Properties

Label 1152.4.d.q.577.6
Level $1152$
Weight $4$
Character 1152.577
Analytic conductor $67.970$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1152,4,Mod(577,1152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1152.577"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1439868559360000.260
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 28x^{6} + 1023x^{4} - 9212x^{2} + 48841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.6
Root \(-2.26847 - 1.01077i\) of defining polynomial
Character \(\chi\) \(=\) 1152.577
Dual form 1152.4.d.q.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+11.8322i q^{5} -20.9762 q^{7} +49.6387i q^{11} +70.1997i q^{13} +118.659 q^{17} +133.866i q^{19} -45.2548 q^{23} -15.0000 q^{25} -130.154i q^{29} +188.786 q^{31} -248.193i q^{35} -210.599i q^{37} +118.659 q^{41} +401.597i q^{43} -316.784 q^{47} +97.0000 q^{49} +556.111i q^{53} -587.333 q^{55} +99.2774i q^{59} -350.999i q^{61} -830.614 q^{65} -267.731i q^{67} -905.097 q^{71} -350.000 q^{73} -1041.23i q^{77} +440.500 q^{79} +1240.97i q^{83} +1403.99i q^{85} -711.955 q^{89} -1472.52i q^{91} -1583.92 q^{95} +770.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 120 q^{25} + 776 q^{49} - 2800 q^{73} + 6160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 11.8322i 1.05830i 0.848528 + 0.529150i \(0.177489\pi\)
−0.848528 + 0.529150i \(0.822511\pi\)
\(6\) 0 0
\(7\) −20.9762 −1.13261 −0.566304 0.824197i \(-0.691627\pi\)
−0.566304 + 0.824197i \(0.691627\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 49.6387i 1.36060i 0.732933 + 0.680301i \(0.238151\pi\)
−0.732933 + 0.680301i \(0.761849\pi\)
\(12\) 0 0
\(13\) 70.1997i 1.49768i 0.662748 + 0.748842i \(0.269390\pi\)
−0.662748 + 0.748842i \(0.730610\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 118.659 1.69289 0.846443 0.532479i \(-0.178739\pi\)
0.846443 + 0.532479i \(0.178739\pi\)
\(18\) 0 0
\(19\) 133.866i 1.61636i 0.588934 + 0.808181i \(0.299548\pi\)
−0.588934 + 0.808181i \(0.700452\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −45.2548 −0.410273 −0.205137 0.978733i \(-0.565764\pi\)
−0.205137 + 0.978733i \(0.565764\pi\)
\(24\) 0 0
\(25\) −15.0000 −0.120000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 130.154i − 0.833412i −0.909041 0.416706i \(-0.863184\pi\)
0.909041 0.416706i \(-0.136816\pi\)
\(30\) 0 0
\(31\) 188.786 1.09377 0.546885 0.837207i \(-0.315813\pi\)
0.546885 + 0.837207i \(0.315813\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 248.193i − 1.19864i
\(36\) 0 0
\(37\) − 210.599i − 0.935737i −0.883798 0.467869i \(-0.845022\pi\)
0.883798 0.467869i \(-0.154978\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 118.659 0.451987 0.225993 0.974129i \(-0.427437\pi\)
0.225993 + 0.974129i \(0.427437\pi\)
\(42\) 0 0
\(43\) 401.597i 1.42425i 0.702050 + 0.712127i \(0.252268\pi\)
−0.702050 + 0.712127i \(0.747732\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −316.784 −0.983142 −0.491571 0.870838i \(-0.663577\pi\)
−0.491571 + 0.870838i \(0.663577\pi\)
\(48\) 0 0
\(49\) 97.0000 0.282799
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 556.111i 1.44128i 0.693310 + 0.720640i \(0.256152\pi\)
−0.693310 + 0.720640i \(0.743848\pi\)
\(54\) 0 0
\(55\) −587.333 −1.43993
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 99.2774i 0.219065i 0.993983 + 0.109532i \(0.0349353\pi\)
−0.993983 + 0.109532i \(0.965065\pi\)
\(60\) 0 0
\(61\) − 350.999i − 0.736734i −0.929680 0.368367i \(-0.879917\pi\)
0.929680 0.368367i \(-0.120083\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −830.614 −1.58500
\(66\) 0 0
\(67\) − 267.731i − 0.488188i −0.969752 0.244094i \(-0.921510\pi\)
0.969752 0.244094i \(-0.0784905\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −905.097 −1.51289 −0.756445 0.654057i \(-0.773066\pi\)
−0.756445 + 0.654057i \(0.773066\pi\)
\(72\) 0 0
\(73\) −350.000 −0.561156 −0.280578 0.959831i \(-0.590526\pi\)
−0.280578 + 0.959831i \(0.590526\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 1041.23i − 1.54103i
\(78\) 0 0
\(79\) 440.500 0.627343 0.313671 0.949532i \(-0.398441\pi\)
