Properties

Label 1152.4.d.g.577.2
Level $1152$
Weight $4$
Character 1152.577
Analytic conductor $67.970$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(577,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.577");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 384)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 577.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1152.577
Dual form 1152.4.d.g.577.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.00000i q^{5} +12.0000 q^{7} +O(q^{10})\) \(q+8.00000i q^{5} +12.0000 q^{7} +12.0000i q^{11} -20.0000i q^{13} -62.0000 q^{17} -108.000i q^{19} +72.0000 q^{23} +61.0000 q^{25} -128.000i q^{29} -204.000 q^{31} +96.0000i q^{35} -228.000i q^{37} +22.0000 q^{41} -204.000i q^{43} +600.000 q^{47} -199.000 q^{49} -256.000i q^{53} -96.0000 q^{55} +828.000i q^{59} +84.0000i q^{61} +160.000 q^{65} -348.000i q^{67} -456.000 q^{71} +822.000 q^{73} +144.000i q^{77} -1356.00 q^{79} +108.000i q^{83} -496.000i q^{85} +938.000 q^{89} -240.000i q^{91} +864.000 q^{95} +1278.00 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 24 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 24 q^{7} - 124 q^{17} + 144 q^{23} + 122 q^{25} - 408 q^{31} + 44 q^{41} + 1200 q^{47} - 398 q^{49} - 192 q^{55} + 320 q^{65} - 912 q^{71} + 1644 q^{73} - 2712 q^{79} + 1876 q^{89} + 1728 q^{95} + 2556 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 8.00000i 0.715542i 0.933809 + 0.357771i \(0.116463\pi\)
−0.933809 + 0.357771i \(0.883537\pi\)
\(6\) 0 0
\(7\) 12.0000 0.647939 0.323970 0.946068i \(-0.394982\pi\)
0.323970 + 0.946068i \(0.394982\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 12.0000i 0.328921i 0.986384 + 0.164461i \(0.0525884\pi\)
−0.986384 + 0.164461i \(0.947412\pi\)
\(12\) 0 0
\(13\) − 20.0000i − 0.426692i −0.976977 0.213346i \(-0.931564\pi\)
0.976977 0.213346i \(-0.0684362\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −62.0000 −0.884542 −0.442271 0.896882i \(-0.645827\pi\)
−0.442271 + 0.896882i \(0.645827\pi\)
\(18\) 0 0
\(19\) − 108.000i − 1.30405i −0.758199 0.652024i \(-0.773920\pi\)
0.758199 0.652024i \(-0.226080\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 72.0000 0.652741 0.326370 0.945242i \(-0.394174\pi\)
0.326370 + 0.945242i \(0.394174\pi\)
\(24\) 0 0
\(25\) 61.0000 0.488000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 128.000i − 0.819621i −0.912171 0.409810i \(-0.865595\pi\)
0.912171 0.409810i \(-0.134405\pi\)
\(30\) 0 0
\(31\) −204.000 −1.18192 −0.590959 0.806701i \(-0.701251\pi\)
−0.590959 + 0.806701i \(0.701251\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 96.0000i 0.463627i
\(36\) 0 0
\(37\) − 228.000i − 1.01305i −0.862224 0.506527i \(-0.830929\pi\)
0.862224 0.506527i \(-0.169071\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 22.0000 0.0838006 0.0419003 0.999122i \(-0.486659\pi\)
0.0419003 + 0.999122i \(0.486659\pi\)
\(42\) 0 0
\(43\) − 204.000i − 0.723482i −0.932279 0.361741i \(-0.882183\pi\)
0.932279 0.361741i \(-0.117817\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 600.000 1.86211 0.931053 0.364884i \(-0.118891\pi\)
0.931053 + 0.364884i \(0.118891\pi\)
\(48\) 0 0
\(49\) −199.000 −0.580175
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 256.000i − 0.663477i −0.943371 0.331739i \(-0.892365\pi\)
0.943371 0.331739i \(-0.107635\pi\)
\(54\) 0 0
\(55\) −96.0000 −0.235357
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 828.000i 1.82706i 0.406774 + 0.913529i \(0.366654\pi\)
−0.406774 + 0.913529i \(0.633346\pi\)
\(60\) 0 0
\(61\) 84.0000i 0.176313i 0.996107 + 0.0881565i \(0.0280976\pi\)
−0.996107 + 0.0881565i \(0.971902\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 160.000 0.305316
\(66\) 0 0
\(67\) − 348.000i − 0.634552i −0.948333 0.317276i \(-0.897232\pi\)
0.948333 0.317276i \(-0.102768\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −456.000 −0.762215 −0.381107 0.924531i \(-0.624457\pi\)
−0.381107 + 0.924531i \(0.624457\pi\)
\(72\) 0 0
\(73\) 822.000 1.31792 0.658958 0.752180i \(-0.270998\pi\)
0.658958 + 0.752180i \(0.270998\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 144.000i 0.213121i
