Properties

Label 1152.5.b.k.703.7
Level $1152$
Weight $5$
Character 1152.703
Analytic conductor $119.082$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 1152.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(119.082197473\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.49787136.1
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 703.7
Root \(1.09445 - 0.895644i\) of defining polynomial
Character \(\chi\) \(=\) 1152.703
Dual form 1152.5.b.k.703.2

$q$-expansion

\(f(q)\) \(=\) \(q+39.7490i q^{5} -46.0431i q^{7} +O(q^{10})\) \(q+39.7490i q^{5} -46.0431i q^{7} -181.283 q^{11} +183.498i q^{13} -427.992 q^{17} +668.558 q^{19} +882.463i q^{23} -954.984 q^{25} -807.247i q^{29} +391.276i q^{31} +1830.17 q^{35} -466.980i q^{37} -2159.93 q^{41} -509.182 q^{43} +2056.83i q^{47} +281.031 q^{49} -753.725i q^{53} -7205.84i q^{55} -1309.43 q^{59} +801.913i q^{61} -7293.87 q^{65} -505.813 q^{67} -2170.94i q^{71} -2297.97 q^{73} +8346.85i q^{77} -10705.3i q^{79} -2977.81 q^{83} -17012.3i q^{85} +6493.92 q^{89} +8448.82 q^{91} +26574.5i q^{95} -8189.92 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 1392 q^{17} - 3576 q^{25} + 1008 q^{41} + 10376 q^{49} - 23808 q^{65} - 10256 q^{73} + 31632 q^{89} - 45200 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 39.7490i 1.58996i 0.606635 + 0.794980i \(0.292519\pi\)
−0.606635 + 0.794980i \(0.707481\pi\)
\(6\) 0 0
\(7\) − 46.0431i − 0.939655i −0.882758 0.469828i \(-0.844316\pi\)
0.882758 0.469828i \(-0.155684\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −181.283 −1.49821 −0.749105 0.662451i \(-0.769516\pi\)
−0.749105 + 0.662451i \(0.769516\pi\)
\(12\) 0 0
\(13\) 183.498i 1.08579i 0.839801 + 0.542894i \(0.182671\pi\)
−0.839801 + 0.542894i \(0.817329\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −427.992 −1.48094 −0.740471 0.672089i \(-0.765397\pi\)
−0.740471 + 0.672089i \(0.765397\pi\)
\(18\) 0 0
\(19\) 668.558 1.85196 0.925981 0.377571i \(-0.123241\pi\)
0.925981 + 0.377571i \(0.123241\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 882.463i 1.66817i 0.551635 + 0.834086i \(0.314004\pi\)
−0.551635 + 0.834086i \(0.685996\pi\)
\(24\) 0 0
\(25\) −954.984 −1.52797
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 807.247i − 0.959866i −0.877305 0.479933i \(-0.840661\pi\)
0.877305 0.479933i \(-0.159339\pi\)
\(30\) 0 0
\(31\) 391.276i 0.407155i 0.979059 + 0.203577i \(0.0652569\pi\)
−0.979059 + 0.203577i \(0.934743\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1830.17 1.49402
\(36\) 0 0
\(37\) − 466.980i − 0.341111i −0.985348 0.170555i \(-0.945444\pi\)
0.985348 0.170555i \(-0.0545561\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2159.93 −1.28491 −0.642454 0.766325i \(-0.722083\pi\)
−0.642454 + 0.766325i \(0.722083\pi\)
\(42\) 0 0
\(43\) −509.182 −0.275382 −0.137691 0.990475i \(-0.543968\pi\)
−0.137691 + 0.990475i \(0.543968\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2056.83i 0.931116i 0.885017 + 0.465558i \(0.154146\pi\)
−0.885017 + 0.465558i \(0.845854\pi\)
\(48\) 0 0
\(49\) 281.031 0.117048
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 753.725i − 0.268325i −0.990959 0.134163i \(-0.957166\pi\)
0.990959 0.134163i \(-0.0428344\pi\)
\(54\) 0 0
\(55\) − 7205.84i − 2.38210i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1309.43 −0.376165 −0.188083 0.982153i \(-0.560227\pi\)
−0.188083 + 0.982153i \(0.560227\pi\)
\(60\) 0 0
\(61\) 801.913i 0.215510i 0.994177 + 0.107755i \(0.0343662\pi\)
−0.994177 + 0.107755i \(0.965634\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7293.87 −1.72636
\(66\) 0 0
\(67\) −505.813 −0.112678 −0.0563392 0.998412i \(-0.517943\pi\)
−0.0563392 + 0.998412i \(0.517943\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) − 2170.94i − 0.430658i −0.976542 0.215329i \(-0.930918\pi\)
0.976542 0.215329i \(-0.0690823\pi\)
\(72\) 0 0
\(73\) −2297.97 −0.431219 −0.215610 0.976480i \(-0.569174\pi\)
−0.215610 + 0.976480i \(0.569174\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8346.85i 1.40780i
\(78\) 0 0
\(79\) − 10705.3i − 1.71532i −0.514219 0.857659i \(-0.671918\pi\)