0.313671 + 0.949532i \(0.398441\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1240.97i 1.64113i 0.571553 + 0.820565i \(0.306341\pi\)
−0.571553 + 0.820565i \(0.693659\pi\)
\(84\) 0 0
\(85\) 1403.99i 1.79158i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −711.955 −0.847945 −0.423972 0.905675i \(-0.639365\pi\)
−0.423972 + 0.905675i \(0.639365\pi\)
\(90\) 0 0
\(91\) − 1472.52i − 1.69629i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1583.92 −1.71060
\(96\) 0 0
\(97\) 770.000 0.805996 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 366.797i 0.361363i 0.983542 + 0.180681i \(0.0578303\pi\)
−0.983542 + 0.180681i \(0.942170\pi\)
\(102\) 0 0
\(103\) 1279.55 1.22405 0.612027 0.790837i \(-0.290355\pi\)
0.612027 + 0.790837i \(0.290355\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1489.16i − 1.34544i −0.739895 0.672722i \(-0.765125\pi\)
0.739895 0.672722i \(-0.234875\pi\)
\(108\) 0 0
\(109\) 350.999i 0.308436i 0.988037 + 0.154218i \(0.0492859\pi\)
−0.988037 + 0.154218i \(0.950714\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1661.23 1.38297 0.691483 0.722392i \(-0.256958\pi\)
0.691483 + 0.722392i \(0.256958\pi\)
\(114\) 0 0
\(115\) − 535.462i − 0.434192i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2489.02 −1.91738
\(120\) 0 0
\(121\) −1133.00 −0.851240
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1301.54i 0.931304i
\(126\) 0 0
\(127\) −2202.50 −1.53890 −0.769449 0.638708i \(-0.779469\pi\)
−0.769449 + 0.638708i \(0.779469\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 1786.99i − 1.19183i −0.803046 0.595917i \(-0.796789\pi\)
0.803046 0.595917i \(-0.203211\pi\)
\(132\) 0 0
\(133\) − 2807.99i − 1.83070i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 830.614 0.517987 0.258993 0.965879i \(-0.416609\pi\)
0.258993 + 0.965879i \(0.416609\pi\)
\(138\) 0 0
\(139\) − 267.731i − 0.163372i −0.996658 0.0816858i \(-0.973970\pi\)
0.996658 0.0816858i \(-0.0260304\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3484.62 −2.03775
\(144\) 0 0
\(145\) 1540.00 0.882000
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 650.769i − 0.357806i −0.983867 0.178903i \(-0.942745\pi\)
0.983867 0.178903i \(-0.0572548\pi\)
\(150\) 0 0
\(151\) −440.500 −0.237400 −0.118700 0.992930i \(-0.537873\pi\)
−0.118700 + 0.992930i \(0.537873\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2233.74i 1.15754i
\(156\) 0 0
\(157\) 210.599i 0.107055i 0.998566 + 0.0535275i \(0.0170465\pi\)
−0.998566 + 0.0535275i \(0.982954\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 949.273 0.464678
\(162\) 0 0
\(163\) 133.866i 0.0643262i 0.999483 + 0.0321631i \(0.0102396\pi\)
−0.999483 + 0.0321631i \(0.989760\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3484.62 −1.61466 −0.807330 0.590100i \(-0.799088\pi\)
−0.807330 + 0.590100i \(0.799088\pi\)
\(168\) 0 0
\(169\) −2731.00 −1.24306
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 911.076i − 0.400392i −0.979756 0.200196i \(-0.935842\pi\)
0.979756 0.200196i \(-0.0641579\pi\)
\(174\) 0 0
\(175\) 314.643 0.135913
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 893.497i 0.373090i 0.982446 + 0.186545i \(0.0597290\pi\)
−0.982446 + 0.186545i \(0.940271\pi\)
\(180\) 0 0
\(181\) − 350.999i − 0.144141i −0.997400 0.0720705i \(-0.977039\pi\)
0.997400 0.0720705i \(-0.0229607\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2491.84 0.990291
\(186\) 0 0
\(187\) 5890.09i 2.30335i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3846.66 −1.45725 −0.728625 0.684913i \(-0.759840\pi\)
−0.728625 + 0.684913i \(0.759840\pi\)
\(192\) 0 0
\(193\) 4230.00 1.57763 0.788814 0.614632i \(-0.210696\pi\)
0.788814 + 0.614632i \(0.210696\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4082.10i − 1.47633i −0.674620 0.738166i \(-0.735692\pi\)
0.674620 0.738166i \(-0.264308\pi\)
\(198\) 0 0
\(199\) 4803.54 1.71113 0.855563 0.517698i \(-0.173211\pi\)
0.855563 + 0.517698i \(0.173211\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2730.13i 0.943928i
\(204\) 0 0
\(205\) 1403.99i 0.478338i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6644.91 −2.19923
\(210\) 0 0