\(78\) 0 0
\(79\) −1356.00 −1.93116 −0.965582 0.260100i \(-0.916245\pi\)
−0.965582 + 0.260100i \(0.916245\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 108.000i 0.142826i 0.997447 + 0.0714129i \(0.0227508\pi\)
−0.997447 + 0.0714129i \(0.977249\pi\)
\(84\) 0 0
\(85\) − 496.000i − 0.632927i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 938.000 1.11717 0.558583 0.829449i \(-0.311345\pi\)
0.558583 + 0.829449i \(0.311345\pi\)
\(90\) 0 0
\(91\) − 240.000i − 0.276471i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 864.000 0.933100
\(96\) 0 0
\(97\) 1278.00 1.33774 0.668872 0.743377i \(-0.266777\pi\)
0.668872 + 0.743377i \(0.266777\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 608.000i − 0.598993i −0.954097 0.299496i \(-0.903181\pi\)
0.954097 0.299496i \(-0.0968186\pi\)
\(102\) 0 0
\(103\) 948.000 0.906886 0.453443 0.891285i \(-0.350196\pi\)
0.453443 + 0.891285i \(0.350196\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1044.00i − 0.943246i −0.881800 0.471623i \(-0.843668\pi\)
0.881800 0.471623i \(-0.156332\pi\)
\(108\) 0 0
\(109\) − 1780.00i − 1.56416i −0.623180 0.782078i \(-0.714160\pi\)
0.623180 0.782078i \(-0.285840\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 622.000 0.517813 0.258906 0.965902i \(-0.416638\pi\)
0.258906 + 0.965902i \(0.416638\pi\)
\(114\) 0 0
\(115\) 576.000i 0.467063i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −744.000 −0.573129
\(120\) 0 0
\(121\) 1187.00 0.891811
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1488.00i 1.06473i
\(126\) 0 0
\(127\) 204.000 0.142536 0.0712680 0.997457i \(-0.477295\pi\)
0.0712680 + 0.997457i \(0.477295\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 348.000i 0.232098i 0.993243 + 0.116049i \(0.0370230\pi\)
−0.993243 + 0.116049i \(0.962977\pi\)
\(132\) 0 0
\(133\) − 1296.00i − 0.844943i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −106.000 −0.0661036 −0.0330518 0.999454i \(-0.510523\pi\)
−0.0330518 + 0.999454i \(0.510523\pi\)
\(138\) 0 0
\(139\) 1188.00i 0.724927i 0.931998 + 0.362463i \(0.118064\pi\)
−0.931998 + 0.362463i \(0.881936\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 240.000 0.140348
\(144\) 0 0
\(145\) 1024.00 0.586473
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 2648.00i − 1.45592i −0.685618 0.727962i \(-0.740468\pi\)
0.685618 0.727962i \(-0.259532\pi\)
\(150\) 0 0
\(151\) 3420.00 1.84315 0.921575 0.388200i \(-0.126903\pi\)
0.921575 + 0.388200i \(0.126903\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 1632.00i − 0.845712i
\(156\) 0 0
\(157\) − 60.0000i − 0.0305001i −0.999884 0.0152501i \(-0.995146\pi\)
0.999884 0.0152501i \(-0.00485444\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 864.000 0.422936
\(162\) 0 0
\(163\) 228.000i 0.109560i 0.998498 + 0.0547802i \(0.0174458\pi\)
−0.998498 + 0.0547802i \(0.982554\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −4128.00 −1.91278 −0.956390 0.292093i \(-0.905648\pi\)
−0.956390 + 0.292093i \(0.905648\pi\)
\(168\) 0 0
\(169\) 1797.00 0.817934
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1352.00i − 0.594166i −0.954852 0.297083i \(-0.903986\pi\)
0.954852 0.297083i \(-0.0960137\pi\)
\(174\) 0 0
\(175\) 732.000 0.316194
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 1716.00i − 0.716536i −0.933619 0.358268i \(-0.883367\pi\)
0.933619 0.358268i \(-0.116633\pi\)
\(180\) 0 0
\(181\) − 3692.00i − 1.51616i −0.652164 0.758078i \(-0.726139\pi\)
0.652164 0.758078i \(-0.273861\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1824.00 0.724882
\(186\) 0 0
\(187\) − 744.000i − 0.290945i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −48.0000 −0.0181841 −0.00909204 0.999959i \(-0.502894\pi\)
−0.00909204 + 0.999959i \(0.502894\pi\)
\(192\) 0 0
\(193\) 2414.00 0.900329 0.450165 0.892946i \(-0.351365\pi\)
0.450165 + 0.892946i \(0.351365\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 4304.00i − 1.55659i −0.627902 0.778293i \(-0.716086\pi\)
0.627902 0.778293i \(-0.283914\pi\)
\(198\) 0 0
\(199\) −204.000 −0.0726692 −0.0363346 0.999340i \(-0.511568\pi\)
