Properties

Label 1156.1.c.a
Level $1156$
Weight $1$
Character orbit 1156.c
Self dual yes
Analytic conductor $0.577$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -4, -68, 17
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1156,1,Mod(579,1156)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1156, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1156.579");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1156 = 2^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1156.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.576919154604\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 68)
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(i, \sqrt{17})\)
Artin image: $D_4$
Artin field: Galois closure of 4.2.19652.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + q^{4} + q^{8} + q^{9} - 2 q^{13} + q^{16} + q^{18} - q^{25} - 2 q^{26} + q^{32} + q^{36} + q^{49} - q^{50} - 2 q^{52} - 2 q^{53} + q^{64} + q^{72} + q^{81} - 2 q^{89} + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1156\mathbb{Z}\right)^\times\).

\(n\) \(579\) \(581\)
\(\chi(n)\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
579.1
0
1.00000 0 1.00000 0 0 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
17.b even 2 1 RM by \(\Q(\sqrt{17}) \)
68.d odd 2 1 CM by \(\Q(\sqrt{-17}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1156.1.c.a 1
4.b odd 2 1 CM 1156.1.c.a 1
17.b even 2 1 RM 1156.1.c.a 1
17.c even 4 2 68.1.d.a 1
17.d even 8 4 1156.1.f.a 2
17.e odd 16 8 1156.1.g.a 4
51.f odd 4 2 612.1.e.a 1
68.d odd 2 1 CM 1156.1.c.a 1
68.f odd 4 2 68.1.d.a 1
68.g odd 8 4 1156.1.f.a 2
68.i even 16 8 1156.1.g.a 4
85.f odd 4 2 1700.1.d.b 2
85.i odd 4 2 1700.1.d.b 2
85.j even 4 2 1700.1.h.d 1
119.f odd 4 2 3332.1.g.a 1
119.m odd 12 4 3332.1.o.d 2
119.n even 12 4 3332.1.o.c 2
136.i even 4 2 1088.1.g.a 1
136.j odd 4 2 1088.1.g.a 1
204.l even 4 2 612.1.e.a 1
340.i even 4 2 1700.1.d.b 2
340.n odd 4 2 1700.1.h.d 1
340.s even 4 2 1700.1.d.b 2
476.k even 4 2 3332.1.g.a 1
476.z even 12 4 3332.1.o.d 2
476.bb odd 12 4 3332.1.o.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
68.1.d.a 1 17.c even 4 2
68.1.d.a 1 68.f odd 4 2
612.1.e.a 1 51.f odd 4 2
612.1.e.a 1 204.l even 4 2
1088.1.g.a 1 136.i even 4 2
1088.1.g.a 1 136.j odd 4 2
1156.1.c.a 1 1.a even 1 1 trivial
1156.1.c.a 1 4.b odd 2 1 CM
1156.1.c.a 1 17.b even 2 1 RM
1156.1.c.a 1 68.d odd 2 1 CM
1156.1.f.a 2 17.d even 8 4
1156.1.f.a 2 68.g odd 8 4
1156.1.g.a 4 17.e odd 16 8
1156.1.g.a 4 68.i even 16 8
1700.1.d.b 2 85.f odd 4 2
1700.1.d.b 2 85.i odd 4 2
1700.1.d.b 2 340.i even 4 2
1700.1.d.b 2 340.s even 4 2
1700.1.h.d 1 85.j even 4 2
1700.1.h.d 1 340.n odd 4 2
3332.1.g.a 1 119.f odd 4 2
3332.1.g.a 1 476.k even 4 2
3332.1.o.c 2 119.n even 12 4
3332.1.o.c 2 476.bb odd 12 4
3332.1.o.d 2 119.m odd 12 4
3332.1.o.d 2 476.z even 12 4

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{1}^{\mathrm{new}}(1156, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T + 2 \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less