\(211\) 2409.58i 0.786172i 0.919502 + 0.393086i \(0.128593\pi\)
−0.919502 + 0.393086i \(0.871407\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −4751.76 −1.50729
\(216\) 0 0
\(217\) −3960.00 −1.23881
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 8329.84i 2.53541i
\(222\) 0 0
\(223\) −104.881 −0.0314948 −0.0157474 0.999876i \(-0.505013\pi\)
−0.0157474 + 0.999876i \(0.505013\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 2233.74i − 0.653122i −0.945176 0.326561i \(-0.894110\pi\)
0.945176 0.326561i \(-0.105890\pi\)
\(228\) 0 0
\(229\) 6668.97i 1.92445i 0.272263 + 0.962223i \(0.412228\pi\)
−0.272263 + 0.962223i \(0.587772\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4983.69 −1.40125 −0.700627 0.713528i \(-0.747096\pi\)
−0.700627 + 0.713528i \(0.747096\pi\)
\(234\) 0 0
\(235\) − 3748.24i − 1.04046i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2489.02 −0.673645 −0.336822 0.941568i \(-0.609352\pi\)
−0.336822 + 0.941568i \(0.609352\pi\)
\(240\) 0 0
\(241\) 3402.00 0.909303 0.454652 0.890669i \(-0.349764\pi\)
0.454652 + 0.890669i \(0.349764\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1147.72i 0.299286i
\(246\) 0 0
\(247\) −9397.33 −2.42080
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 5509.90i − 1.38558i −0.721138 0.692792i \(-0.756380\pi\)
0.721138 0.692792i \(-0.243620\pi\)
\(252\) 0 0
\(253\) − 2246.39i − 0.558219i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4271.73 1.03682 0.518411 0.855132i \(-0.326524\pi\)
0.518411 + 0.855132i \(0.326524\pi\)
\(258\) 0 0
\(259\) 4417.56i 1.05982i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1629.17 −0.381974 −0.190987 0.981593i \(-0.561169\pi\)
−0.190987 + 0.981593i \(0.561169\pi\)
\(264\) 0 0
\(265\) −6580.00 −1.52531
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 5998.90i − 1.35970i −0.733351 0.679851i \(-0.762045\pi\)
0.733351 0.679851i \(-0.237955\pi\)
\(270\) 0 0
\(271\) 3419.12 0.766408 0.383204 0.923664i \(-0.374821\pi\)
0.383204 + 0.923664i \(0.374821\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 744.580i − 0.163272i
\(276\) 0 0
\(277\) − 4001.38i − 0.867942i −0.900927 0.433971i \(-0.857112\pi\)
0.900927 0.433971i \(-0.142888\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3322.46 −0.705342 −0.352671 0.935747i \(-0.614727\pi\)
−0.352671 + 0.935747i \(0.614727\pi\)
\(282\) 0 0
\(283\) − 4283.70i − 0.899786i −0.893082 0.449893i \(-0.851462\pi\)
0.893082 0.449893i \(-0.148538\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2489.02 −0.511923
\(288\) 0 0
\(289\) 9167.00 1.86587
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 3892.78i − 0.776173i −0.921623 0.388086i \(-0.873136\pi\)
0.921623 0.388086i \(-0.126864\pi\)
\(294\) 0 0
\(295\) −1174.67 −0.231836
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 3176.88i − 0.614460i
\(300\) 0 0
\(301\) − 8423.97i − 1.61312i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4153.07 0.779686
\(306\) 0 0
\(307\) − 9906.05i − 1.84159i −0.390046 0.920795i \(-0.627541\pi\)
0.390046 0.920795i \(-0.372459\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3167.84 0.577594 0.288797 0.957390i \(-0.406745\pi\)
0.288797 + 0.957390i \(0.406745\pi\)
\(312\) 0 0
\(313\) −5390.00 −0.973357 −0.486679 0.873581i \(-0.661792\pi\)
−0.486679 + 0.873581i \(0.661792\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 35.4965i − 0.00628921i −0.999995 0.00314461i \(-0.998999\pi\)
0.999995 0.00314461i \(-0.00100096\pi\)
\(318\) 0 0
\(319\) 6460.66 1.13394
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15884.4i 2.73632i
\(324\) 0 0
\(325\) − 1053.00i − 0.179722i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 6644.91 1.11351
\(330\) 0 0
\(331\) 2677.31i 0.444587i 0.974980 + 0.222294i \(0.0713544\pi\)
−0.974980 + 0.222294i \(0.928646\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 3167.84 0.516649
\(336\) 0 0
\(337\) 4310.00 0.696679 0.348339 0.937369i \(-0.386746\pi\)
0.348339 + 0.937369i \(0.386746\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9371.07i 1.48819i
\(342\) 0 0
\(343\) 5160.14 0.812307