−0.0363346 + 0.999340i \(0.511568\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 1536.00i − 0.531064i
\(204\) 0 0
\(205\) 176.000i 0.0599628i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1296.00 0.428929
\(210\) 0 0
\(211\) 4020.00i 1.31160i 0.754933 + 0.655801i \(0.227669\pi\)
−0.754933 + 0.655801i \(0.772331\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1632.00 0.517681
\(216\) 0 0
\(217\) −2448.00 −0.765811
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1240.00i 0.377427i
\(222\) 0 0
\(223\) −516.000 −0.154950 −0.0774751 0.996994i \(-0.524686\pi\)
−0.0774751 + 0.996994i \(0.524686\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 1428.00i − 0.417532i −0.977966 0.208766i \(-0.933055\pi\)
0.977966 0.208766i \(-0.0669446\pi\)
\(228\) 0 0
\(229\) − 6028.00i − 1.73948i −0.493508 0.869741i \(-0.664286\pi\)
0.493508 0.869741i \(-0.335714\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2630.00 −0.739472 −0.369736 0.929137i \(-0.620552\pi\)
−0.369736 + 0.929137i \(0.620552\pi\)
\(234\) 0 0
\(235\) 4800.00i 1.33241i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4416.00 −1.19518 −0.597588 0.801803i \(-0.703874\pi\)
−0.597588 + 0.801803i \(0.703874\pi\)
\(240\) 0 0
\(241\) 4830.00 1.29099 0.645493 0.763766i \(-0.276652\pi\)
0.645493 + 0.763766i \(0.276652\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 1592.00i − 0.415139i
\(246\) 0 0
\(247\) −2160.00 −0.556427
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5532.00i 1.39114i 0.718457 + 0.695571i \(0.244849\pi\)
−0.718457 + 0.695571i \(0.755151\pi\)
\(252\) 0 0
\(253\) 864.000i 0.214700i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 254.000 0.0616501 0.0308251 0.999525i \(-0.490187\pi\)
0.0308251 + 0.999525i \(0.490187\pi\)
\(258\) 0 0
\(259\) − 2736.00i − 0.656397i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4272.00 1.00161 0.500804 0.865561i \(-0.333038\pi\)
0.500804 + 0.865561i \(0.333038\pi\)
\(264\) 0 0
\(265\) 2048.00 0.474746
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4544.00i 1.02994i 0.857210 + 0.514968i \(0.172196\pi\)
−0.857210 + 0.514968i \(0.827804\pi\)
\(270\) 0 0
\(271\) 2076.00 0.465343 0.232672 0.972555i \(-0.425253\pi\)
0.232672 + 0.972555i \(0.425253\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 732.000i 0.160514i
\(276\) 0 0
\(277\) 484.000i 0.104985i 0.998621 + 0.0524923i \(0.0167165\pi\)
−0.998621 + 0.0524923i \(0.983283\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −406.000 −0.0861919 −0.0430960 0.999071i \(-0.513722\pi\)
−0.0430960 + 0.999071i \(0.513722\pi\)
\(282\) 0 0
\(283\) − 8172.00i − 1.71652i −0.513216 0.858260i \(-0.671546\pi\)
0.513216 0.858260i \(-0.328454\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 264.000 0.0542977
\(288\) 0 0
\(289\) −1069.00 −0.217586
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 4960.00i − 0.988963i −0.869188 0.494482i \(-0.835358\pi\)
0.869188 0.494482i \(-0.164642\pi\)
\(294\) 0 0
\(295\) −6624.00 −1.30734
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 1440.00i − 0.278520i
\(300\) 0 0
\(301\) − 2448.00i − 0.468772i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −672.000 −0.126159
\(306\) 0 0
\(307\) − 6684.00i − 1.24259i −0.783576 0.621296i \(-0.786606\pi\)
0.783576 0.621296i \(-0.213394\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4992.00 0.910194 0.455097 0.890442i \(-0.349605\pi\)
0.455097 + 0.890442i \(0.349605\pi\)
\(312\) 0 0
\(313\) 5402.00 0.975524 0.487762 0.872977i \(-0.337813\pi\)
0.487762 + 0.872977i \(0.337813\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7856.00i 1.39191i 0.718083 + 0.695957i \(0.245020\pi\)
−0.718083 + 0.695957i \(0.754980\pi\)
\(318\) 0 0
\(319\) 1536.00 0.269591
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6696.00i 1.15348i
\(324\) 0 0
\(325\) − 1220.00i − 0.208226i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7200.00 1.20653
\(330\) 0 0
\(331\) 3732.00i 0.619726i 0.950781 + 0.309863i \(0.100283\pi\)
−0.950781 + 0.309863i \(0.899717\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2784.00 0.454048
\(336\) 0 0
\(337\) −5598.00 −0.904874 −0.452437 0.891796i \(-0.649445\pi\)