0.514219 0.857659i \(-0.328082\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2977.81 −0.432256 −0.216128 0.976365i \(-0.569343\pi\)
−0.216128 + 0.976365i \(0.569343\pi\)
\(84\) 0 0
\(85\) − 17012.3i − 2.35464i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6493.92 0.819836 0.409918 0.912122i \(-0.365557\pi\)
0.409918 + 0.912122i \(0.365557\pi\)
\(90\) 0 0
\(91\) 8448.82 1.02027
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 26574.5i 2.94455i
\(96\) 0 0
\(97\) −8189.92 −0.870435 −0.435217 0.900325i \(-0.643328\pi\)
−0.435217 + 0.900325i \(0.643328\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 15576.5i − 1.52696i −0.645833 0.763479i \(-0.723490\pi\)
0.645833 0.763479i \(-0.276510\pi\)
\(102\) 0 0
\(103\) 6628.58i 0.624807i 0.949950 + 0.312403i \(0.101134\pi\)
−0.949950 + 0.312403i \(0.898866\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11796.4 −1.03035 −0.515173 0.857086i \(-0.672272\pi\)
−0.515173 + 0.857086i \(0.672272\pi\)
\(108\) 0 0
\(109\) 13286.1i 1.11826i 0.829080 + 0.559130i \(0.188865\pi\)
−0.829080 + 0.559130i \(0.811135\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11713.6 0.917350 0.458675 0.888604i \(-0.348324\pi\)
0.458675 + 0.888604i \(0.348324\pi\)
\(114\) 0 0
\(115\) −35077.0 −2.65233
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 19706.1i 1.39157i
\(120\) 0 0
\(121\) 18222.7 1.24463
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 13116.5i − 0.839459i
\(126\) 0 0
\(127\) − 5640.55i − 0.349715i −0.984594 0.174858i \(-0.944054\pi\)
0.984594 0.174858i \(-0.0559465\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 31922.5 1.86018 0.930089 0.367335i \(-0.119730\pi\)
0.930089 + 0.367335i \(0.119730\pi\)
\(132\) 0 0
\(133\) − 30782.5i − 1.74021i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10515.6 0.560263 0.280132 0.959962i \(-0.409622\pi\)
0.280132 + 0.959962i \(0.409622\pi\)
\(138\) 0 0
\(139\) 14985.9 0.775626 0.387813 0.921738i \(-0.373231\pi\)
0.387813 + 0.921738i \(0.373231\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 33265.2i − 1.62674i
\(144\) 0 0
\(145\) 32087.3 1.52615
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 11795.4i − 0.531298i −0.964070 0.265649i \(-0.914414\pi\)
0.964070 0.265649i \(-0.0855863\pi\)
\(150\) 0 0
\(151\) − 33792.9i − 1.48208i −0.671460 0.741040i \(-0.734333\pi\)
0.671460 0.741040i \(-0.265667\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −15552.8 −0.647360
\(156\) 0 0
\(157\) − 28788.9i − 1.16796i −0.811770 0.583978i \(-0.801496\pi\)
0.811770 0.583978i \(-0.198504\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 40631.3 1.56751
\(162\) 0 0
\(163\) 13409.0 0.504684 0.252342 0.967638i \(-0.418799\pi\)
0.252342 + 0.967638i \(0.418799\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 13206.7i − 0.473546i −0.971565 0.236773i \(-0.923910\pi\)
0.971565 0.236773i \(-0.0760898\pi\)
\(168\) 0 0
\(169\) −5110.53 −0.178934
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 364.956i 0.0121940i 0.999981 + 0.00609702i \(0.00194076\pi\)
−0.999981 + 0.00609702i \(0.998059\pi\)
\(174\) 0 0
\(175\) 43970.5i 1.43577i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 14372.0 0.448549 0.224275 0.974526i \(-0.427999\pi\)
0.224275 + 0.974526i \(0.427999\pi\)
\(180\) 0 0
\(181\) 4050.54i 0.123639i 0.998087 + 0.0618195i \(0.0196903\pi\)
−0.998087 + 0.0618195i \(0.980310\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18562.0 0.542352
\(186\) 0 0
\(187\) 77587.9 2.21876
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 49880.9i − 1.36731i −0.729805 0.683656i \(-0.760389\pi\)
0.729805 0.683656i \(-0.239611\pi\)
\(192\) 0 0
\(193\) −48425.7 −1.30005 −0.650026 0.759912i \(-0.725242\pi\)
−0.650026 + 0.759912i \(0.725242\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5556.74i − 0.143182i −0.997434 0.0715908i \(-0.977192\pi\)
0.997434 0.0715908i \(-0.0228076\pi\)
\(198\) 0 0
\(199\) 60594.7i 1.53013i 0.643952 + 0.765066i \(0.277294\pi\)
−0.643952 + 0.765066i \(0.722706\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −37168.2 −0.901943
\(204\) 0 0
