Properties

Label 1152.4.f.a
Level $1152$
Weight $4$
Character orbit 1152.f
Analytic conductor $67.970$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(575,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.575");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta_{2} q^{5} + 4 \beta_1 q^{7} + 8 \beta_{3} q^{11} - 3 \beta_1 q^{13} - 15 \beta_{3} q^{17} - 144 q^{19} - 72 \beta_{2} q^{23} - 75 q^{25} - 85 \beta_{2} q^{29} - 20 \beta_1 q^{31} + 40 \beta_{3} q^{35}+ \cdots + 200 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 576 q^{19} - 300 q^{25} - 932 q^{49} + 2880 q^{67} + 2240 q^{73} + 1728 q^{91} + 800 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( 6\zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\zeta_{8}^{3} + \zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 3\zeta_{8}^{3} + 3\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + 3\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( ( \beta_1 ) / 6 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( \beta_{3} - 3\beta_{2} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
575.1
−0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
0 0 0 −7.07107 0 24.0000i 0 0 0
575.2 0 0 0 −7.07107 0 24.0000i 0 0 0
575.3 0 0 0 7.07107 0 24.0000i 0 0 0
575.4 0 0 0 7.07107 0 24.0000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.d odd 2 1 inner
24.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.f.a 4
3.b odd 2 1 inner 1152.4.f.a 4
4.b odd 2 1 1152.4.f.d yes 4
8.b even 2 1 1152.4.f.d yes 4
8.d odd 2 1 inner 1152.4.f.a 4
12.b even 2 1 1152.4.f.d yes 4
16.e even 4 1 2304.4.c.e 4
16.e even 4 1 2304.4.c.f 4
16.f odd 4 1 2304.4.c.e 4
16.f odd 4 1 2304.4.c.f 4
24.f even 2 1 inner 1152.4.f.a 4
24.h odd 2 1 1152.4.f.d yes 4
48.i odd 4 1 2304.4.c.e 4
48.i odd 4 1 2304.4.c.f 4
48.k even 4 1 2304.4.c.e 4
48.k even 4 1 2304.4.c.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.4.f.a 4 1.a even 1 1 trivial
1152.4.f.a 4 3.b odd 2 1 inner
1152.4.f.a 4 8.d odd 2 1 inner
1152.4.f.a 4 24.f even 2 1 inner
1152.4.f.d yes 4 4.b odd 2 1
1152.4.f.d yes 4 8.b even 2 1
1152.4.f.d yes 4 12.b even 2 1
1152.4.f.d yes 4 24.h odd 2 1
2304.4.c.e 4 16.e even 4 1
2304.4.c.e 4 16.f odd 4 1
2304.4.c.e 4 48.i odd 4 1
2304.4.c.e 4 48.k even 4 1
2304.4.c.f 4 16.e even 4 1
2304.4.c.f 4 16.f odd 4 1
2304.4.c.f 4 48.i odd 4 1
2304.4.c.f 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1152, [\chi])\):

\( T_{5}^{2} - 50 \) Copy content Toggle raw display
\( T_{19} + 144 \) Copy content Toggle raw display
\( T_{23}^{2} - 10368 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 50)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 576)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1152)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 324)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 4050)^{2} \) Copy content Toggle raw display
$19$ \( (T + 144)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 10368)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 14450)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 14400)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 1296)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 13122)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 259200)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 1058)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 165888)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 810000)^{2} \) Copy content Toggle raw display
$67$ \( (T - 720)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 259200)^{2} \) Copy content Toggle raw display
$73$ \( (T - 560)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 129600)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 720000)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 960498)^{2} \) Copy content Toggle raw display
$97$ \( (T - 200)^{4} \) Copy content Toggle raw display
show more
show less