Properties

Label 1152.4.d.p.577.1
Level $1152$
Weight $4$
Character 1152.577
Analytic conductor $67.970$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1534132224.8
Defining polynomial: \( x^{8} + 18x^{6} + 107x^{4} + 210x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.1
Root \(2.48330i\) of defining polynomial
Character \(\chi\) \(=\) 1152.577
Dual form 1152.4.d.p.577.7

$q$-expansion

\(f(q)\) \(=\) \(q-17.4288i q^{5} -2.99032 q^{7} +O(q^{10})\) \(q-17.4288i q^{5} -2.99032 q^{7} +10.6274i q^{11} +43.3156i q^{13} +37.8823 q^{17} -79.8823i q^{19} +191.204 q^{23} -178.765 q^{25} +138.918i q^{29} +212.136 q^{31} +52.1177i q^{35} -270.404i q^{37} +441.411 q^{41} +64.1177i q^{43} +436.234 q^{47} -334.058 q^{49} -278.348i q^{53} +185.224 q^{55} -830.039i q^{59} +724.580i q^{61} +754.940 q^{65} -859.529i q^{67} -681.264 q^{71} -785.058 q^{73} -31.7793i q^{77} -1018.82 q^{79} +467.334i q^{83} -660.244i q^{85} -510.706 q^{89} -129.527i q^{91} -1392.26 q^{95} -234.235 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 240 q^{17} - 344 q^{25} + 816 q^{41} + 1672 q^{49} + 1152 q^{65} - 1936 q^{73} - 7344 q^{89} - 2960 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 17.4288i − 1.55888i −0.626475 0.779441i \(-0.715503\pi\)
0.626475 0.779441i \(-0.284497\pi\)
\(6\) 0 0
\(7\) −2.99032 −0.161462 −0.0807310 0.996736i \(-0.525725\pi\)
−0.0807310 + 0.996736i \(0.525725\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 10.6274i 0.291299i 0.989336 + 0.145649i \(0.0465271\pi\)
−0.989336 + 0.145649i \(0.953473\pi\)
\(12\) 0 0
\(13\) 43.3156i 0.924121i 0.886848 + 0.462061i \(0.152890\pi\)
−0.886848 + 0.462061i \(0.847110\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 37.8823 0.540459 0.270229 0.962796i \(-0.412900\pi\)
0.270229 + 0.962796i \(0.412900\pi\)
\(18\) 0 0
\(19\) − 79.8823i − 0.964539i −0.876023 0.482270i \(-0.839813\pi\)
0.876023 0.482270i \(-0.160187\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 191.204 1.73343 0.866714 0.498806i \(-0.166228\pi\)
0.866714 + 0.498806i \(0.166228\pi\)
\(24\) 0 0
\(25\) −178.765 −1.43012
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 138.918i 0.889530i 0.895647 + 0.444765i \(0.146713\pi\)
−0.895647 + 0.444765i \(0.853287\pi\)
\(30\) 0 0
\(31\) 212.136 1.22906 0.614529 0.788894i \(-0.289346\pi\)
0.614529 + 0.788894i \(0.289346\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 52.1177i 0.251700i
\(36\) 0 0
\(37\) − 270.404i − 1.20146i −0.799451 0.600731i \(-0.794876\pi\)
0.799451 0.600731i \(-0.205124\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 441.411 1.68139 0.840693 0.541511i \(-0.182148\pi\)
0.840693 + 0.541511i \(0.182148\pi\)
\(42\) 0 0
\(43\) 64.1177i 0.227392i 0.993516 + 0.113696i \(0.0362690\pi\)
−0.993516 + 0.113696i \(0.963731\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 436.234 1.35386 0.676929 0.736049i \(-0.263311\pi\)
0.676929 + 0.736049i \(0.263311\pi\)
\(48\) 0 0
\(49\) −334.058 −0.973930
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 278.348i − 0.721398i −0.932682 0.360699i \(-0.882538\pi\)
0.932682 0.360699i \(-0.117462\pi\)
\(54\) 0 0
\(55\) 185.224 0.454101
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 830.039i − 1.83156i −0.401684 0.915778i \(-0.631575\pi\)
0.401684 0.915778i \(-0.368425\pi\)
\(60\) 0 0
\(61\) 724.580i 1.52087i 0.649416 + 0.760434i \(0.275014\pi\)
−0.649416 + 0.760434i \(0.724986\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 754.940 1.44060
\(66\) 0 0
\(67\) − 859.529i − 1.56729i −0.621211 0.783643i \(-0.713359\pi\)
0.621211 0.783643i \(-0.286641\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −681.264 −1.13875 −0.569374 0.822078i \(-0.692814\pi\)
−0.569374 + 0.822078i \(0.692814\pi\)
\(72\) 0 0
\(73\) −785.058 −1.25869 −0.629343 0.777128i \(-0.716676\pi\)
−0.629343 + 0.777128i \(0.716676\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 31.7793i − 0.0470337i
\(78\) 0 0
\(79\) −1018.82 −1.45096 −0.725481 0.688243i \(-0.758382\pi\)
−0.725481 + 0.688243i \(0.758382\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 467.334i 0.618031i 0.951057 + 0.309015i \(0.0999995\pi\)