\(205\) − 85855.1i − 2.04295i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −121198. −2.77463
\(210\) 0 0
\(211\) −27539.9 −0.618583 −0.309292 0.950967i \(-0.600092\pi\)
−0.309292 + 0.950967i \(0.600092\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 20239.5i − 0.437847i
\(216\) 0 0
\(217\) 18015.6 0.382585
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 78535.7i − 1.60799i
\(222\) 0 0
\(223\) 3021.35i 0.0607564i 0.999538 + 0.0303782i \(0.00967116\pi\)
−0.999538 + 0.0303782i \(0.990329\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7077.28 −0.137346 −0.0686728 0.997639i \(-0.521876\pi\)
−0.0686728 + 0.997639i \(0.521876\pi\)
\(228\) 0 0
\(229\) − 102761.i − 1.95956i −0.200088 0.979778i \(-0.564123\pi\)
0.200088 0.979778i \(-0.435877\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −22976.6 −0.423227 −0.211613 0.977353i \(-0.567872\pi\)
−0.211613 + 0.977353i \(0.567872\pi\)
\(234\) 0 0
\(235\) −81757.1 −1.48044
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 35566.7i − 0.622656i −0.950303 0.311328i \(-0.899226\pi\)
0.950303 0.311328i \(-0.100774\pi\)
\(240\) 0 0
\(241\) −92683.4 −1.59576 −0.797881 0.602816i \(-0.794045\pi\)
−0.797881 + 0.602816i \(0.794045\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 11170.7i 0.186101i
\(246\) 0 0
\(247\) 122679.i 2.01084i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27590.5 0.437937 0.218968 0.975732i \(-0.429731\pi\)
0.218968 + 0.975732i \(0.429731\pi\)
\(252\) 0 0
\(253\) − 159976.i − 2.49927i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −92304.6 −1.39752 −0.698758 0.715358i \(-0.746264\pi\)
−0.698758 + 0.715358i \(0.746264\pi\)
\(258\) 0 0
\(259\) −21501.2 −0.320526
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 13884.4i − 0.200732i −0.994951 0.100366i \(-0.967999\pi\)
0.994951 0.100366i \(-0.0320014\pi\)
\(264\) 0 0
\(265\) 29959.8 0.426626
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 52698.1i − 0.728266i −0.931347 0.364133i \(-0.881365\pi\)
0.931347 0.364133i \(-0.118635\pi\)
\(270\) 0 0
\(271\) − 47028.8i − 0.640361i −0.947356 0.320181i \(-0.896256\pi\)
0.947356 0.320181i \(-0.103744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 173123. 2.28923
\(276\) 0 0
\(277\) 108393.i 1.41268i 0.707873 + 0.706340i \(0.249655\pi\)
−0.707873 + 0.706340i \(0.750345\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 73090.7 0.925656 0.462828 0.886448i \(-0.346835\pi\)
0.462828 + 0.886448i \(0.346835\pi\)
\(282\) 0 0
\(283\) −44763.1 −0.558917 −0.279458 0.960158i \(-0.590155\pi\)
−0.279458 + 0.960158i \(0.590155\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 99449.9i 1.20737i
\(288\) 0 0
\(289\) 99656.3 1.19319
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 42030.2i − 0.489583i −0.969576 0.244792i \(-0.921280\pi\)
0.969576 0.244792i \(-0.0787195\pi\)
\(294\) 0 0
\(295\) − 52048.6i − 0.598088i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −161930. −1.81128
\(300\) 0 0
\(301\) 23444.3i 0.258765i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −31875.3 −0.342653
\(306\) 0 0
\(307\) −8820.31 −0.0935852 −0.0467926 0.998905i \(-0.514900\pi\)
−0.0467926 + 0.998905i \(0.514900\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 155059.i − 1.60315i −0.597893 0.801576i \(-0.703995\pi\)
0.597893 0.801576i \(-0.296005\pi\)
\(312\) 0 0
\(313\) −179666. −1.83390 −0.916951 0.398999i \(-0.869358\pi\)
−0.916951 + 0.398999i \(0.869358\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 6188.77i − 0.0615865i −0.999526 0.0307933i \(-0.990197\pi\)
0.999526 0.0307933i \(-0.00980335\pi\)
\(318\) 0 0
\(319\) 146341.i 1.43808i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −286138. −2.74265
\(324\) 0 0
\(325\) − 175238.i − 1.65906i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 94703.1 0.874928
\(330\) 0 0
\(331\) 132159. 1.20626 0.603130 0.797643i \(-0.293920\pi\)
0.603130 + 0.797643i \(0.293920\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 20105.6i − 0.179154i
\(336\) 0 0
\(337\) 70040.0 0.616718 0.308359 0.951270i \(-0.400220\pi\)