−0.452437 + 0.891796i \(0.649445\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2448.00i − 0.388758i
\(342\) 0 0
\(343\) −6504.00 −1.02386
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8220.00i 1.27168i 0.771821 + 0.635840i \(0.219346\pi\)
−0.771821 + 0.635840i \(0.780654\pi\)
\(348\) 0 0
\(349\) 11844.0i 1.81660i 0.418315 + 0.908302i \(0.362621\pi\)
−0.418315 + 0.908302i \(0.637379\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7006.00 1.05635 0.528175 0.849135i \(-0.322876\pi\)
0.528175 + 0.849135i \(0.322876\pi\)
\(354\) 0 0
\(355\) − 3648.00i − 0.545396i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7512.00 1.10437 0.552184 0.833722i \(-0.313795\pi\)
0.552184 + 0.833722i \(0.313795\pi\)
\(360\) 0 0
\(361\) −4805.00 −0.700539
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6576.00i 0.943023i
\(366\) 0 0
\(367\) 5076.00 0.721976 0.360988 0.932571i \(-0.382440\pi\)
0.360988 + 0.932571i \(0.382440\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 3072.00i − 0.429893i
\(372\) 0 0
\(373\) 4860.00i 0.674641i 0.941390 + 0.337321i \(0.109521\pi\)
−0.941390 + 0.337321i \(0.890479\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2560.00 −0.349726
\(378\) 0 0
\(379\) − 5964.00i − 0.808312i −0.914690 0.404156i \(-0.867565\pi\)
0.914690 0.404156i \(-0.132435\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 432.000 0.0576349 0.0288175 0.999585i \(-0.490826\pi\)
0.0288175 + 0.999585i \(0.490826\pi\)
\(384\) 0 0
\(385\) −1152.00 −0.152497
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 8888.00i − 1.15846i −0.815165 0.579228i \(-0.803354\pi\)
0.815165 0.579228i \(-0.196646\pi\)
\(390\) 0 0
\(391\) −4464.00 −0.577376
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 10848.0i − 1.38183i
\(396\) 0 0
\(397\) 2676.00i 0.338299i 0.985590 + 0.169149i \(0.0541020\pi\)
−0.985590 + 0.169149i \(0.945898\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13790.0 −1.71731 −0.858653 0.512557i \(-0.828698\pi\)
−0.858653 + 0.512557i \(0.828698\pi\)
\(402\) 0 0
\(403\) 4080.00i 0.504316i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2736.00 0.333215
\(408\) 0 0
\(409\) −1974.00 −0.238650 −0.119325 0.992855i \(-0.538073\pi\)
−0.119325 + 0.992855i \(0.538073\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9936.00i 1.18382i
\(414\) 0 0
\(415\) −864.000 −0.102198
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4764.00i 0.555457i 0.960660 + 0.277729i \(0.0895816\pi\)
−0.960660 + 0.277729i \(0.910418\pi\)
\(420\) 0 0
\(421\) − 92.0000i − 0.0106504i −0.999986 0.00532518i \(-0.998305\pi\)
0.999986 0.00532518i \(-0.00169507\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3782.00 −0.431656
\(426\) 0 0
\(427\) 1008.00i 0.114240i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10488.0 −1.17213 −0.586066 0.810263i \(-0.699324\pi\)
−0.586066 + 0.810263i \(0.699324\pi\)
\(432\) 0 0
\(433\) −13138.0 −1.45813 −0.729067 0.684442i \(-0.760046\pi\)
−0.729067 + 0.684442i \(0.760046\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 7776.00i − 0.851205i
\(438\) 0 0
\(439\) −3612.00 −0.392691 −0.196346 0.980535i \(-0.562907\pi\)
−0.196346 + 0.980535i \(0.562907\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12972.0i 1.39124i 0.718411 + 0.695619i \(0.244870\pi\)
−0.718411 + 0.695619i \(0.755130\pi\)
\(444\) 0 0
\(445\) 7504.00i 0.799379i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −5998.00 −0.630430 −0.315215 0.949020i \(-0.602077\pi\)
−0.315215 + 0.949020i \(0.602077\pi\)
\(450\) 0 0
\(451\) 264.000i 0.0275638i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1920.00 0.197826
\(456\) 0 0
\(457\) −8934.00 −0.914475 −0.457237 0.889345i \(-0.651161\pi\)
−0.457237 + 0.889345i \(0.651161\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 7448.00i 0.752468i 0.926525 + 0.376234i \(0.122781\pi\)
−0.926525 + 0.376234i \(0.877219\pi\)
\(462\) 0 0
\(463\) −4356.00 −0.437236 −0.218618 0.975810i \(-0.570155\pi\)
−0.218618 + 0.975810i \(0.570155\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8580.00i − 0.850182i −0.905151 0.425091i \(-0.860242\pi\)
0.905151 0.425091i \(-0.139758\pi\)
\(468\) 0 0
