.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^4 + q^8 + q^9 $$q + q^{2} + q^{4} + q^{8} + q^{9} - 2 q^{13} + q^{16} + q^{18} - q^{25} - 2 q^{26} + q^{32} + q^{36} + q^{49} - q^{50} - 2 q^{52} - 2 q^{53} + q^{64} + q^{72} + q^{81} - 2 q^{89} + q^{98}+O(q^{100})$$ q + q^2 + q^4 + q^8 + q^9 - 2 * q^13 + q^16 + q^18 - q^25 - 2 * q^26 + q^32 + q^36 + q^49 - q^50 - 2 * q^52 - 2 * q^53 + q^64 + q^72 + q^81 - 2 * q^89 + q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times$$.

 $$n$$ $$579$$ $$581$$ $$\chi(n)$$ $$1$$ $$0$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
579.1
 0
1.00000 0 1.00000 0 0 0 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
17.b even 2 1 RM by $$\Q(\sqrt{17})$$
68.d odd 2 1 CM by $$\Q(\sqrt{-17})$$

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.1.c.a 1
4.b odd 2 1 CM 1156.1.c.a 1
17.b even 2 1 RM 1156.1.c.a 1
17.c even 4 2 68.1.d.a 1
17.d even 8 4 1156.1.f.a 2
17.e odd 16 8 1156.1.g.a 4
51.f odd 4 2 612.1.e.a 1
68.d odd 2 1 CM 1156.1.c.a 1
68.f odd 4 2 68.1.d.a 1
68.g odd 8 4 1156.1.f.a 2
68.i even 16 8 1156.1.g.a 4
85.f odd 4 2 1700.1.d.b 2
85.i odd 4 2 1700.1.d.b 2
85.j even 4 2 1700.1.h.d 1
119.f odd 4 2 3332.1.g.a 1
119.m odd 12 4 3332.1.o.d 2
119.n even 12 4 3332.1.o.c 2
136.i even 4 2 1088.1.g.a 1
136.j odd 4 2 1088.1.g.a 1
204.l even 4 2 612.1.e.a 1
340.i even 4 2 1700.1.d.b 2
340.n odd 4 2 1700.1.h.d 1
340.s even 4 2 1700.1.d.b 2
476.k even 4 2 3332.1.g.a 1
476.z even 12 4 3332.1.o.d 2
476.bb odd 12 4 3332.1.o.c 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.1.d.a 1 17.c even 4 2
68.1.d.a 1 68.f odd 4 2
612.1.e.a 1 51.f odd 4 2
612.1.e.a 1 204.l even 4 2
1088.1.g.a 1 136.i even 4 2
1088.1.g.a 1 136.j odd 4 2
1156.1.c.a 1 1.a even 1 1 trivial
1156.1.c.a 1 4.b odd 2 1 CM
1156.1.c.a 1 17.b even 2 1 RM
1156.1.c.a 1 68.d odd 2 1 CM
1156.1.f.a 2 17.d even 8 4
1156.1.f.a 2 68.g odd 8 4
1156.1.g.a 4 17.e odd 16 8
1156.1.g.a 4 68.i even 16 8
1700.1.d.b 2 85.f odd 4 2
1700.1.d.b 2 85.i odd 4 2
1700.1.d.b 2 340.i even 4 2
1700.1.d.b 2 340.s even 4 2
1700.1.h.d 1 85.j even 4 2
1700.1.h.d 1 340.n odd 4 2
3332.1.g.a 1 119.f odd 4 2
3332.1.g.a 1 476.k even 4 2
3332.1.o.c 2 119.n even 12 4
3332.1.o.c 2 476.bb odd 12 4
3332.1.o.d 2 119.m odd 12 4
3332.1.o.d 2 476.z even 12 4

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{5}$$ acting on $$S_{1}^{\mathrm{new}}(1156, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T$$
$13$ $$T + 2$$
$17$ $$T$$
$19$ $$T$$
$23$ $$T$$
$29$ $$T$$
$31$ $$T$$
$37$ $$T$$
$41$ $$T$$
$43$ $$T$$
$47$ $$T$$
$53$ $$T + 2$$
$59$ $$T$$
$61$ $$T$$
$67$ $$T$$
$71$ $$T$$
$73$ $$T$$
$79$ $$T$$
$83$ $$T$$
$89$ $$T + 2$$
$97$ $$T$$