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3722.90i 0.575953i 0.957637 + 0.287977i \(0.0929826\pi\)
−0.957637 + 0.287977i \(0.907017\pi\)
\(348\) 0 0
\(349\) 12285.0i 1.88424i 0.335282 + 0.942118i \(0.391168\pi\)
−0.335282 + 0.942118i \(0.608832\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 711.955 0.107347 0.0536736 0.998559i \(-0.482907\pi\)
0.0536736 + 0.998559i \(0.482907\pi\)
\(354\) 0 0
\(355\) − 10709.2i − 1.60109i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 905.097 0.133062 0.0665309 0.997784i \(-0.478807\pi\)
0.0665309 + 0.997784i \(0.478807\pi\)
\(360\) 0 0
\(361\) −11061.0 −1.61263
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 4141.26i − 0.593872i
\(366\) 0 0
\(367\) −2831.78 −0.402774 −0.201387 0.979512i \(-0.564545\pi\)
−0.201387 + 0.979512i \(0.564545\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 11665.1i − 1.63240i
\(372\) 0 0
\(373\) − 7792.17i − 1.08167i −0.841128 0.540835i \(-0.818108\pi\)
0.841128 0.540835i \(-0.181892\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9136.76 1.24819
\(378\) 0 0
\(379\) − 4953.03i − 0.671293i −0.941988 0.335646i \(-0.891045\pi\)
0.941988 0.335646i \(-0.108955\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 11721.0 1.56375 0.781874 0.623437i \(-0.214264\pi\)
0.781874 + 0.623437i \(0.214264\pi\)
\(384\) 0 0
\(385\) 12320.0 1.63087
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 7111.13i 0.926860i 0.886134 + 0.463430i \(0.153381\pi\)
−0.886134 + 0.463430i \(0.846619\pi\)
\(390\) 0 0
\(391\) −5369.90 −0.694546
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 5212.06i 0.663917i
\(396\) 0 0
\(397\) 10319.4i 1.30457i 0.757974 + 0.652284i \(0.226189\pi\)
−0.757974 + 0.652284i \(0.773811\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2491.84 −0.310316 −0.155158 0.987890i \(-0.549589\pi\)
−0.155158 + 0.987890i \(0.549589\pi\)
\(402\) 0 0
\(403\) 13252.7i 1.63812i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10453.9 1.27317
\(408\) 0 0
\(409\) −5306.00 −0.641479 −0.320739 0.947167i \(-0.603931\pi\)
−0.320739 + 0.947167i \(0.603931\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 2082.46i − 0.248114i
\(414\) 0 0
\(415\) −14683.3 −1.73681
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 9580.27i − 1.11701i −0.829502 0.558504i \(-0.811375\pi\)
0.829502 0.558504i \(-0.188625\pi\)
\(420\) 0 0
\(421\) 9476.96i 1.09710i 0.836118 + 0.548550i \(0.184820\pi\)
−0.836118 + 0.548550i \(0.815180\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1779.89 −0.203146
\(426\) 0 0
\(427\) 7362.61i 0.834430i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 5656.85 0.632207 0.316103 0.948725i \(-0.397625\pi\)
0.316103 + 0.948725i \(0.397625\pi\)
\(432\) 0 0
\(433\) 2030.00 0.225302 0.112651 0.993635i \(-0.464066\pi\)
0.112651 + 0.993635i \(0.464066\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 6058.07i − 0.663150i
\(438\) 0 0
\(439\) 7824.11 0.850625 0.425313 0.905046i \(-0.360164\pi\)
0.425313 + 0.905046i \(0.360164\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 4219.29i − 0.452516i −0.974067 0.226258i \(-0.927351\pi\)
0.974067 0.226258i \(-0.0726492\pi\)
\(444\) 0 0
\(445\) − 8423.97i − 0.897380i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17442.9 −1.83337 −0.916683 0.399615i \(-0.869144\pi\)
−0.916683 + 0.399615i \(0.869144\pi\)
\(450\) 0 0
\(451\) 5890.09i 0.614974i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 17423.1 1.79518
\(456\) 0 0
\(457\) −7530.00 −0.770763 −0.385381 0.922757i \(-0.625930\pi\)
−0.385381 + 0.922757i \(0.625930\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 17002.8i − 1.71779i −0.512154 0.858894i \(-0.671152\pi\)
0.512154 0.858894i \(-0.328848\pi\)
\(462\) 0 0
\(463\) 3670.83 0.368462 0.184231 0.982883i \(-0.441021\pi\)
0.184231 + 0.982883i \(0.441021\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 7197.61i − 0.713203i −0.934257 0.356601i \(-0.883935\pi\)
0.934257 0.356601i \(-0.116065\pi\)
\(468\) 0 0
\(469\) 5615.98i 0.552925i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −19934.7 −1.93784
\(474\) 0 0