0.308359 + 0.951270i \(0.400220\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 70931.8i − 0.610004i
\(342\) 0 0
\(343\) − 123489.i − 1.04964i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 157722. 1.30988 0.654942 0.755680i \(-0.272693\pi\)
0.654942 + 0.755680i \(0.272693\pi\)
\(348\) 0 0
\(349\) − 198747.i − 1.63174i −0.578238 0.815868i \(-0.696259\pi\)
0.578238 0.815868i \(-0.303741\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13376.1 −0.107345 −0.0536724 0.998559i \(-0.517093\pi\)
−0.0536724 + 0.998559i \(0.517093\pi\)
\(354\) 0 0
\(355\) 86292.9 0.684729
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 190011.i 1.47432i 0.675721 + 0.737158i \(0.263832\pi\)
−0.675721 + 0.737158i \(0.736168\pi\)
\(360\) 0 0
\(361\) 316649. 2.42976
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 91342.0i − 0.685622i
\(366\) 0 0
\(367\) − 94140.5i − 0.698947i −0.936946 0.349474i \(-0.886360\pi\)
0.936946 0.349474i \(-0.113640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −34703.9 −0.252133
\(372\) 0 0
\(373\) 66152.4i 0.475475i 0.971329 + 0.237738i \(0.0764058\pi\)
−0.971329 + 0.237738i \(0.923594\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 148128. 1.04221
\(378\) 0 0
\(379\) −64395.2 −0.448306 −0.224153 0.974554i \(-0.571962\pi\)
−0.224153 + 0.974554i \(0.571962\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 30714.5i 0.209385i 0.994505 + 0.104693i \(0.0333859\pi\)
−0.994505 + 0.104693i \(0.966614\pi\)
\(384\) 0 0
\(385\) −331779. −2.23835
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 199122.i − 1.31589i −0.753066 0.657945i \(-0.771426\pi\)
0.753066 0.657945i \(-0.228574\pi\)
\(390\) 0 0
\(391\) − 377687.i − 2.47046i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 425525. 2.72729
\(396\) 0 0
\(397\) − 68565.8i − 0.435037i −0.976056 0.217519i \(-0.930204\pi\)
0.976056 0.217519i \(-0.0697963\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21797.1 0.135553 0.0677765 0.997701i \(-0.478410\pi\)
0.0677765 + 0.997701i \(0.478410\pi\)
\(402\) 0 0
\(403\) −71798.3 −0.442084
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 84655.8i 0.511055i
\(408\) 0 0
\(409\) 230211. 1.37620 0.688098 0.725618i \(-0.258446\pi\)
0.688098 + 0.725618i \(0.258446\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 60290.3i 0.353465i
\(414\) 0 0
\(415\) − 118365.i − 0.687270i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 17360.5 0.0988859 0.0494430 0.998777i \(-0.484255\pi\)
0.0494430 + 0.998777i \(0.484255\pi\)
\(420\) 0 0
\(421\) − 186829.i − 1.05410i −0.849836 0.527048i \(-0.823299\pi\)
0.849836 0.527048i \(-0.176701\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 408726. 2.26284
\(426\) 0 0
\(427\) 36922.6 0.202505
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 153753.i 0.827693i 0.910347 + 0.413846i \(0.135815\pi\)
−0.910347 + 0.413846i \(0.864185\pi\)
\(432\) 0 0
\(433\) 9168.87 0.0489035 0.0244517 0.999701i \(-0.492216\pi\)
0.0244517 + 0.999701i \(0.492216\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 589978.i 3.08939i
\(438\) 0 0
\(439\) 178760.i 0.927561i 0.885950 + 0.463780i \(0.153507\pi\)
−0.885950 + 0.463780i \(0.846493\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −17798.2 −0.0906920 −0.0453460 0.998971i \(-0.514439\pi\)
−0.0453460 + 0.998971i \(0.514439\pi\)
\(444\) 0 0
\(445\) 258127.i 1.30351i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −242915. −1.20493 −0.602464 0.798146i \(-0.705814\pi\)
−0.602464 + 0.798146i \(0.705814\pi\)
\(450\) 0 0
\(451\) 391559. 1.92506
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 335832.i 1.62218i
\(456\) 0 0
\(457\) −190762. −0.913396 −0.456698 0.889622i \(-0.650968\pi\)
−0.456698 + 0.889622i \(0.650968\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 155121.i 0.729909i 0.931025 + 0.364955i \(0.118916\pi\)
−0.931025 + 0.364955i \(0.881084\pi\)
\(462\) 0 0
\(463\) − 230925.i − 1.07723i −0.842551 0.538616i \(-0.818947\pi\)
0.842551 0.538616i \(-0.181053\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −154112. −0.706647 −0.353323 0.935501i \(-0.614948\pi\)
−0.353323 + 0.935501i \(0.614948\pi\)