−0.951057 + 0.309015i \(0.900001\pi\)
\(84\) 0 0
\(85\) − 660.244i − 0.842512i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −510.706 −0.608256 −0.304128 0.952631i \(-0.598365\pi\)
−0.304128 + 0.952631i \(0.598365\pi\)
\(90\) 0 0
\(91\) − 129.527i − 0.149210i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1392.26 −1.50360
\(96\) 0 0
\(97\) −234.235 −0.245186 −0.122593 0.992457i \(-0.539121\pi\)
−0.122593 + 0.992457i \(0.539121\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 205.555i 0.202509i 0.994861 + 0.101255i \(0.0322857\pi\)
−0.994861 + 0.101255i \(0.967714\pi\)
\(102\) 0 0
\(103\) −391.379 −0.374405 −0.187203 0.982321i \(-0.559942\pi\)
−0.187203 + 0.982321i \(0.559942\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 934.274i − 0.844109i −0.906570 0.422055i \(-0.861309\pi\)
0.906570 0.422055i \(-0.138691\pi\)
\(108\) 0 0
\(109\) − 584.123i − 0.513292i −0.966505 0.256646i \(-0.917383\pi\)
0.966505 0.256646i \(-0.0826174\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 582.706 0.485101 0.242551 0.970139i \(-0.422016\pi\)
0.242551 + 0.970139i \(0.422016\pi\)
\(114\) 0 0
\(115\) − 3332.47i − 2.70221i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −113.280 −0.0872635
\(120\) 0 0
\(121\) 1218.06 0.915145
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 937.053i 0.670501i
\(126\) 0 0
\(127\) 1461.03 1.02083 0.510416 0.859928i \(-0.329491\pi\)
0.510416 + 0.859928i \(0.329491\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 98.4323i 0.0656494i 0.999461 + 0.0328247i \(0.0104503\pi\)
−0.999461 + 0.0328247i \(0.989550\pi\)
\(132\) 0 0
\(133\) 238.873i 0.155736i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2171.06 −1.35391 −0.676956 0.736024i \(-0.736701\pi\)
−0.676956 + 0.736024i \(0.736701\pi\)
\(138\) 0 0
\(139\) − 1624.70i − 0.991407i −0.868492 0.495703i \(-0.834910\pi\)
0.868492 0.495703i \(-0.165090\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −460.333 −0.269195
\(144\) 0 0
\(145\) 2421.17 1.38667
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 636.658i − 0.350047i −0.984564 0.175024i \(-0.944000\pi\)
0.984564 0.175024i \(-0.0560002\pi\)
\(150\) 0 0
\(151\) −1819.34 −0.980503 −0.490252 0.871581i \(-0.663095\pi\)
−0.490252 + 0.871581i \(0.663095\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 3697.29i − 1.91596i
\(156\) 0 0
\(157\) 1656.50i 0.842059i 0.907047 + 0.421029i \(0.138331\pi\)
−0.907047 + 0.421029i \(0.861669\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −571.761 −0.279882
\(162\) 0 0
\(163\) − 2228.82i − 1.07101i −0.844532 0.535505i \(-0.820121\pi\)
0.844532 0.535505i \(-0.179879\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1667.01 0.772439 0.386219 0.922407i \(-0.373781\pi\)
0.386219 + 0.922407i \(0.373781\pi\)
\(168\) 0 0
\(169\) 320.761 0.146000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2500.53i − 1.09891i −0.835522 0.549457i \(-0.814835\pi\)
0.835522 0.549457i \(-0.185165\pi\)
\(174\) 0 0
\(175\) 534.562 0.230909
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 378.742i − 0.158148i −0.996869 0.0790740i \(-0.974804\pi\)
0.996869 0.0790740i \(-0.0251963\pi\)
\(180\) 0 0
\(181\) 3093.88i 1.27053i 0.772294 + 0.635265i \(0.219109\pi\)
−0.772294 + 0.635265i \(0.780891\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4712.82 −1.87294
\(186\) 0 0
\(187\) 402.590i 0.157435i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3656.98 1.38539 0.692695 0.721230i \(-0.256423\pi\)
0.692695 + 0.721230i \(0.256423\pi\)
\(192\) 0 0
\(193\) 2788.12 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1147.74i 0.415091i 0.978225 + 0.207546i \(0.0665475\pi\)
−0.978225 + 0.207546i \(0.933452\pi\)
\(198\) 0 0
\(199\) 4842.73 1.72508 0.862542 0.505986i \(-0.168871\pi\)
0.862542 + 0.505986i \(0.168871\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 415.408i − 0.143625i
\(204\) 0 0
\(205\) − 7693.29i − 2.62109i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 848.942 0.280969
\(210\) 0 0
\(211\) − 3222.35i − 1.05135i −0.850684 0.525677i \(-0.823812\pi\)