\(475\) − 2007.98i − 0.193963i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 12671.4 1.20870 0.604352 0.796718i \(-0.293432\pi\)
0.604352 + 0.796718i \(0.293432\pi\)
\(480\) 0 0
\(481\) 14784.0 1.40144
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9110.76i 0.852986i
\(486\) 0 0
\(487\) 7194.83 0.669464 0.334732 0.942313i \(-0.391354\pi\)
0.334732 + 0.942313i \(0.391354\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 6155.20i 0.565744i 0.959158 + 0.282872i \(0.0912871\pi\)
−0.959158 + 0.282872i \(0.908713\pi\)
\(492\) 0 0
\(493\) − 15443.9i − 1.41087i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 18985.5 1.71351
\(498\) 0 0
\(499\) 11780.2i 1.05682i 0.848989 + 0.528410i \(0.177212\pi\)
−0.848989 + 0.528410i \(0.822788\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6969.24 0.617780 0.308890 0.951098i \(-0.400043\pi\)
0.308890 + 0.951098i \(0.400043\pi\)
\(504\) 0 0
\(505\) −4340.00 −0.382431
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9524.89i 0.829437i 0.909950 + 0.414718i \(0.136120\pi\)
−0.909950 + 0.414718i \(0.863880\pi\)
\(510\) 0 0
\(511\) 7341.66 0.635569
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 15139.8i 1.29542i
\(516\) 0 0
\(517\) − 15724.7i − 1.33767i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −3203.80 −0.269407 −0.134703 0.990886i \(-0.543008\pi\)
−0.134703 + 0.990886i \(0.543008\pi\)
\(522\) 0 0
\(523\) 9504.46i 0.794648i 0.917678 + 0.397324i \(0.130061\pi\)
−0.917678 + 0.397324i \(0.869939\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22401.1 1.85163
\(528\) 0 0
\(529\) −10119.0 −0.831676
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 8329.84i 0.676933i
\(534\) 0 0
\(535\) 17620.0 1.42389
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 4814.95i 0.384777i
\(540\) 0 0
\(541\) − 13688.9i − 1.08786i −0.839130 0.543931i \(-0.816935\pi\)
0.839130 0.543931i \(-0.183065\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4153.07 −0.326418
\(546\) 0 0
\(547\) 3078.91i 0.240667i 0.992734 + 0.120333i \(0.0383963\pi\)
−0.992734 + 0.120333i \(0.961604\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17423.1 1.34710
\(552\) 0 0
\(553\) −9240.00 −0.710533
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21333.4i 1.62284i 0.584460 + 0.811422i \(0.301306\pi\)
−0.584460 + 0.811422i \(0.698694\pi\)
\(558\) 0 0
\(559\) −28192.0 −2.13308
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17621.7i 1.31913i 0.751650 + 0.659563i \(0.229259\pi\)
−0.751650 + 0.659563i \(0.770741\pi\)
\(564\) 0 0
\(565\) 19655.9i 1.46359i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2491.84 0.183591 0.0917957 0.995778i \(-0.470739\pi\)
0.0917957 + 0.995778i \(0.470739\pi\)
\(570\) 0 0
\(571\) 7764.21i 0.569040i 0.958670 + 0.284520i \(0.0918342\pi\)
−0.958670 + 0.284520i \(0.908166\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 678.823 0.0492328
\(576\) 0 0
\(577\) 20090.0 1.44949 0.724747 0.689015i \(-0.241957\pi\)
0.724747 + 0.689015i \(0.241957\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 26030.8i − 1.85876i
\(582\) 0 0
\(583\) −27604.6 −1.96101
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 5956.64i − 0.418836i −0.977826 0.209418i \(-0.932843\pi\)
0.977826 0.209418i \(-0.0671570\pi\)
\(588\) 0 0
\(589\) 25271.9i 1.76793i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4034.41 0.279382 0.139691 0.990195i \(-0.455389\pi\)
0.139691 + 0.990195i \(0.455389\pi\)
\(594\) 0 0
\(595\) − 29450.4i − 2.02916i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16518.0 1.12672 0.563362 0.826210i \(-0.309508\pi\)
0.563362 + 0.826210i \(0.309508\pi\)
\(600\) 0 0
\(601\) 11438.0 0.776316 0.388158 0.921593i \(-0.373112\pi\)
0.388158 + 0.921593i \(0.373112\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 13405.8i − 0.900867i
\(606\) 0 0
\(607\) 15753.1 1.05338 0.526688 0.850059i \(-0.323434\pi\)
0.526688 + 0.850059i \(0.323434\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 22238.1i − 1.47244i
\(612\) 0 0
\(613\) − 5545.78i − 0.365403i −0.983168 0.182701i \(-0.941516\pi\)
0.983168 0.182701i \(-0.0584841\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16612.3 1.08393 0.541965 0.840401i \(-0.317680\pi\)