\(468\) 0 0
\(469\) 23289.2i 0.105879i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 92306.3 0.412581
\(474\) 0 0
\(475\) −638462. −2.82975
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 405668.i 1.76807i 0.467420 + 0.884035i \(0.345184\pi\)
−0.467420 + 0.884035i \(0.654816\pi\)
\(480\) 0 0
\(481\) 85690.0 0.370373
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 325541.i − 1.38396i
\(486\) 0 0
\(487\) 426114.i 1.79667i 0.439314 + 0.898334i \(0.355222\pi\)
−0.439314 + 0.898334i \(0.644778\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −273125. −1.13292 −0.566459 0.824090i \(-0.691687\pi\)
−0.566459 + 0.824090i \(0.691687\pi\)
\(492\) 0 0
\(493\) 345495.i 1.42151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −99957.1 −0.404670
\(498\) 0 0
\(499\) 103548. 0.415855 0.207928 0.978144i \(-0.433328\pi\)
0.207928 + 0.978144i \(0.433328\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 217063.i − 0.857925i −0.903322 0.428963i \(-0.858879\pi\)
0.903322 0.428963i \(-0.141121\pi\)
\(504\) 0 0
\(505\) 619151. 2.42780
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 115098.i − 0.444256i −0.975018 0.222128i \(-0.928700\pi\)
0.975018 0.222128i \(-0.0713003\pi\)
\(510\) 0 0
\(511\) 105806.i 0.405198i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −263479. −0.993418
\(516\) 0 0
\(517\) − 372870.i − 1.39501i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −288543. −1.06300 −0.531502 0.847057i \(-0.678372\pi\)
−0.531502 + 0.847057i \(0.678372\pi\)
\(522\) 0 0
\(523\) 176826. 0.646461 0.323231 0.946320i \(-0.395231\pi\)
0.323231 + 0.946320i \(0.395231\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 167463.i − 0.602973i
\(528\) 0 0
\(529\) −498900. −1.78280
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 396343.i − 1.39514i
\(534\) 0 0
\(535\) − 468896.i − 1.63821i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −50946.4 −0.175362
\(540\) 0 0
\(541\) 425220.i 1.45284i 0.687249 + 0.726422i \(0.258818\pi\)
−0.687249 + 0.726422i \(0.741182\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −528108. −1.77799
\(546\) 0 0
\(547\) 495505. 1.65605 0.828024 0.560692i \(-0.189465\pi\)
0.828024 + 0.560692i \(0.189465\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 539691.i − 1.77763i
\(552\) 0 0
\(553\) −492905. −1.61181
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 257895.i 0.831251i 0.909536 + 0.415626i \(0.136437\pi\)
−0.909536 + 0.415626i \(0.863563\pi\)
\(558\) 0 0
\(559\) − 93433.9i − 0.299007i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 417799. 1.31811 0.659054 0.752096i \(-0.270957\pi\)
0.659054 + 0.752096i \(0.270957\pi\)
\(564\) 0 0
\(565\) 465606.i 1.45855i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 100935. 0.311756 0.155878 0.987776i \(-0.450179\pi\)
0.155878 + 0.987776i \(0.450179\pi\)
\(570\) 0 0
\(571\) −453320. −1.39038 −0.695188 0.718828i \(-0.744679\pi\)
−0.695188 + 0.718828i \(0.744679\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 842738.i − 2.54892i
\(576\) 0 0
\(577\) 12119.6 0.0364031 0.0182015 0.999834i \(-0.494206\pi\)
0.0182015 + 0.999834i \(0.494206\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 137108.i 0.406172i
\(582\) 0 0
\(583\) 136638.i 0.402008i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 327468. 0.950370 0.475185 0.879886i \(-0.342381\pi\)
0.475185 + 0.879886i \(0.342381\pi\)
\(588\) 0 0
\(589\) 261591.i 0.754035i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −610182. −1.73520 −0.867601 0.497260i \(-0.834339\pi\)
−0.867601 + 0.497260i \(0.834339\pi\)
\(594\) 0 0
\(595\) −783298. −2.21255
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 499941.i 1.39337i 0.717379 + 0.696683i \(0.245342\pi\)
−0.717379 + 0.696683i \(0.754658\pi\)
\(600\) 0 0
\(601\) −486965. −1.34818 −0.674091 0.738649i \(-0.735464\pi\)
−0.674091 + 0.738649i \(0.735464\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 724334.i 1.97892i
\(606\) 0 0
\(607\) − 41693.4i − 0.113159i −0.998398 0.0565796i \(-0.981981\pi\)
0.998398 0.0565796i \(-0.0180195\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −377425. −1.01099