0.850684 0.525677i \(-0.176188\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1117.50 0.354478
\(216\) 0 0
\(217\) −634.355 −0.198446
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1640.89i 0.499449i
\(222\) 0 0
\(223\) −4932.61 −1.48122 −0.740610 0.671935i \(-0.765463\pi\)
−0.740610 + 0.671935i \(0.765463\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 3619.49i − 1.05830i −0.848529 0.529150i \(-0.822511\pi\)
0.848529 0.529150i \(-0.177489\pi\)
\(228\) 0 0
\(229\) − 305.759i − 0.0882320i −0.999026 0.0441160i \(-0.985953\pi\)
0.999026 0.0441160i \(-0.0140471\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −639.648 −0.179849 −0.0899244 0.995949i \(-0.528663\pi\)
−0.0899244 + 0.995949i \(0.528663\pi\)
\(234\) 0 0
\(235\) − 7603.05i − 2.11050i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1744.94 0.472262 0.236131 0.971721i \(-0.424121\pi\)
0.236131 + 0.971721i \(0.424121\pi\)
\(240\) 0 0
\(241\) 3357.29 0.897354 0.448677 0.893694i \(-0.351895\pi\)
0.448677 + 0.893694i \(0.351895\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 5822.24i 1.51824i
\(246\) 0 0
\(247\) 3460.15 0.891351
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1317.45i 0.331301i 0.986185 + 0.165650i \(0.0529723\pi\)
−0.986185 + 0.165650i \(0.947028\pi\)
\(252\) 0 0
\(253\) 2032.01i 0.504945i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3036.12 0.736917 0.368459 0.929644i \(-0.379886\pi\)
0.368459 + 0.929644i \(0.379886\pi\)
\(258\) 0 0
\(259\) 808.592i 0.193990i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −1655.76 −0.388206 −0.194103 0.980981i \(-0.562180\pi\)
−0.194103 + 0.980981i \(0.562180\pi\)
\(264\) 0 0
\(265\) −4851.29 −1.12458
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 5292.72i − 1.19964i −0.800135 0.599820i \(-0.795239\pi\)
0.800135 0.599820i \(-0.204761\pi\)
\(270\) 0 0
\(271\) 8010.52 1.79559 0.897795 0.440414i \(-0.145168\pi\)
0.897795 + 0.440414i \(0.145168\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 1899.80i − 0.416591i
\(276\) 0 0
\(277\) 5692.81i 1.23483i 0.786638 + 0.617415i \(0.211820\pi\)
−0.786638 + 0.617415i \(0.788180\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −2024.83 −0.429861 −0.214931 0.976629i \(-0.568953\pi\)
−0.214931 + 0.976629i \(0.568953\pi\)
\(282\) 0 0
\(283\) − 247.761i − 0.0520419i −0.999661 0.0260210i \(-0.991716\pi\)
0.999661 0.0260210i \(-0.00828366\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1319.96 −0.271480
\(288\) 0 0
\(289\) −3477.94 −0.707905
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 8133.61i − 1.62174i −0.585225 0.810871i \(-0.698994\pi\)
0.585225 0.810871i \(-0.301006\pi\)
\(294\) 0 0
\(295\) −14466.6 −2.85518
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8282.12i 1.60190i
\(300\) 0 0
\(301\) − 191.732i − 0.0367152i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12628.6 2.37085
\(306\) 0 0
\(307\) 2974.82i 0.553035i 0.961009 + 0.276518i \(0.0891805\pi\)
−0.961009 + 0.276518i \(0.910820\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4451.52 −0.811648 −0.405824 0.913951i \(-0.633015\pi\)
−0.405824 + 0.913951i \(0.633015\pi\)
\(312\) 0 0
\(313\) −8273.75 −1.49412 −0.747061 0.664755i \(-0.768536\pi\)
−0.747061 + 0.664755i \(0.768536\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 429.036i 0.0760160i 0.999277 + 0.0380080i \(0.0121012\pi\)
−0.999277 + 0.0380080i \(0.987899\pi\)
\(318\) 0 0
\(319\) −1476.34 −0.259119
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 3026.12i − 0.521293i
\(324\) 0 0
\(325\) − 7743.29i − 1.32160i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1304.48 −0.218596
\(330\) 0 0
\(331\) − 8196.71i − 1.36112i −0.732691 0.680562i \(-0.761736\pi\)
0.732691 0.680562i \(-0.238264\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14980.6 −2.44322
\(336\) 0 0
\(337\) −2000.35 −0.323341 −0.161670 0.986845i \(-0.551688\pi\)
−0.161670 + 0.986845i \(0.551688\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2254.46i 0.358023i
\(342\) 0 0
\(343\) 2024.62 0.318715
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 7707.48i − 1.19239i −0.802840 0.596195i \(-0.796679\pi\)