0.541965 + 0.840401i \(0.317680\pi\)
\(618\) 0 0
\(619\) − 17670.3i − 1.14738i −0.819073 0.573690i \(-0.805512\pi\)
0.819073 0.573690i \(-0.194488\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14934.1 0.960388
\(624\) 0 0
\(625\) −17275.0 −1.10560
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 24989.5i − 1.58410i
\(630\) 0 0
\(631\) −5726.50 −0.361281 −0.180640 0.983549i \(-0.557817\pi\)
−0.180640 + 0.983549i \(0.557817\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 26060.3i − 1.62862i
\(636\) 0 0
\(637\) 6809.37i 0.423543i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19104.1 1.17717 0.588586 0.808434i \(-0.299685\pi\)
0.588586 + 0.808434i \(0.299685\pi\)
\(642\) 0 0
\(643\) − 10307.7i − 0.632184i −0.948729 0.316092i \(-0.897629\pi\)
0.948729 0.316092i \(-0.102371\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9186.73 −0.558219 −0.279109 0.960259i \(-0.590039\pi\)
−0.279109 + 0.960259i \(0.590039\pi\)
\(648\) 0 0
\(649\) −4928.00 −0.298060
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26728.8i 1.60181i 0.598793 + 0.800904i \(0.295647\pi\)
−0.598793 + 0.800904i \(0.704353\pi\)
\(654\) 0 0
\(655\) 21144.0 1.26132
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19458.4i 1.15021i 0.818079 + 0.575107i \(0.195039\pi\)
−0.818079 + 0.575107i \(0.804961\pi\)
\(660\) 0 0
\(661\) 5966.98i 0.351117i 0.984469 + 0.175559i \(0.0561731\pi\)
−0.984469 + 0.175559i \(0.943827\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 33224.6 1.93743
\(666\) 0 0
\(667\) 5890.09i 0.341927i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 17423.1 1.00240
\(672\) 0 0
\(673\) 2270.00 0.130018 0.0650090 0.997885i \(-0.479292\pi\)
0.0650090 + 0.997885i \(0.479292\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16103.6i 0.914196i 0.889416 + 0.457098i \(0.151111\pi\)
−0.889416 + 0.457098i \(0.848889\pi\)
\(678\) 0 0
\(679\) −16151.7 −0.912877
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 20600.1i − 1.15408i −0.816714 0.577042i \(-0.804207\pi\)
0.816714 0.577042i \(-0.195793\pi\)
\(684\) 0 0
\(685\) 9827.96i 0.548185i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39038.9 −2.15858
\(690\) 0 0
\(691\) − 7362.61i − 0.405335i −0.979248 0.202668i \(-0.935039\pi\)
0.979248 0.202668i \(-0.0649611\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3167.84 0.172896
\(696\) 0 0
\(697\) 14080.0 0.765162
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 13855.5i − 0.746524i −0.927726 0.373262i \(-0.878239\pi\)
0.927726 0.373262i \(-0.121761\pi\)
\(702\) 0 0
\(703\) 28192.0 1.51249
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 7694.00i − 0.409282i
\(708\) 0 0
\(709\) − 28430.9i − 1.50599i −0.658028 0.752993i \(-0.728609\pi\)
0.658028 0.752993i \(-0.271391\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8543.46 −0.448745
\(714\) 0 0
\(715\) − 41230.6i − 2.15656i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −28510.5 −1.47881 −0.739405 0.673261i \(-0.764893\pi\)
−0.739405 + 0.673261i \(0.764893\pi\)
\(720\) 0 0
\(721\) −26840.0 −1.38637
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1952.31i 0.100009i
\(726\) 0 0
\(727\) 18689.8 0.953460 0.476730 0.879050i \(-0.341822\pi\)
0.476730 + 0.879050i \(0.341822\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 47653.1i 2.41110i
\(732\) 0 0
\(733\) 14110.1i 0.711010i 0.934674 + 0.355505i \(0.115691\pi\)
−0.934674 + 0.355505i \(0.884309\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 13289.8 0.664229
\(738\) 0 0
\(739\) 32930.9i 1.63922i 0.572921 + 0.819610i \(0.305810\pi\)
−0.572921 + 0.819610i \(0.694190\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 17151.6 0.846878 0.423439 0.905925i \(-0.360823\pi\)
0.423439 + 0.905925i \(0.360823\pi\)
\(744\) 0 0
\(745\) 7700.00 0.378666
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 31236.9i 1.52386i
\(750\) 0 0
\(751\) −12480.8 −0.606434 −0.303217 0.952922i \(-0.598061\pi\)
−0.303217 + 0.952922i \(0.598061\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 5212.06i − 0.251240i
\(756\) 0 0