\(612\) 0 0
\(613\) 542042.i 1.44249i 0.692681 + 0.721244i \(0.256429\pi\)
−0.692681 + 0.721244i \(0.743571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 146814. 0.385653 0.192827 0.981233i \(-0.438235\pi\)
0.192827 + 0.981233i \(0.438235\pi\)
\(618\) 0 0
\(619\) −72720.6 −0.189791 −0.0948956 0.995487i \(-0.530252\pi\)
−0.0948956 + 0.995487i \(0.530252\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 299000.i − 0.770363i
\(624\) 0 0
\(625\) −75495.2 −0.193268
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 199864.i 0.505165i
\(630\) 0 0
\(631\) 568570.i 1.42799i 0.700151 + 0.713995i \(0.253116\pi\)
−0.700151 + 0.713995i \(0.746884\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 224206. 0.556033
\(636\) 0 0
\(637\) 51568.7i 0.127089i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −292494. −0.711870 −0.355935 0.934511i \(-0.615838\pi\)
−0.355935 + 0.934511i \(0.615838\pi\)
\(642\) 0 0
\(643\) −103161. −0.249514 −0.124757 0.992187i \(-0.539815\pi\)
−0.124757 + 0.992187i \(0.539815\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 372569.i − 0.890017i −0.895526 0.445009i \(-0.853201\pi\)
0.895526 0.445009i \(-0.146799\pi\)
\(648\) 0 0
\(649\) 237378. 0.563574
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 85619.0i − 0.200791i −0.994948 0.100395i \(-0.967989\pi\)
0.994948 0.100395i \(-0.0320108\pi\)
\(654\) 0 0
\(655\) 1.26889e6i 2.95761i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 258812. 0.595954 0.297977 0.954573i \(-0.403688\pi\)
0.297977 + 0.954573i \(0.403688\pi\)
\(660\) 0 0
\(661\) 327660.i 0.749928i 0.927039 + 0.374964i \(0.122345\pi\)
−0.927039 + 0.374964i \(0.877655\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.22357e6 2.76686
\(666\) 0 0
\(667\) 712366. 1.60122
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 145374.i − 0.322880i
\(672\) 0 0
\(673\) 137121. 0.302742 0.151371 0.988477i \(-0.451631\pi\)
0.151371 + 0.988477i \(0.451631\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 573451.i 1.25118i 0.780153 + 0.625589i \(0.215141\pi\)
−0.780153 + 0.625589i \(0.784859\pi\)
\(678\) 0 0
\(679\) 377089.i 0.817909i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −175872. −0.377012 −0.188506 0.982072i \(-0.560364\pi\)
−0.188506 + 0.982072i \(0.560364\pi\)
\(684\) 0 0
\(685\) 417984.i 0.890797i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 138307. 0.291344
\(690\) 0 0
\(691\) 7216.66 0.0151140 0.00755702 0.999971i \(-0.497595\pi\)
0.00755702 + 0.999971i \(0.497595\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 595673.i 1.23321i
\(696\) 0 0
\(697\) 924433. 1.90287
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 502543.i − 1.02267i −0.859380 0.511337i \(-0.829150\pi\)
0.859380 0.511337i \(-0.170850\pi\)
\(702\) 0 0
\(703\) − 312203.i − 0.631723i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −717191. −1.43481
\(708\) 0 0
\(709\) 95591.1i 0.190163i 0.995470 + 0.0950813i \(0.0303111\pi\)
−0.995470 + 0.0950813i \(0.969689\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −345286. −0.679204
\(714\) 0 0
\(715\) 1.32226e6 2.58645
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 475789.i 0.920357i 0.887826 + 0.460178i \(0.152215\pi\)
−0.887826 + 0.460178i \(0.847785\pi\)
\(720\) 0 0
\(721\) 305200. 0.587103
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 770908.i 1.46665i
\(726\) 0 0
\(727\) − 193262.i − 0.365661i −0.983144 0.182830i \(-0.941474\pi\)
0.983144 0.182830i \(-0.0585259\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 217926. 0.407825
\(732\) 0 0
\(733\) − 650799.i − 1.21126i −0.795745 0.605632i \(-0.792920\pi\)
0.795745 0.605632i \(-0.207080\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 91695.6 0.168816
\(738\) 0 0
\(739\) −99472.6 −0.182144 −0.0910719 0.995844i \(-0.529029\pi\)
−0.0910719 + 0.995844i \(0.529029\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 715681.i − 1.29641i −0.761466 0.648205i \(-0.775520\pi\)
0.761466 0.648205i \(-0.224480\pi\)
\(744\) 0 0
\(745\) 468854. 0.844744
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 543144.i 0.968170i