0.802840 0.596195i \(-0.203321\pi\)
\(348\) 0 0
\(349\) 9681.98i 1.48500i 0.669847 + 0.742499i \(0.266360\pi\)
−0.669847 + 0.742499i \(0.733640\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10540.3 1.58925 0.794626 0.607099i \(-0.207667\pi\)
0.794626 + 0.607099i \(0.207667\pi\)
\(354\) 0 0
\(355\) 11873.6i 1.77518i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 514.158 0.0755884 0.0377942 0.999286i \(-0.487967\pi\)
0.0377942 + 0.999286i \(0.487967\pi\)
\(360\) 0 0
\(361\) 477.826 0.0696641
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13682.7i 1.96214i
\(366\) 0 0
\(367\) −11272.4 −1.60331 −0.801657 0.597785i \(-0.796048\pi\)
−0.801657 + 0.597785i \(0.796048\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 832.350i 0.116478i
\(372\) 0 0
\(373\) − 6956.92i − 0.965726i −0.875696 0.482863i \(-0.839597\pi\)
0.875696 0.482863i \(-0.160403\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6017.30 −0.822034
\(378\) 0 0
\(379\) 10201.3i 1.38260i 0.722569 + 0.691299i \(0.242961\pi\)
−0.722569 + 0.691299i \(0.757039\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2461.56 0.328406 0.164203 0.986427i \(-0.447495\pi\)
0.164203 + 0.986427i \(0.447495\pi\)
\(384\) 0 0
\(385\) −553.877 −0.0733200
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 546.451i 0.0712240i 0.999366 + 0.0356120i \(0.0113381\pi\)
−0.999366 + 0.0356120i \(0.988662\pi\)
\(390\) 0 0
\(391\) 7243.25 0.936846
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 17756.8i 2.26188i
\(396\) 0 0
\(397\) − 2084.56i − 0.263529i −0.991281 0.131764i \(-0.957936\pi\)
0.991281 0.131764i \(-0.0420642\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9710.59 1.20929 0.604643 0.796497i \(-0.293316\pi\)
0.604643 + 0.796497i \(0.293316\pi\)
\(402\) 0 0
\(403\) 9188.81i 1.13580i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2873.69 0.349984
\(408\) 0 0
\(409\) −6659.89 −0.805160 −0.402580 0.915385i \(-0.631886\pi\)
−0.402580 + 0.915385i \(0.631886\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2482.08i 0.295727i
\(414\) 0 0
\(415\) 8145.09 0.963438
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 10576.7i − 1.23318i −0.787283 0.616592i \(-0.788513\pi\)
0.787283 0.616592i \(-0.211487\pi\)
\(420\) 0 0
\(421\) − 4871.09i − 0.563901i −0.959429 0.281951i \(-0.909019\pi\)
0.959429 0.281951i \(-0.0909814\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6772.00 −0.772918
\(426\) 0 0
\(427\) − 2166.72i − 0.245562i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16916.7 1.89060 0.945302 0.326196i \(-0.105767\pi\)
0.945302 + 0.326196i \(0.105767\pi\)
\(432\) 0 0
\(433\) −1163.88 −0.129174 −0.0645870 0.997912i \(-0.520573\pi\)
−0.0645870 + 0.997912i \(0.520573\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 15273.8i − 1.67196i
\(438\) 0 0
\(439\) 1856.28 0.201812 0.100906 0.994896i \(-0.467826\pi\)
0.100906 + 0.994896i \(0.467826\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 1472.21i − 0.157893i −0.996879 0.0789465i \(-0.974844\pi\)
0.996879 0.0789465i \(-0.0251556\pi\)
\(444\) 0 0
\(445\) 8901.02i 0.948200i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −9620.94 −1.01123 −0.505613 0.862761i \(-0.668733\pi\)
−0.505613 + 0.862761i \(0.668733\pi\)
\(450\) 0 0
\(451\) 4691.06i 0.489786i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2257.51 −0.232602
\(456\) 0 0
\(457\) 3613.53 0.369877 0.184938 0.982750i \(-0.440791\pi\)
0.184938 + 0.982750i \(0.440791\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 17710.7i − 1.78931i −0.446759 0.894654i \(-0.647422\pi\)
0.446759 0.894654i \(-0.352578\pi\)
\(462\) 0 0
\(463\) 1674.57 0.168087 0.0840433 0.996462i \(-0.473217\pi\)
0.0840433 + 0.996462i \(0.473217\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 15208.3i 1.50697i 0.657466 + 0.753484i \(0.271628\pi\)
−0.657466 + 0.753484i \(0.728372\pi\)
\(468\) 0 0
\(469\) 2570.26i 0.253057i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −681.406 −0.0662391
\(474\) 0 0
\(475\) 14280.1i 1.37940i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 6458.37 0.616056 0.308028 0.951377i \(-0.400331\pi\)