\(469\) − 4176.00i − 0.411151i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2448.00 0.237969
\(474\) 0 0
\(475\) − 6588.00i − 0.636375i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −12648.0 −1.20648 −0.603238 0.797561i \(-0.706123\pi\)
−0.603238 + 0.797561i \(0.706123\pi\)
\(480\) 0 0
\(481\) −4560.00 −0.432262
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 10224.0i 0.957212i
\(486\) 0 0
\(487\) 15036.0 1.39907 0.699534 0.714599i \(-0.253391\pi\)
0.699534 + 0.714599i \(0.253391\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 15684.0i − 1.44157i −0.693161 0.720783i \(-0.743782\pi\)
0.693161 0.720783i \(-0.256218\pi\)
\(492\) 0 0
\(493\) 7936.00i 0.724989i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5472.00 −0.493869
\(498\) 0 0
\(499\) 16308.0i 1.46302i 0.681831 + 0.731509i \(0.261184\pi\)
−0.681831 + 0.731509i \(0.738816\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10344.0 −0.916931 −0.458465 0.888712i \(-0.651601\pi\)
−0.458465 + 0.888712i \(0.651601\pi\)
\(504\) 0 0
\(505\) 4864.00 0.428604
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 5648.00i − 0.491833i −0.969291 0.245917i \(-0.920911\pi\)
0.969291 0.245917i \(-0.0790890\pi\)
\(510\) 0 0
\(511\) 9864.00 0.853929
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7584.00i 0.648915i
\(516\) 0 0
\(517\) 7200.00i 0.612487i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19498.0 −1.63958 −0.819792 0.572662i \(-0.805911\pi\)
−0.819792 + 0.572662i \(0.805911\pi\)
\(522\) 0 0
\(523\) 22596.0i 1.88920i 0.328217 + 0.944602i \(0.393552\pi\)
−0.328217 + 0.944602i \(0.606448\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 12648.0 1.04546
\(528\) 0 0
\(529\) −6983.00 −0.573929
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 440.000i − 0.0357571i
\(534\) 0 0
\(535\) 8352.00 0.674932
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 2388.00i − 0.190832i
\(540\) 0 0
\(541\) 812.000i 0.0645298i 0.999479 + 0.0322649i \(0.0102720\pi\)
−0.999479 + 0.0322649i \(0.989728\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14240.0 1.11922
\(546\) 0 0
\(547\) 6132.00i 0.479315i 0.970857 + 0.239658i \(0.0770352\pi\)
−0.970857 + 0.239658i \(0.922965\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −13824.0 −1.06882
\(552\) 0 0
\(553\) −16272.0 −1.25128
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2792.00i 0.212389i 0.994345 + 0.106195i \(0.0338667\pi\)
−0.994345 + 0.106195i \(0.966133\pi\)
\(558\) 0 0
\(559\) −4080.00 −0.308704
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 6468.00i − 0.484181i −0.970254 0.242090i \(-0.922167\pi\)
0.970254 0.242090i \(-0.0778330\pi\)
\(564\) 0 0
\(565\) 4976.00i 0.370517i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10522.0 −0.775229 −0.387614 0.921822i \(-0.626701\pi\)
−0.387614 + 0.921822i \(0.626701\pi\)
\(570\) 0 0
\(571\) − 1068.00i − 0.0782739i −0.999234 0.0391370i \(-0.987539\pi\)
0.999234 0.0391370i \(-0.0124609\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4392.00 0.318537
\(576\) 0 0
\(577\) 3602.00 0.259884 0.129942 0.991522i \(-0.458521\pi\)
0.129942 + 0.991522i \(0.458521\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1296.00i 0.0925424i
\(582\) 0 0
\(583\) 3072.00 0.218232
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 17940.0i − 1.26144i −0.776012 0.630718i \(-0.782760\pi\)
0.776012 0.630718i \(-0.217240\pi\)
\(588\) 0 0
\(589\) 22032.0i 1.54128i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18034.0 −1.24885 −0.624425 0.781085i \(-0.714666\pi\)
−0.624425 + 0.781085i \(0.714666\pi\)
\(594\) 0 0
\(595\) − 5952.00i − 0.410098i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12264.0 −0.836550 −0.418275 0.908320i \(-0.637365\pi\)
−0.418275 + 0.908320i \(0.637365\pi\)
\(600\) 0 0
\(601\) −12634.0 −0.857490 −0.428745 0.903426i \(-0.641044\pi\)
−0.428745 + 0.903426i \(0.641044\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9496.00i 0.638128i
\(606\) 0 0
\(607\) 2796.00 0.186962 0.0934812 0.995621i \(-0.470201\pi\)
0.0934812 + 0.995621i \(0.470201\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 12000.0i − 0.794547i
\(612\) 0 0