\(750\) 0 0
\(751\) 603532.i 1.07009i 0.844824 + 0.535045i \(0.179705\pi\)
−0.844824 + 0.535045i \(0.820295\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.34324e6 2.35645
\(756\) 0 0
\(757\) 784192.i 1.36846i 0.729268 + 0.684228i \(0.239861\pi\)
−0.729268 + 0.684228i \(0.760139\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 568076. 0.980927 0.490464 0.871462i \(-0.336827\pi\)
0.490464 + 0.871462i \(0.336827\pi\)
\(762\) 0 0
\(763\) 611731. 1.05078
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 240278.i − 0.408435i
\(768\) 0 0
\(769\) −531757. −0.899209 −0.449605 0.893228i \(-0.648435\pi\)
−0.449605 + 0.893228i \(0.648435\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 260161.i 0.435394i 0.976016 + 0.217697i \(0.0698545\pi\)
−0.976016 + 0.217697i \(0.930145\pi\)
\(774\) 0 0
\(775\) − 373662.i − 0.622122i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.44404e6 −2.37960
\(780\) 0 0
\(781\) 393556.i 0.645216i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1.14433e6 1.85700
\(786\) 0 0
\(787\) −724342. −1.16948 −0.584742 0.811219i \(-0.698804\pi\)
−0.584742 + 0.811219i \(0.698804\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 539332.i − 0.861993i
\(792\) 0 0
\(793\) −147150. −0.233998
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 1.04249e6i − 1.64117i −0.571524 0.820586i \(-0.693647\pi\)
0.571524 0.820586i \(-0.306353\pi\)
\(798\) 0 0
\(799\) − 880309.i − 1.37893i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 416584. 0.646057
\(804\) 0 0
\(805\) 1.61506e6i 2.49227i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 647222. 0.988909 0.494455 0.869204i \(-0.335368\pi\)
0.494455 + 0.869204i \(0.335368\pi\)
\(810\) 0 0
\(811\) −1.24087e6 −1.88662 −0.943309 0.331916i \(-0.892305\pi\)
−0.943309 + 0.331916i \(0.892305\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 532993.i 0.802428i
\(816\) 0 0
\(817\) −340418. −0.509997
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 819276.i − 1.21547i −0.794141 0.607734i \(-0.792079\pi\)
0.794141 0.607734i \(-0.207921\pi\)
\(822\) 0 0
\(823\) − 515929.i − 0.761710i −0.924635 0.380855i \(-0.875630\pi\)
0.924635 0.380855i \(-0.124370\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −140674. −0.205685 −0.102842 0.994698i \(-0.532794\pi\)
−0.102842 + 0.994698i \(0.532794\pi\)
\(828\) 0 0
\(829\) 137443.i 0.199993i 0.994988 + 0.0999964i \(0.0318831\pi\)
−0.994988 + 0.0999964i \(0.968117\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −120279. −0.173341
\(834\) 0 0
\(835\) 524955. 0.752920
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 591422.i − 0.840182i −0.907482 0.420091i \(-0.861998\pi\)
0.907482 0.420091i \(-0.138002\pi\)
\(840\) 0 0
\(841\) 55633.2 0.0786579
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 203138.i − 0.284498i
\(846\) 0 0
\(847\) − 839029.i − 1.16953i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 412093. 0.569031
\(852\) 0 0
\(853\) − 169773.i − 0.233331i −0.993171 0.116665i \(-0.962780\pi\)
0.993171 0.116665i \(-0.0372205\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.05083e6 −1.43077 −0.715384 0.698732i \(-0.753748\pi\)
−0.715384 + 0.698732i \(0.753748\pi\)
\(858\) 0 0
\(859\) −1.05896e6 −1.43514 −0.717569 0.696487i \(-0.754745\pi\)
−0.717569 + 0.696487i \(0.754745\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.22011e6i 1.63824i 0.573621 + 0.819121i \(0.305538\pi\)
−0.573621 + 0.819121i \(0.694462\pi\)
\(864\) 0 0
\(865\) −14506.6 −0.0193881
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.94069e6i 2.56991i
\(870\) 0 0
\(871\) − 92815.8i − 0.122345i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −603927. −0.788802
\(876\) 0 0
\(877\) − 707060.i − 0.919299i −0.888100 0.459650i \(-0.847975\pi\)
0.888100 0.459650i \(-0.152025\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −430965. −0.555252 −0.277626 0.960689i \(-0.589548\pi\)
−0.277626 + 0.960689i \(0.589548\pi\)
\(882\) 0 0
\(883\) −1.08382e6 −1.39007 −0.695037 0.718974i \(-0.744612\pi\)