0.308028 + 0.951377i \(0.400331\pi\)
\(480\) 0 0
\(481\) 11712.7 1.11030
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4082.45i 0.382216i
\(486\) 0 0
\(487\) 11337.7 1.05495 0.527474 0.849571i \(-0.323139\pi\)
0.527474 + 0.849571i \(0.323139\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 14946.7i 1.37380i 0.726754 + 0.686898i \(0.241028\pi\)
−0.726754 + 0.686898i \(0.758972\pi\)
\(492\) 0 0
\(493\) 5262.51i 0.480754i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2037.19 0.183865
\(498\) 0 0
\(499\) − 2631.77i − 0.236101i −0.993008 0.118051i \(-0.962336\pi\)
0.993008 0.118051i \(-0.0376645\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6907.45 0.612302 0.306151 0.951983i \(-0.400959\pi\)
0.306151 + 0.951983i \(0.400959\pi\)
\(504\) 0 0
\(505\) 3582.58 0.315689
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12020.3i 1.04674i 0.852107 + 0.523368i \(0.175325\pi\)
−0.852107 + 0.523368i \(0.824675\pi\)
\(510\) 0 0
\(511\) 2347.57 0.203230
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6821.29i 0.583654i
\(516\) 0 0
\(517\) 4636.04i 0.394377i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −15846.1 −1.33249 −0.666247 0.745731i \(-0.732101\pi\)
−0.666247 + 0.745731i \(0.732101\pi\)
\(522\) 0 0
\(523\) 8891.64i 0.743411i 0.928351 + 0.371706i \(0.121227\pi\)
−0.928351 + 0.371706i \(0.878773\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 8036.20 0.664255
\(528\) 0 0
\(529\) 24392.0 2.00477
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19120.0i 1.55381i
\(534\) 0 0
\(535\) −16283.3 −1.31587
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 3550.17i − 0.283705i
\(540\) 0 0
\(541\) − 12833.5i − 1.01988i −0.860210 0.509940i \(-0.829667\pi\)
0.860210 0.509940i \(-0.170333\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10180.6 −0.800162
\(546\) 0 0
\(547\) 16257.0i 1.27075i 0.772204 + 0.635375i \(0.219155\pi\)
−0.772204 + 0.635375i \(0.780845\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11097.1 0.857986
\(552\) 0 0
\(553\) 3046.59 0.234275
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1558.32i 0.118542i 0.998242 + 0.0592712i \(0.0188777\pi\)
−0.998242 + 0.0592712i \(0.981122\pi\)
\(558\) 0 0
\(559\) −2777.30 −0.210138
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 9782.16i 0.732272i 0.930561 + 0.366136i \(0.119319\pi\)
−0.930561 + 0.366136i \(0.880681\pi\)
\(564\) 0 0
\(565\) − 10155.9i − 0.756216i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −7887.05 −0.581094 −0.290547 0.956861i \(-0.593837\pi\)
−0.290547 + 0.956861i \(0.593837\pi\)
\(570\) 0 0
\(571\) 21819.3i 1.59914i 0.600573 + 0.799570i \(0.294939\pi\)
−0.600573 + 0.799570i \(0.705061\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −34180.5 −2.47900
\(576\) 0 0
\(577\) 7190.22 0.518774 0.259387 0.965773i \(-0.416479\pi\)
0.259387 + 0.965773i \(0.416479\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 1397.48i − 0.0997884i
\(582\) 0 0
\(583\) 2958.12 0.210142
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 13305.6i − 0.935569i −0.883843 0.467785i \(-0.845052\pi\)
0.883843 0.467785i \(-0.154948\pi\)
\(588\) 0 0
\(589\) − 16945.9i − 1.18548i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8062.23 0.558307 0.279153 0.960246i \(-0.409946\pi\)
0.279153 + 0.960246i \(0.409946\pi\)
\(594\) 0 0
\(595\) 1974.34i 0.136034i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2185.21 0.149058 0.0745288 0.997219i \(-0.476255\pi\)
0.0745288 + 0.997219i \(0.476255\pi\)
\(600\) 0 0
\(601\) −3542.25 −0.240418 −0.120209 0.992749i \(-0.538357\pi\)
−0.120209 + 0.992749i \(0.538357\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 21229.3i − 1.42660i
\(606\) 0 0
\(607\) 6050.64 0.404593 0.202296 0.979324i \(-0.435160\pi\)
0.202296 + 0.979324i \(0.435160\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 18895.7i 1.25113i
\(612\) 0 0
\(613\) 22514.2i 1.48343i 0.670717 + 0.741713i \(0.265986\pi\)
−0.670717 + 0.741713i \(0.734014\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4255.88 −0.277691 −0.138845 0.990314i \(-0.544339\pi\)