\(613\) 13788.0i 0.908470i 0.890882 + 0.454235i \(0.150087\pi\)
−0.890882 + 0.454235i \(0.849913\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18074.0 1.17931 0.589653 0.807657i \(-0.299264\pi\)
0.589653 + 0.807657i \(0.299264\pi\)
\(618\) 0 0
\(619\) 5940.00i 0.385701i 0.981228 + 0.192850i \(0.0617732\pi\)
−0.981228 + 0.192850i \(0.938227\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11256.0 0.723856
\(624\) 0 0
\(625\) −4279.00 −0.273856
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14136.0i 0.896088i
\(630\) 0 0
\(631\) 8700.00 0.548877 0.274439 0.961605i \(-0.411508\pi\)
0.274439 + 0.961605i \(0.411508\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1632.00i 0.101990i
\(636\) 0 0
\(637\) 3980.00i 0.247556i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 16306.0 1.00476 0.502378 0.864648i \(-0.332459\pi\)
0.502378 + 0.864648i \(0.332459\pi\)
\(642\) 0 0
\(643\) − 22668.0i − 1.39026i −0.718883 0.695131i \(-0.755346\pi\)
0.718883 0.695131i \(-0.244654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11928.0 −0.724788 −0.362394 0.932025i \(-0.618041\pi\)
−0.362394 + 0.932025i \(0.618041\pi\)
\(648\) 0 0
\(649\) −9936.00 −0.600959
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2552.00i − 0.152936i −0.997072 0.0764682i \(-0.975636\pi\)
0.997072 0.0764682i \(-0.0243644\pi\)
\(654\) 0 0
\(655\) −2784.00 −0.166076
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 2196.00i − 0.129809i −0.997891 0.0649044i \(-0.979326\pi\)
0.997891 0.0649044i \(-0.0206742\pi\)
\(660\) 0 0
\(661\) − 4260.00i − 0.250673i −0.992114 0.125336i \(-0.959999\pi\)
0.992114 0.125336i \(-0.0400010\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 10368.0 0.604592
\(666\) 0 0
\(667\) − 9216.00i − 0.535000i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1008.00 −0.0579932
\(672\) 0 0
\(673\) −2018.00 −0.115584 −0.0577921 0.998329i \(-0.518406\pi\)
−0.0577921 + 0.998329i \(0.518406\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 9256.00i − 0.525461i −0.964869 0.262730i \(-0.915377\pi\)
0.964869 0.262730i \(-0.0846230\pi\)
\(678\) 0 0
\(679\) 15336.0 0.866777
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 29244.0i 1.63835i 0.573546 + 0.819173i \(0.305567\pi\)
−0.573546 + 0.819173i \(0.694433\pi\)
\(684\) 0 0
\(685\) − 848.000i − 0.0472999i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5120.00 −0.283101
\(690\) 0 0
\(691\) 3684.00i 0.202816i 0.994845 + 0.101408i \(0.0323348\pi\)
−0.994845 + 0.101408i \(0.967665\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9504.00 −0.518715
\(696\) 0 0
\(697\) −1364.00 −0.0741251
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13456.0i 0.725002i 0.931983 + 0.362501i \(0.118077\pi\)
−0.931983 + 0.362501i \(0.881923\pi\)
\(702\) 0 0
\(703\) −24624.0 −1.32107
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 7296.00i − 0.388111i
\(708\) 0 0
\(709\) − 6460.00i − 0.342187i −0.985255 0.171093i \(-0.945270\pi\)
0.985255 0.171093i \(-0.0547300\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14688.0 −0.771487
\(714\) 0 0
\(715\) 1920.00i 0.100425i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 17160.0 0.890070 0.445035 0.895513i \(-0.353191\pi\)
0.445035 + 0.895513i \(0.353191\pi\)
\(720\) 0 0
\(721\) 11376.0 0.587607
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 7808.00i − 0.399975i
\(726\) 0 0
\(727\) 11820.0 0.602998 0.301499 0.953466i \(-0.402513\pi\)
0.301499 + 0.953466i \(0.402513\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12648.0i 0.639950i
\(732\) 0 0
\(733\) − 23924.0i − 1.20553i −0.797919 0.602765i \(-0.794066\pi\)
0.797919 0.602765i \(-0.205934\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4176.00 0.208718
\(738\) 0 0
\(739\) 11796.0i 0.587176i 0.955932 + 0.293588i \(0.0948493\pi\)
−0.955932 + 0.293588i \(0.905151\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27024.0 1.33434 0.667170 0.744906i \(-0.267506\pi\)
0.667170 + 0.744906i \(0.267506\pi\)
\(744\) 0 0
\(745\) 21184.0 1.04177
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 12528.0i − 0.611166i
\(750\) 0 0
