Properties

Label 1152.4.d.f.577.2
Level $1152$
Weight $4$
Character 1152.577
Analytic conductor $67.970$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(577,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.577");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 577.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1152.577
Dual form 1152.4.d.f.577.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+22.0000i q^{5} +O(q^{10})\) \(q+22.0000i q^{5} -92.0000i q^{13} +104.000 q^{17} -359.000 q^{25} -130.000i q^{29} -396.000i q^{37} -472.000 q^{41} -343.000 q^{49} -518.000i q^{53} -468.000i q^{61} +2024.00 q^{65} +1098.00 q^{73} +2288.00i q^{85} -176.000 q^{89} +594.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 208 q^{17} - 718 q^{25} - 944 q^{41} - 686 q^{49} + 4048 q^{65} + 2196 q^{73} - 352 q^{89} + 1188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 22.0000i 1.96774i 0.178885 + 0.983870i \(0.442751\pi\)
−0.178885 + 0.983870i \(0.557249\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 92.0000i − 1.96279i −0.192012 0.981393i \(-0.561501\pi\)
0.192012 0.981393i \(-0.438499\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 104.000 1.48375 0.741874 0.670540i \(-0.233937\pi\)
0.741874 + 0.670540i \(0.233937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −359.000 −2.87200
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 130.000i − 0.832427i −0.909267 0.416214i \(-0.863357\pi\)
0.909267 0.416214i \(-0.136643\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 396.000i − 1.75951i −0.475424 0.879757i \(-0.657705\pi\)
0.475424 0.879757i \(-0.342295\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −472.000 −1.79790 −0.898951 0.438048i \(-0.855670\pi\)
−0.898951 + 0.438048i \(0.855670\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 518.000i − 1.34251i −0.741229 0.671253i \(-0.765757\pi\)
0.741229 0.671253i \(-0.234243\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 468.000i − 0.982316i −0.871071 0.491158i \(-0.836574\pi\)
0.871071 0.491158i \(-0.163426\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2024.00 3.86225
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 1098.00 1.76043 0.880214 0.474578i \(-0.157399\pi\)
0.880214 + 0.474578i \(0.157399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 2288.00i 2.91963i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −176.000 −0.209618 −0.104809 0.994492i \(-0.533423\pi\)
−0.104809 + 0.994492i \(0.533423\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 594.000 0.621769 0.310884 0.950448i \(-0.399375\pi\)
0.310884 + 0.950448i \(0.399375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 598.000i − 0.589141i −0.955630 0.294570i \(-0.904823\pi\)
0.955630 0.294570i \(-0.0951766\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 1460.00i 1.28296i 0.767140 + 0.641480i \(0.221679\pi\)
−0.767140 + 0.641480i \(0.778321\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1328.00 1.10556 0.552778 0.833329i \(-0.313568\pi\)
0.552778 + 0.833329i \(0.313568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 5148.00i − 3.68361i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2776.00 1.73117 0.865583 0.500766i \(-0.166948\pi\)
0.865583 + 0.500766i \(0.166948\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 2860.00 1.63800
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 3514.00i − 1.93207i −0.258415 0.966034i \(-0.583200\pi\)
0.258415 0.966034i \(-0.416800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3924.00i − 1.99471i −0.0726920 0.997354i \(-0.523159\pi\)
0.0726920 0.997354i \(-0.476841\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −6267.00 −2.85253
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4082.00i 1.79392i 0.442108 + 0.896962i \(0.354231\pi\)
−0.442108 + 0.896962i \(0.645769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 2860.00i 1.17449i 0.809410 + 0.587243i \(0.199787\pi\)
−0.809410 + 0.587243i \(0.800213\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8712.00 3.46226
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −5362.00 −1.99982 −0.999910 0.0134266i \(-0.995726\pi\)
−0.999910 + 0.0134266i \(0.995726\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1174.00i − 0.424589i −0.977206 0.212295i \(-0.931906\pi\)
0.977206 0.212295i \(-0.0680936\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 10384.0i − 3.53780i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 9568.00i − 2.91228i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 2684.00i 0.774514i 0.921972 + 0.387257i \(0.126577\pi\)
−0.921972 + 0.387257i \(0.873423\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7088.00 1.99292 0.996460 0.0840693i \(-0.0267917\pi\)
0.996460 + 0.0840693i \(0.0267917\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −5310.00 −1.41928 −0.709641 0.704563i \(-0.751143\pi\)
−0.709641 + 0.704563i \(0.751143\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 7546.00i − 1.96774i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −8096.00 −1.96504 −0.982519 0.186164i \(-0.940394\pi\)
−0.982519 + 0.186164i \(0.940394\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 11396.0 2.64170
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3406.00i 0.771998i 0.922499 + 0.385999i \(0.126143\pi\)
−0.922499 + 0.385999i \(0.873857\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 1316.00i − 0.285454i −0.989762 0.142727i \(-0.954413\pi\)
0.989762 0.142727i \(-0.0455871\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5792.00 −1.22961 −0.614807 0.788677i \(-0.710766\pi\)
−0.614807 + 0.788677i \(0.710766\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 5903.00 1.20151
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9418.00i 1.87783i 0.344143 + 0.938917i \(0.388169\pi\)