−0.138845 + 0.990314i \(0.544339\pi\)
\(618\) 0 0
\(619\) − 228.949i − 0.0148663i −0.999972 0.00743315i \(-0.997634\pi\)
0.999972 0.00743315i \(-0.00236607\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1527.17 0.0982102
\(624\) 0 0
\(625\) −6013.82 −0.384884
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 10243.5i − 0.649340i
\(630\) 0 0
\(631\) −11429.2 −0.721058 −0.360529 0.932748i \(-0.617404\pi\)
−0.360529 + 0.932748i \(0.617404\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 25464.1i − 1.59136i
\(636\) 0 0
\(637\) − 14469.9i − 0.900030i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −29381.4 −1.81045 −0.905223 0.424938i \(-0.860296\pi\)
−0.905223 + 0.424938i \(0.860296\pi\)
\(642\) 0 0
\(643\) − 249.316i − 0.0152909i −0.999971 0.00764546i \(-0.997566\pi\)
0.999971 0.00764546i \(-0.00243365\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16025.8 −0.973785 −0.486893 0.873462i \(-0.661870\pi\)
−0.486893 + 0.873462i \(0.661870\pi\)
\(648\) 0 0
\(649\) 8821.17 0.533530
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 14008.6i 0.839511i 0.907637 + 0.419755i \(0.137884\pi\)
−0.907637 + 0.419755i \(0.862116\pi\)
\(654\) 0 0
\(655\) 1715.56 0.102340
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 1011.91i − 0.0598152i −0.999553 0.0299076i \(-0.990479\pi\)
0.999553 0.0299076i \(-0.00952131\pi\)
\(660\) 0 0
\(661\) 23619.4i 1.38985i 0.719084 + 0.694923i \(0.244561\pi\)
−0.719084 + 0.694923i \(0.755439\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 4163.28 0.242775
\(666\) 0 0
\(667\) 26561.6i 1.54194i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7700.41 −0.443027
\(672\) 0 0
\(673\) −25811.9 −1.47842 −0.739208 0.673477i \(-0.764800\pi\)
−0.739208 + 0.673477i \(0.764800\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 18255.2i 1.03634i 0.855277 + 0.518172i \(0.173387\pi\)
−0.855277 + 0.518172i \(0.826613\pi\)
\(678\) 0 0
\(679\) 700.438 0.0395881
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20090.4i 1.12553i 0.826617 + 0.562765i \(0.190262\pi\)
−0.826617 + 0.562765i \(0.809738\pi\)
\(684\) 0 0
\(685\) 37839.0i 2.11059i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12056.8 0.666659
\(690\) 0 0
\(691\) − 16521.5i − 0.909563i −0.890603 0.454782i \(-0.849717\pi\)
0.890603 0.454782i \(-0.150283\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −28316.7 −1.54549
\(696\) 0 0
\(697\) 16721.7 0.908720
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) − 12431.4i − 0.669795i −0.942255 0.334897i \(-0.891298\pi\)
0.942255 0.334897i \(-0.108702\pi\)
\(702\) 0 0
\(703\) −21600.4 −1.15886
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 614.674i − 0.0326976i
\(708\) 0 0
\(709\) 980.957i 0.0519614i 0.999662 + 0.0259807i \(0.00827084\pi\)
−0.999662 + 0.0259807i \(0.991729\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40561.4 2.13048
\(714\) 0 0
\(715\) 8023.06i 0.419644i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4115.73 0.213478 0.106739 0.994287i \(-0.465959\pi\)
0.106739 + 0.994287i \(0.465959\pi\)
\(720\) 0 0
\(721\) 1170.35 0.0604522
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 24833.5i − 1.27213i
\(726\) 0 0
\(727\) 20850.1 1.06367 0.531833 0.846849i \(-0.321503\pi\)
0.531833 + 0.846849i \(0.321503\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2428.92i 0.122896i
\(732\) 0 0
\(733\) − 31517.2i − 1.58815i −0.607821 0.794074i \(-0.707956\pi\)
0.607821 0.794074i \(-0.292044\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9134.57 0.456549
\(738\) 0 0
\(739\) − 11415.0i − 0.568213i −0.958793 0.284106i \(-0.908303\pi\)
0.958793 0.284106i \(-0.0916969\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5732.08 −0.283028 −0.141514 0.989936i \(-0.545197\pi\)
−0.141514 + 0.989936i \(0.545197\pi\)
\(744\) 0 0
\(745\) −11096.2 −0.545683
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2793.78i 0.136291i
\(750\) 0 0
\(751\) −7843.07 −0.381089 −0.190544 0.981679i \(-0.561025\pi\)
−0.190544 + 0.981679i \(0.561025\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31709.0i 1.52849i