\(751\) −17340.0 −0.842537 −0.421269 0.906936i \(-0.638415\pi\)
−0.421269 + 0.906936i \(0.638415\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 27360.0i 1.31885i
\(756\) 0 0
\(757\) 27236.0i 1.30767i 0.756635 + 0.653837i \(0.226842\pi\)
−0.756635 + 0.653837i \(0.773158\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 14758.0 0.702992 0.351496 0.936189i \(-0.385673\pi\)
0.351496 + 0.936189i \(0.385673\pi\)
\(762\) 0 0
\(763\) − 21360.0i − 1.01348i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16560.0 0.779592
\(768\) 0 0
\(769\) 25774.0 1.20863 0.604314 0.796747i \(-0.293447\pi\)
0.604314 + 0.796747i \(0.293447\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 37424.0i 1.74133i 0.491877 + 0.870665i \(0.336311\pi\)
−0.491877 + 0.870665i \(0.663689\pi\)
\(774\) 0 0
\(775\) −12444.0 −0.576776
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 2376.00i − 0.109280i
\(780\) 0 0
\(781\) − 5472.00i − 0.250709i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 480.000 0.0218241
\(786\) 0 0
\(787\) 12804.0i 0.579941i 0.957036 + 0.289970i \(0.0936454\pi\)
−0.957036 + 0.289970i \(0.906355\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7464.00 0.335511
\(792\) 0 0
\(793\) 1680.00 0.0752315
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 32024.0i − 1.42327i −0.702548 0.711636i \(-0.747954\pi\)
0.702548 0.711636i \(-0.252046\pi\)
\(798\) 0 0
\(799\) −37200.0 −1.64711
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9864.00i 0.433491i
\(804\) 0 0
\(805\) 6912.00i 0.302629i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −38090.0 −1.65534 −0.827672 0.561212i \(-0.810335\pi\)
−0.827672 + 0.561212i \(0.810335\pi\)
\(810\) 0 0
\(811\) − 10428.0i − 0.451512i −0.974184 0.225756i \(-0.927515\pi\)
0.974184 0.225756i \(-0.0724853\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1824.00 −0.0783950
\(816\) 0 0
\(817\) −22032.0 −0.943454
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7984.00i 0.339395i 0.985496 + 0.169698i \(0.0542791\pi\)
−0.985496 + 0.169698i \(0.945721\pi\)
\(822\) 0 0
\(823\) −28788.0 −1.21930 −0.609652 0.792669i \(-0.708691\pi\)
−0.609652 + 0.792669i \(0.708691\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 468.000i − 0.0196783i −0.999952 0.00983915i \(-0.996868\pi\)
0.999952 0.00983915i \(-0.00313195\pi\)
\(828\) 0 0
\(829\) − 28852.0i − 1.20877i −0.796692 0.604386i \(-0.793419\pi\)
0.796692 0.604386i \(-0.206581\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 12338.0 0.513189
\(834\) 0 0
\(835\) − 33024.0i − 1.36867i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1944.00 −0.0799932 −0.0399966 0.999200i \(-0.512735\pi\)
−0.0399966 + 0.999200i \(0.512735\pi\)
\(840\) 0 0
\(841\) 8005.00 0.328222
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 14376.0i 0.585266i
\(846\) 0 0
\(847\) 14244.0 0.577839
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 16416.0i − 0.661261i
\(852\) 0 0
\(853\) − 37044.0i − 1.48694i −0.668768 0.743472i \(-0.733178\pi\)
0.668768 0.743472i \(-0.266822\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15046.0 0.599722 0.299861 0.953983i \(-0.403060\pi\)
0.299861 + 0.953983i \(0.403060\pi\)
\(858\) 0 0
\(859\) 12180.0i 0.483791i 0.970302 + 0.241895i \(0.0777691\pi\)
−0.970302 + 0.241895i \(0.922231\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28752.0 1.13410 0.567051 0.823683i \(-0.308084\pi\)
0.567051 + 0.823683i \(0.308084\pi\)
\(864\) 0 0
\(865\) 10816.0 0.425150
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 16272.0i − 0.635201i
\(870\) 0 0
\(871\) −6960.00 −0.270758
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17856.0i 0.689878i
\(876\) 0 0
\(877\) − 31884.0i − 1.22765i −0.789443 0.613823i \(-0.789631\pi\)
0.789443 0.613823i \(-0.210369\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −30802.0 −1.17792 −0.588959 0.808163i \(-0.700462\pi\)
−0.588959 + 0.808163i \(0.700462\pi\)
\(882\) 0 0
\(883\) − 32460.0i − 1.23711i −0.785742 0.618554i \(-0.787719\pi\)
0.785742 0.618554i \(-0.212281\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −14832.0 −0.561454 −0.280727 0.959788i \(-0.590576\pi\)
−0.280727 + 0.959788i \(0.590576\pi\)