\(757\) − 12144.6i − 0.583093i −0.956557 0.291546i \(-0.905830\pi\)
0.956557 0.291546i \(-0.0941698\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −36665.7 −1.74656 −0.873279 0.487221i \(-0.838011\pi\)
−0.873279 + 0.487221i \(0.838011\pi\)
\(762\) 0 0
\(763\) − 7362.61i − 0.349337i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6969.24 −0.328090
\(768\) 0 0
\(769\) 16646.0 0.780585 0.390293 0.920691i \(-0.372374\pi\)
0.390293 + 0.920691i \(0.372374\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 7395.10i − 0.344092i −0.985089 0.172046i \(-0.944962\pi\)
0.985089 0.172046i \(-0.0550378\pi\)
\(774\) 0 0
\(775\) −2831.78 −0.131252
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 15884.4i 0.730574i
\(780\) 0 0
\(781\) − 44927.8i − 2.05844i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2491.84 −0.113296
\(786\) 0 0
\(787\) 11110.8i 0.503251i 0.967825 + 0.251626i \(0.0809652\pi\)
−0.967825 + 0.251626i \(0.919035\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −34846.2 −1.56636
\(792\) 0 0
\(793\) 24640.0 1.10339
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 2614.91i − 0.116217i −0.998310 0.0581084i \(-0.981493\pi\)
0.998310 0.0581084i \(-0.0185069\pi\)
\(798\) 0 0
\(799\) −37589.3 −1.66435
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 17373.5i − 0.763511i
\(804\) 0 0
\(805\) 11232.0i 0.491769i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −39038.9 −1.69658 −0.848290 0.529532i \(-0.822368\pi\)
−0.848290 + 0.529532i \(0.822368\pi\)
\(810\) 0 0
\(811\) 29584.3i 1.28094i 0.767982 + 0.640472i \(0.221261\pi\)
−0.767982 + 0.640472i \(0.778739\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1583.92 −0.0680764
\(816\) 0 0
\(817\) −53760.0 −2.30211
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 21877.7i − 0.930007i −0.885309 0.465003i \(-0.846053\pi\)
0.885309 0.465003i \(-0.153947\pi\)
\(822\) 0 0
\(823\) −35093.1 −1.48635 −0.743177 0.669094i \(-0.766682\pi\)
−0.743177 + 0.669094i \(0.766682\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31272.4i 1.31493i 0.753485 + 0.657465i \(0.228371\pi\)
−0.753485 + 0.657465i \(0.771629\pi\)
\(828\) 0 0
\(829\) − 22112.9i − 0.926433i −0.886245 0.463217i \(-0.846695\pi\)
0.886245 0.463217i \(-0.153305\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11509.9 0.478746
\(834\) 0 0
\(835\) − 41230.6i − 1.70880i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −31678.4 −1.30353 −0.651764 0.758422i \(-0.725971\pi\)
−0.651764 + 0.758422i \(0.725971\pi\)
\(840\) 0 0
\(841\) 7449.00 0.305425
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 32313.6i − 1.31553i
\(846\) 0 0
\(847\) 23766.0 0.964120
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 9530.63i 0.383908i
\(852\) 0 0
\(853\) 16918.1i 0.679092i 0.940589 + 0.339546i \(0.110273\pi\)
−0.940589 + 0.339546i \(0.889727\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18154.9 0.723638 0.361819 0.932248i \(-0.382156\pi\)
0.361819 + 0.932248i \(0.382156\pi\)
\(858\) 0 0
\(859\) 48325.5i 1.91949i 0.280868 + 0.959746i \(0.409378\pi\)
−0.280868 + 0.959746i \(0.590622\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −41227.2 −1.62617 −0.813087 0.582142i \(-0.802215\pi\)
−0.813087 + 0.582142i \(0.802215\pi\)
\(864\) 0 0
\(865\) 10780.0 0.423735
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 21865.8i 0.853564i
\(870\) 0 0
\(871\) 18794.7 0.731151
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 27301.3i − 1.05480i
\(876\) 0 0
\(877\) 24359.3i 0.937919i 0.883220 + 0.468960i \(0.155371\pi\)
−0.883220 + 0.468960i \(0.844629\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −9018.10 −0.344867 −0.172433 0.985021i \(-0.555163\pi\)
−0.172433 + 0.985021i \(0.555163\pi\)
\(882\) 0 0
\(883\) 44577.2i 1.69892i 0.527655 + 0.849459i \(0.323071\pi\)
−0.527655 + 0.849459i \(0.676929\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1900.70 0.0719497 0.0359748 0.999353i \(-0.488546\pi\)
0.0359748 + 0.999353i \(0.488546\pi\)
\(888\) 0 0
\(889\) 46200.0 1.74297
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 42406.5i − 1.58911i
\(894\) 0 0
\(895\) −10572.0 −0.394841
