Properties

Label 1152.4.d.q
Level $1152$
Weight $4$
Character orbit 1152.d
Analytic conductor $67.970$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(577,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.577");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1439868559360000.260
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 28x^{6} + 1023x^{4} - 9212x^{2} + 48841 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{26} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + \beta_{2} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{5} + \beta_{2} q^{7} - \beta_{6} q^{11} - \beta_{3} q^{13} + \beta_{4} q^{17} - \beta_{7} q^{19} - \beta_{5} q^{23} - 15 q^{25} + 11 \beta_1 q^{29} - 9 \beta_{2} q^{31} + 5 \beta_{6} q^{35} + 3 \beta_{3} q^{37} + \beta_{4} q^{41} - 3 \beta_{7} q^{43} - 7 \beta_{5} q^{47} + 97 q^{49} - 47 \beta_1 q^{53} + 28 \beta_{2} q^{55} - 2 \beta_{6} q^{59} + 5 \beta_{3} q^{61} - 7 \beta_{4} q^{65} + 2 \beta_{7} q^{67} - 20 \beta_{5} q^{71} - 350 q^{73} + 88 \beta_1 q^{77} - 21 \beta_{2} q^{79} - 25 \beta_{6} q^{83} - 20 \beta_{3} q^{85} - 6 \beta_{4} q^{89} + 11 \beta_{7} q^{91} - 35 \beta_{5} q^{95} + 770 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 120 q^{25} + 776 q^{49} - 2800 q^{73} + 6160 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 28x^{6} + 1023x^{4} - 9212x^{2} + 48841 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -16\nu^{6} - 468\nu^{4} - 20112\nu^{2} + 78026 ) / 9477 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -100\nu^{7} - 2358\nu^{5} - 98322\nu^{3} + 1620002\nu ) / 161109 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -8\nu^{6} - 288\nu^{4} - 8544\nu^{2} + 32560 ) / 729 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -16\nu^{6} + 480\nu^{2} + 369824 ) / 3159 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 256\nu^{7} + 6624\nu^{5} + 198240\nu^{3} - 3423968\nu ) / 161109 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 16\nu^{7} + 516\nu^{5} + 19020\nu^{3} - 24788\nu ) / 5967 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 352\nu^{7} + 13392\nu^{5} + 455568\nu^{3} - 580016\nu ) / 53703 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{7} + 8\beta_{6} + \beta_{5} + 16\beta_{2} ) / 128 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{4} + 6\beta_{3} - 48\beta _1 - 224 ) / 32 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{7} + 8\beta_{6} - 155\beta_{5} - 320\beta_{2} ) / 64 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 21\beta_{4} - 66\beta_{3} + 366\beta _1 - 2524 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3190\beta_{7} - 8392\beta_{6} + 5659\beta_{5} + 11920\beta_{2} ) / 128 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -1557\beta_{4} + 45\beta_{3} - 360\beta _1 + 183232 ) / 8 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -115486\beta_{7} + 311752\beta_{6} + 187559\beta_{5} + 401168\beta_{2} ) / 128 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
−2.26847 + 1.01077i
−2.97558 + 5.19407i
2.26847 1.01077i
2.97558 5.19407i
−2.97558 5.19407i
−2.26847 1.01077i
2.97558 + 5.19407i
2.26847 + 1.01077i
0 0 0 11.8322i 0 −20.9762 0 0 0
577.2 0 0 0 11.8322i 0 −20.9762 0 0 0
577.3 0 0 0 11.8322i 0 20.9762 0 0 0
577.4 0 0 0 11.8322i 0 20.9762 0 0 0
577.5 0 0 0 11.8322i 0 −20.9762 0 0 0
577.6 0 0 0 11.8322i 0 −20.9762 0 0 0
577.7 0 0 0 11.8322i 0 20.9762 0 0 0
577.8 0 0 0 11.8322i 0 20.9762 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 577.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.4.d.q 8
3.b odd 2 1 inner 1152.4.d.q 8
4.b odd 2 1 inner 1152.4.d.q 8
8.b even 2 1 inner 1152.4.d.q 8
8.d odd 2 1 inner 1152.4.d.q 8
12.b even 2 1 inner 1152.4.d.q 8
16.e even 4 2 2304.4.a.cd 8
16.f odd 4 2 2304.4.a.cd 8
24.f even 2 1 inner 1152.4.d.q 8
24.h odd 2 1 inner 1152.4.d.q 8
48.i odd 4 2 2304.4.a.cd 8
48.k even 4 2 2304.4.a.cd 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.4.d.q 8 1.a even 1 1 trivial
1152.4.d.q 8 3.b odd 2 1 inner
1152.4.d.q 8 4.b odd 2 1 inner
1152.4.d.q 8 8.b even 2 1 inner
1152.4.d.q 8 8.d odd 2 1 inner
1152.4.d.q 8 12.b even 2 1 inner
1152.4.d.q 8 24.f even 2 1 inner
1152.4.d.q 8 24.h odd 2 1 inner
2304.4.a.cd 8 16.e even 4 2
2304.4.a.cd 8 16.f odd 4 2
2304.4.a.cd 8 48.i odd 4 2
2304.4.a.cd 8 48.k even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1152, [\chi])\):

\( T_{5}^{2} + 140 \) Copy content Toggle raw display
\( T_{7}^{2} - 440 \) Copy content Toggle raw display
\( T_{17}^{2} - 14080 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{2} + 140)^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} - 440)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} + 2464)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4928)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 14080)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 17920)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 2048)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 16940)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 35640)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 44352)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 14080)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 161280)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 100352)^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 309260)^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 9856)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 123200)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 71680)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} - 819200)^{4} \) Copy content Toggle raw display
$73$ \( (T + 350)^{8} \) Copy content Toggle raw display
$79$ \( (T^{2} - 194040)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 1540000)^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} - 506880)^{4} \) Copy content Toggle raw display
$97$ \( (T - 770)^{8} \) Copy content Toggle raw display
show more
show less