\(888\) 0 0
\(889\) 2448.00 0.0923547
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 64800.0i − 2.42827i
\(894\) 0 0
\(895\) 13728.0 0.512711
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26112.0i 0.968725i
\(900\) 0 0
\(901\) 15872.0i 0.586873i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 29536.0 1.08487
\(906\) 0 0
\(907\) 6900.00i 0.252603i 0.991992 + 0.126301i \(0.0403106\pi\)
−0.991992 + 0.126301i \(0.959689\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −32832.0 −1.19404 −0.597021 0.802225i \(-0.703649\pi\)
−0.597021 + 0.802225i \(0.703649\pi\)
\(912\) 0 0
\(913\) −1296.00 −0.0469785
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4176.00i 0.150386i
\(918\) 0 0
\(919\) −8340.00 −0.299359 −0.149680 0.988735i \(-0.547824\pi\)
−0.149680 + 0.988735i \(0.547824\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9120.00i 0.325231i
\(924\) 0 0
\(925\) − 13908.0i − 0.494370i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 39826.0 1.40651 0.703255 0.710937i \(-0.251729\pi\)
0.703255 + 0.710937i \(0.251729\pi\)
\(930\) 0 0
\(931\) 21492.0i 0.756576i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5952.00 0.208183
\(936\) 0 0
\(937\) 28550.0 0.995398 0.497699 0.867350i \(-0.334178\pi\)
0.497699 + 0.867350i \(0.334178\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 50632.0i − 1.75404i −0.480450 0.877022i \(-0.659527\pi\)
0.480450 0.877022i \(-0.340473\pi\)
\(942\) 0 0
\(943\) 1584.00 0.0547000
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 18204.0i 0.624657i 0.949974 + 0.312329i \(0.101109\pi\)
−0.949974 + 0.312329i \(0.898891\pi\)
\(948\) 0 0
\(949\) − 16440.0i − 0.562345i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 4934.00 0.167710 0.0838552 0.996478i \(-0.473277\pi\)
0.0838552 + 0.996478i \(0.473277\pi\)
\(954\) 0 0
\(955\) − 384.000i − 0.0130115i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1272.00 −0.0428311
\(960\) 0 0
\(961\) 11825.0 0.396932
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19312.0i 0.644223i
\(966\) 0 0
\(967\) 13284.0 0.441763 0.220881 0.975301i \(-0.429107\pi\)
0.220881 + 0.975301i \(0.429107\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 50820.0i − 1.67960i −0.542896 0.839800i \(-0.682672\pi\)
0.542896 0.839800i \(-0.317328\pi\)
\(972\) 0 0
\(973\) 14256.0i 0.469709i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −11038.0 −0.361450 −0.180725 0.983534i \(-0.557844\pi\)
−0.180725 + 0.983534i \(0.557844\pi\)
\(978\) 0 0
\(979\) 11256.0i 0.367460i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 44112.0 1.43129 0.715643 0.698466i \(-0.246134\pi\)
0.715643 + 0.698466i \(0.246134\pi\)
\(984\) 0 0
\(985\) 34432.0 1.11380
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 14688.0i − 0.472246i
\(990\) 0 0
\(991\) 56196.0 1.80134 0.900668 0.434507i \(-0.143077\pi\)
0.900668 + 0.434507i \(0.143077\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1632.00i − 0.0519979i
\(996\) 0 0
\(997\) − 45588.0i − 1.44813i −0.689731 0.724065i \(-0.742271\pi\)
0.689731 0.724065i \(-0.257729\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.d.g.577.2 2
3.2 odd 2 384.4.d.b.193.1 yes 2
4.3 odd 2 1152.4.d.b.577.2 2
8.3 odd 2 1152.4.d.b.577.1 2
8.5 even 2 inner 1152.4.d.g.577.1 2
12.11 even 2 384.4.d.a.193.2 yes 2
16.3 odd 4 2304.4.a.l.1.1 1
16.5 even 4 2304.4.a.e.1.1 1
16.11 odd 4 2304.4.a.f.1.1 1
16.13 even 4 2304.4.a.k.1.1 1
24.5 odd 2 384.4.d.b.193.2 yes 2
24.11 even 2 384.4.d.a.193.1 2
48.5 odd 4 768.4.a.b.1.1 1
48.11 even 4 768.4.a.d.1.1 1
48.29 odd 4 768.4.a.c.1.1 1
48.35 even 4 768.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
384.4.d.a.193.1 2 24.11 even 2
384.4.d.a.193.2 yes 2 12.11 even 2
384.4.d.b.193.1 yes 2 3.2 odd 2
384.4.d.b.193.2 yes 2 24.5 odd 2
768.4.a.a.1.1 1 48.35 even 4
768.4.a.b.1.1 1 48.5 odd 4
768.4.a.c.1.1 1 48.29 odd 4
768.4.a.d.1.1 1 48.11 even 4
1152.4.d.b.577.1 2 8.3 odd 2
1152.4.d.b.577.2 2 4.3 odd 2
1152.4.d.g.577.1 2 8.5 even 2 inner
1152.4.d.g.577.2 2 1.1 even 1 trivial
2304.4.a.e.1.1 1 16.5 even 4
2304.4.a.f.1.1 1 16.11 odd 4
2304.4.a.k.1.1 1 16.13 even 4
2304.4.a.l.1.1 1 16.3 odd 4