−0.695037 + 0.718974i \(0.744612\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 620229.i − 0.788324i −0.919041 0.394162i \(-0.871035\pi\)
0.919041 0.394162i \(-0.128965\pi\)
\(888\) 0 0
\(889\) −259709. −0.328612
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.37511e6i 1.72439i
\(894\) 0 0
\(895\) 571272.i 0.713176i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 315856. 0.390814
\(900\) 0 0
\(901\) 322589.i 0.397374i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −161005. −0.196581
\(906\) 0 0
\(907\) 155091. 0.188526 0.0942629 0.995547i \(-0.469951\pi\)
0.0942629 + 0.995547i \(0.469951\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 670134.i 0.807467i 0.914877 + 0.403734i \(0.132288\pi\)
−0.914877 + 0.403734i \(0.867712\pi\)
\(912\) 0 0
\(913\) 539828. 0.647611
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 1.46981e6i − 1.74793i
\(918\) 0 0
\(919\) 631844.i 0.748134i 0.927402 + 0.374067i \(0.122037\pi\)
−0.927402 + 0.374067i \(0.877963\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 398364. 0.467602
\(924\) 0 0
\(925\) 445959.i 0.521208i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.16204e6 −1.34645 −0.673225 0.739437i \(-0.735092\pi\)
−0.673225 + 0.739437i \(0.735092\pi\)
\(930\) 0 0
\(931\) 187886. 0.216768
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 3.08404e6i 3.52774i
\(936\) 0 0
\(937\) −1.18305e6 −1.34748 −0.673741 0.738967i \(-0.735314\pi\)
−0.673741 + 0.738967i \(0.735314\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 159241.i 0.179836i 0.995949 + 0.0899179i \(0.0286605\pi\)
−0.995949 + 0.0899179i \(0.971340\pi\)
\(942\) 0 0
\(943\) − 1.90606e6i − 2.14345i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 940316. 1.04851 0.524257 0.851560i \(-0.324343\pi\)
0.524257 + 0.851560i \(0.324343\pi\)
\(948\) 0 0
\(949\) − 421673.i − 0.468213i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −577950. −0.636362 −0.318181 0.948030i \(-0.603072\pi\)
−0.318181 + 0.948030i \(0.603072\pi\)
\(954\) 0 0
\(955\) 1.98272e6 2.17397
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 484170.i − 0.526454i
\(960\) 0 0
\(961\) 770424. 0.834225
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 1.92487e6i − 2.06703i
\(966\) 0 0
\(967\) − 785047.i − 0.839542i −0.907630 0.419771i \(-0.862110\pi\)
0.907630 0.419771i \(-0.137890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.05236e6 −1.11616 −0.558082 0.829786i \(-0.688462\pi\)
−0.558082 + 0.829786i \(0.688462\pi\)
\(972\) 0 0
\(973\) − 689996.i − 0.728821i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −20197.7 −0.0211598 −0.0105799 0.999944i \(-0.503368\pi\)
−0.0105799 + 0.999944i \(0.503368\pi\)
\(978\) 0 0
\(979\) −1.17724e6 −1.22829
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1.43076e6i 1.48068i 0.672234 + 0.740338i \(0.265335\pi\)
−0.672234 + 0.740338i \(0.734665\pi\)
\(984\) 0 0
\(985\) 220875. 0.227653
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 449334.i − 0.459385i
\(990\) 0 0
\(991\) 787866.i 0.802241i 0.916025 + 0.401120i \(0.131379\pi\)
−0.916025 + 0.401120i \(0.868621\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.40858e6 −2.43285
\(996\) 0 0
\(997\) − 453709.i − 0.456444i −0.973609 0.228222i \(-0.926709\pi\)
0.973609 0.228222i \(-0.0732912\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.5.b.k.703.7 8
3.2 odd 2 384.5.b.c.319.1 8
4.3 odd 2 inner 1152.5.b.k.703.8 8
8.3 odd 2 inner 1152.5.b.k.703.2 8
8.5 even 2 inner 1152.5.b.k.703.1 8
12.11 even 2 384.5.b.c.319.5 yes 8
24.5 odd 2 384.5.b.c.319.8 yes 8
24.11 even 2 384.5.b.c.319.4 yes 8
48.5 odd 4 768.5.g.g.511.4 4
48.11 even 4 768.5.g.g.511.2 4
48.29 odd 4 768.5.g.c.511.1 4
48.35 even 4 768.5.g.c.511.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.5.b.c.319.1 8 3.2 odd 2
384.5.b.c.319.4 yes 8 24.11 even 2
384.5.b.c.319.5 yes 8 12.11 even 2
384.5.b.c.319.8 yes 8 24.5 odd 2
768.5.g.c.511.1 4 48.29 odd 4
768.5.g.c.511.3 4 48.35 even 4
768.5.g.g.511.2 4 48.11 even 4
768.5.g.g.511.4 4 48.5 odd 4
1152.5.b.k.703.1 8 8.5 even 2 inner
1152.5.b.k.703.2 8 8.3 odd 2 inner
1152.5.b.k.703.7 8 1.1 even 1 trivial
1152.5.b.k.703.8 8 4.3 odd 2 inner