\(756\) 0 0
\(757\) − 29125.9i − 1.39841i −0.714920 0.699206i \(-0.753537\pi\)
0.714920 0.699206i \(-0.246463\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −14228.5 −0.677768 −0.338884 0.940828i \(-0.610049\pi\)
−0.338884 + 0.940828i \(0.610049\pi\)
\(762\) 0 0
\(763\) 1746.71i 0.0828771i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35953.6 1.69258
\(768\) 0 0
\(769\) −28133.7 −1.31928 −0.659641 0.751581i \(-0.729292\pi\)
−0.659641 + 0.751581i \(0.729292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 14686.9i 0.683377i 0.939813 + 0.341689i \(0.110999\pi\)
−0.939813 + 0.341689i \(0.889001\pi\)
\(774\) 0 0
\(775\) −37922.5 −1.75770
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 35260.9i − 1.62176i
\(780\) 0 0
\(781\) − 7240.08i − 0.331716i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 28870.9 1.31267
\(786\) 0 0
\(787\) − 21001.0i − 0.951214i −0.879658 0.475607i \(-0.842228\pi\)
0.879658 0.475607i \(-0.157772\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1742.48 −0.0783253
\(792\) 0 0
\(793\) −31385.6 −1.40547
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13362.7i 0.593892i 0.954894 + 0.296946i \(0.0959682\pi\)
−0.954894 + 0.296946i \(0.904032\pi\)
\(798\) 0 0
\(799\) 16525.5 0.731704
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 8343.14i − 0.366654i
\(804\) 0 0
\(805\) 9965.13i 0.436304i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39481.6 1.71582 0.857911 0.513798i \(-0.171762\pi\)
0.857911 + 0.513798i \(0.171762\pi\)
\(810\) 0 0
\(811\) − 31157.5i − 1.34906i −0.738247 0.674531i \(-0.764346\pi\)
0.738247 0.674531i \(-0.235654\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −38845.8 −1.66958
\(816\) 0 0
\(817\) 5121.87 0.219329
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 21229.9i 0.902470i 0.892405 + 0.451235i \(0.149016\pi\)
−0.892405 + 0.451235i \(0.850984\pi\)
\(822\) 0 0
\(823\) 24603.8 1.04208 0.521041 0.853532i \(-0.325544\pi\)
0.521041 + 0.853532i \(0.325544\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13668.1i 0.574710i 0.957824 + 0.287355i \(0.0927759\pi\)
−0.957824 + 0.287355i \(0.907224\pi\)
\(828\) 0 0
\(829\) − 27518.8i − 1.15291i −0.817127 0.576457i \(-0.804435\pi\)
0.817127 0.576457i \(-0.195565\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −12654.9 −0.526369
\(834\) 0 0
\(835\) − 29054.1i − 1.20414i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29951.5 1.23247 0.616234 0.787563i \(-0.288657\pi\)
0.616234 + 0.787563i \(0.288657\pi\)
\(840\) 0 0
\(841\) 5090.88 0.208737
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 5590.49i − 0.227596i
\(846\) 0 0
\(847\) −3642.38 −0.147761
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 51702.3i − 2.08265i
\(852\) 0 0
\(853\) 5174.61i 0.207708i 0.994593 + 0.103854i \(0.0331175\pi\)
−0.994593 + 0.103854i \(0.966882\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9258.34 −0.369030 −0.184515 0.982830i \(-0.559071\pi\)
−0.184515 + 0.982830i \(0.559071\pi\)
\(858\) 0 0
\(859\) − 24353.0i − 0.967304i −0.875260 0.483652i \(-0.839310\pi\)
0.875260 0.483652i \(-0.160690\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 42283.4 1.66784 0.833919 0.551887i \(-0.186092\pi\)
0.833919 + 0.551887i \(0.186092\pi\)
\(864\) 0 0
\(865\) −43581.4 −1.71308
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 10827.4i − 0.422663i
\(870\) 0 0
\(871\) 37231.0 1.44836
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 2802.08i − 0.108260i
\(876\) 0 0
\(877\) 49843.1i 1.91914i 0.281476 + 0.959568i \(0.409176\pi\)
−0.281476 + 0.959568i \(0.590824\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8986.94 −0.343675 −0.171837 0.985125i \(-0.554970\pi\)
−0.171837 + 0.985125i \(0.554970\pi\)
\(882\) 0 0
\(883\) 3693.99i 0.140784i 0.997519 + 0.0703922i \(0.0224251\pi\)
−0.997519 + 0.0703922i \(0.977575\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 51613.0 1.95377 0.976886 0.213763i \(-0.0685720\pi\)
0.976886 + 0.213763i \(0.0685720\pi\)
\(888\) 0 0
\(889\) −4368.95 −0.164825
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 34847.4i − 1.30585i