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 24571.2i − 0.911562i
\(900\) 0 0
\(901\) 65987.7i 2.43992i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4153.07 0.152544
\(906\) 0 0
\(907\) 33868.0i 1.23988i 0.784650 + 0.619938i \(0.212842\pi\)
−0.784650 + 0.619938i \(0.787158\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −15160.4 −0.551356 −0.275678 0.961250i \(-0.588902\pi\)
−0.275678 + 0.961250i \(0.588902\pi\)
\(912\) 0 0
\(913\) −61600.0 −2.23293
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 37484.3i 1.34988i
\(918\) 0 0
\(919\) 44784.1 1.60750 0.803750 0.594967i \(-0.202835\pi\)
0.803750 + 0.594967i \(0.202835\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 63537.5i − 2.26583i
\(924\) 0 0
\(925\) 3158.99i 0.112288i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −16730.9 −0.590877 −0.295438 0.955362i \(-0.595466\pi\)
−0.295438 + 0.955362i \(0.595466\pi\)
\(930\) 0 0
\(931\) 12985.0i 0.457105i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −69692.4 −2.43763
\(936\) 0 0
\(937\) −6090.00 −0.212328 −0.106164 0.994349i \(-0.533857\pi\)
−0.106164 + 0.994349i \(0.533857\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41684.7i 1.44408i 0.691850 + 0.722042i \(0.256796\pi\)
−0.691850 + 0.722042i \(0.743204\pi\)
\(942\) 0 0
\(943\) −5369.90 −0.185438
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4467.48i − 0.153298i −0.997058 0.0766492i \(-0.975578\pi\)
0.997058 0.0766492i \(-0.0244222\pi\)
\(948\) 0 0
\(949\) − 24569.9i − 0.840435i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 12459.2 0.423498 0.211749 0.977324i \(-0.432084\pi\)
0.211749 + 0.977324i \(0.432084\pi\)
\(954\) 0 0
\(955\) − 45514.3i − 1.54221i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17423.1 −0.586675
\(960\) 0 0
\(961\) 5849.00 0.196334
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 50050.0i 1.66960i
\(966\) 0 0
\(967\) 45665.1 1.51861 0.759303 0.650737i \(-0.225540\pi\)
0.759303 + 0.650737i \(0.225540\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 24869.0i 0.821919i 0.911654 + 0.410960i \(0.134806\pi\)
−0.911654 + 0.410960i \(0.865194\pi\)
\(972\) 0 0
\(973\) 5615.98i 0.185036i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 40700.1 1.33277 0.666383 0.745610i \(-0.267842\pi\)
0.666383 + 0.745610i \(0.267842\pi\)
\(978\) 0 0
\(979\) − 35340.5i − 1.15372i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −13304.9 −0.431700 −0.215850 0.976427i \(-0.569252\pi\)
−0.215850 + 0.976427i \(0.569252\pi\)
\(984\) 0 0
\(985\) 48300.0 1.56240
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 18174.2i − 0.584334i
\(990\) 0 0
\(991\) −17179.5 −0.550681 −0.275340 0.961347i \(-0.588791\pi\)
−0.275340 + 0.961347i \(0.588791\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 56836.3i 1.81089i
\(996\) 0 0
\(997\) − 17058.5i − 0.541875i −0.962597 0.270937i \(-0.912666\pi\)
0.962597 0.270937i \(-0.0873336\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.d.q.577.6 yes 8
3.2 odd 2 inner 1152.4.d.q.577.2 yes 8
4.3 odd 2 inner 1152.4.d.q.577.8 yes 8
8.3 odd 2 inner 1152.4.d.q.577.3 yes 8
8.5 even 2 inner 1152.4.d.q.577.1 8
12.11 even 2 inner 1152.4.d.q.577.4 yes 8
16.3 odd 4 2304.4.a.cd.1.5 8
16.5 even 4 2304.4.a.cd.1.4 8
16.11 odd 4 2304.4.a.cd.1.2 8
16.13 even 4 2304.4.a.cd.1.7 8
24.5 odd 2 inner 1152.4.d.q.577.5 yes 8
24.11 even 2 inner 1152.4.d.q.577.7 yes 8
48.5 odd 4 2304.4.a.cd.1.8 8
48.11 even 4 2304.4.a.cd.1.6 8
48.29 odd 4 2304.4.a.cd.1.3 8
48.35 even 4 2304.4.a.cd.1.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.4.d.q.577.1 8 8.5 even 2 inner
1152.4.d.q.577.2 yes 8 3.2 odd 2 inner
1152.4.d.q.577.3 yes 8 8.3 odd 2 inner
1152.4.d.q.577.4 yes 8 12.11 even 2 inner
1152.4.d.q.577.5 yes 8 24.5 odd 2 inner
1152.4.d.q.577.6 yes 8 1.1 even 1 trivial
1152.4.d.q.577.7 yes 8 24.11 even 2 inner
1152.4.d.q.577.8 yes 8 4.3 odd 2 inner
2304.4.a.cd.1.1 8 48.35 even 4
2304.4.a.cd.1.2 8 16.11 odd 4
2304.4.a.cd.1.3 8 48.29 odd 4
2304.4.a.cd.1.4 8 16.5 even 4
2304.4.a.cd.1.5 8 16.3 odd 4
2304.4.a.cd.1.6 8 48.11 even 4
2304.4.a.cd.1.7 8 16.13 even 4
2304.4.a.cd.1.8 8 48.5 odd 4