\(894\) 0 0
\(895\) −6601.03 −0.246534
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 29469.5i 1.09328i
\(900\) 0 0
\(901\) − 10544.5i − 0.389886i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 53922.7 1.98061
\(906\) 0 0
\(907\) 17016.8i 0.622971i 0.950251 + 0.311486i \(0.100827\pi\)
−0.950251 + 0.311486i \(0.899173\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2991.72 −0.108804 −0.0544019 0.998519i \(-0.517325\pi\)
−0.0544019 + 0.998519i \(0.517325\pi\)
\(912\) 0 0
\(913\) −4966.55 −0.180032
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 294.344i − 0.0105999i
\(918\) 0 0
\(919\) −5174.82 −0.185747 −0.0928736 0.995678i \(-0.529605\pi\)
−0.0928736 + 0.995678i \(0.529605\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 29509.3i − 1.05234i
\(924\) 0 0
\(925\) 48338.6i 1.71823i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −49256.5 −1.73956 −0.869780 0.493439i \(-0.835740\pi\)
−0.869780 + 0.493439i \(0.835740\pi\)
\(930\) 0 0
\(931\) 26685.3i 0.939394i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7016.69 0.245423
\(936\) 0 0
\(937\) 31566.5 1.10057 0.550283 0.834978i \(-0.314520\pi\)
0.550283 + 0.834978i \(0.314520\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 37575.6i 1.30173i 0.759193 + 0.650866i \(0.225594\pi\)
−0.759193 + 0.650866i \(0.774406\pi\)
\(942\) 0 0
\(943\) 84399.7 2.91456
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 10289.3i − 0.353070i −0.984294 0.176535i \(-0.943511\pi\)
0.984294 0.176535i \(-0.0564889\pi\)
\(948\) 0 0
\(949\) − 34005.2i − 1.16318i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 36779.7 1.25017 0.625085 0.780557i \(-0.285064\pi\)
0.625085 + 0.780557i \(0.285064\pi\)
\(954\) 0 0
\(955\) − 63736.9i − 2.15966i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6492.15 0.218605
\(960\) 0 0
\(961\) 15210.9 0.510586
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 48593.6i − 1.62102i
\(966\) 0 0
\(967\) −35228.9 −1.17155 −0.585773 0.810475i \(-0.699209\pi\)
−0.585773 + 0.810475i \(0.699209\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 15314.8i 0.506155i 0.967446 + 0.253077i \(0.0814428\pi\)
−0.967446 + 0.253077i \(0.918557\pi\)
\(972\) 0 0
\(973\) 4858.38i 0.160074i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24074.3 −0.788337 −0.394168 0.919038i \(-0.628967\pi\)
−0.394168 + 0.919038i \(0.628967\pi\)
\(978\) 0 0
\(979\) − 5427.49i − 0.177184i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −15244.1 −0.494620 −0.247310 0.968936i \(-0.579547\pi\)
−0.247310 + 0.968936i \(0.579547\pi\)
\(984\) 0 0
\(985\) 20003.7 0.647079
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 12259.6i 0.394168i
\(990\) 0 0
\(991\) −37518.6 −1.20264 −0.601321 0.799008i \(-0.705359\pi\)
−0.601321 + 0.799008i \(0.705359\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 84403.1i − 2.68920i
\(996\) 0 0
\(997\) − 1717.01i − 0.0545420i −0.999628 0.0272710i \(-0.991318\pi\)
0.999628 0.0272710i \(-0.00868170\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.d.p.577.1 8
3.2 odd 2 384.4.d.f.193.4 yes 8
4.3 odd 2 inner 1152.4.d.p.577.2 8
8.3 odd 2 inner 1152.4.d.p.577.8 8
8.5 even 2 inner 1152.4.d.p.577.7 8
12.11 even 2 384.4.d.f.193.8 yes 8
16.3 odd 4 2304.4.a.cb.1.1 4
16.5 even 4 2304.4.a.cb.1.4 4
16.11 odd 4 2304.4.a.by.1.4 4
16.13 even 4 2304.4.a.by.1.1 4
24.5 odd 2 384.4.d.f.193.5 yes 8
24.11 even 2 384.4.d.f.193.1 8
48.5 odd 4 768.4.a.u.1.1 4
48.11 even 4 768.4.a.v.1.1 4
48.29 odd 4 768.4.a.v.1.4 4
48.35 even 4 768.4.a.u.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.d.f.193.1 8 24.11 even 2
384.4.d.f.193.4 yes 8 3.2 odd 2
384.4.d.f.193.5 yes 8 24.5 odd 2
384.4.d.f.193.8 yes 8 12.11 even 2
768.4.a.u.1.1 4 48.5 odd 4
768.4.a.u.1.4 4 48.35 even 4
768.4.a.v.1.1 4 48.11 even 4
768.4.a.v.1.4 4 48.29 odd 4
1152.4.d.p.577.1 8 1.1 even 1 trivial
1152.4.d.p.577.2 8 4.3 odd 2 inner
1152.4.d.p.577.7 8 8.5 even 2 inner
1152.4.d.p.577.8 8 8.3 odd 2 inner
2304.4.a.by.1.1 4 16.13 even 4
2304.4.a.by.1.4 4 16.11 odd 4
2304.4.a.cb.1.1 4 16.3 odd 4
2304.4.a.cb.1.4 4 16.5 even 4