−0.344143 + 0.938917i \(0.611831\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10296.0 1.93294
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −6838.00 −1.23485 −0.617423 0.786632i \(-0.711823\pi\)
−0.617423 + 0.786632i \(0.711823\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 10274.0i − 1.82033i −0.414243 0.910166i \(-0.635954\pi\)
0.414243 0.910166i \(-0.364046\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 33028.0i 5.63712i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 12366.0 1.99887 0.999435 0.0336216i \(-0.0107041\pi\)
0.999435 + 0.0336216i \(0.0107041\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 8964.00i − 1.37488i −0.726243 0.687438i \(-0.758735\pi\)
0.726243 0.687438i \(-0.241265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12848.0 1.93720 0.968598 0.248633i \(-0.0799813\pi\)
0.968598 + 0.248633i \(0.0799813\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6859.00 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 24156.0i 3.46406i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6372.00i 0.884530i 0.896884 + 0.442265i \(0.145825\pi\)
−0.896884 + 0.442265i \(0.854175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −11960.0 −1.63388
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 374.000i 0.0487469i 0.999703 + 0.0243735i \(0.00775908\pi\)
−0.999703 + 0.0243735i \(0.992241\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 12564.0i − 1.58834i −0.607699 0.794168i \(-0.707907\pi\)
0.607699 0.794168i \(-0.292093\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15880.0 −1.97758 −0.988790 0.149315i \(-0.952293\pi\)
−0.988790 + 0.149315i \(0.952293\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −7146.00 −0.863929 −0.431964 0.901891i \(-0.642179\pi\)
−0.431964 + 0.901891i \(0.642179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) − 13412.0i − 1.55264i −0.630340 0.776319i \(-0.717084\pi\)
0.630340 0.776319i \(-0.282916\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −37336.0 −4.26132
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 4862.00 0.539614 0.269807 0.962914i \(-0.413040\pi\)
0.269807 + 0.962914i \(0.413040\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) − 3872.00i − 0.412473i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10120.0 1.06368 0.531840 0.846845i \(-0.321501\pi\)
0.531840 + 0.846845i \(0.321501\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16506.0 −1.68954 −0.844768 0.535132i \(-0.820262\pi\)
−0.844768 + 0.535132i \(0.820262\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 2318.00i − 0.234187i −0.993121 0.117093i \(-0.962642\pi\)
0.993121 0.117093i \(-0.0373577\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −36432.0 −3.45355
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13068.0i 1.22348i
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) − 13520.0i − 1.23511i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 13156.0 1.15928
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14270.0i 1.24265i 0.783555 + 0.621323i \(0.213404\pi\)
−0.783555 + 0.621323i \(0.786596\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1480.00 0.124453 0.0622265 0.998062i \(-0.480180\pi\)
0.0622265 + 0.998062i \(0.480180\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 43424.0i 3.52890i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) − 24460.0i − 1.94384i −0.235311 0.971920i \(-0.575611\pi\)
0.235311 0.971920i \(-0.424389\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −32120.0 −2.52453
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8626.00i 0.656186i 0.944646 + 0.328093i \(0.106406\pi\)
−0.944646 + 0.328093i \(0.893594\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 29216.0i 2.17544i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −4280.00 −0.315337 −0.157669 0.987492i \(-0.550398\pi\)
−0.157669 + 0.987492i \(0.550398\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3454.00 −0.249206 −0.124603 0.992207i \(-0.539766\pi\)
−0.124603 + 0.992207i \(0.539766\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −24368.0 −1.68748 −0.843738 0.536755i \(-0.819650\pi\)
−0.843738 + 0.536755i \(0.819650\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 17030.0 1.15585 0.577927 0.816089i \(-0.303862\pi\)
0.577927 + 0.816089i \(0.303862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29282.0i 1.96774i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 19548.0i − 1.28799i −0.765031 0.643994i \(-0.777276\pi\)
0.765031 0.643994i \(-0.222724\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26464.0 1.72674 0.863372 0.504569i \(-0.168348\pi\)
0.863372 + 0.504569i \(0.168348\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 68381.0 4.37638
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 41184.0i − 2.61067i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 31556.0i 1.96279i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14872.0 −0.916394 −0.458197 0.888851i \(-0.651505\pi\)
−0.458197 + 0.888851i \(0.651505\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 33358.0i − 1.99908i −0.0303236 0.999540i \(-0.509654\pi\)
0.0303236 0.999540i \(-0.490346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 22068.0i 1.29856i 0.760551 + 0.649278i \(0.224929\pi\)
−0.760551 + 0.649278i \(0.775071\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 4462.00 0.255568 0.127784 0.991802i \(-0.459214\pi\)
0.127784 + 0.991802i \(0.459214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4054.00i 0.230145i 0.993357 + 0.115072i \(0.0367100\pi\)
−0.993357 + 0.115072i \(0.963290\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 61072.0i 3.40648i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −47656.0 −2.63505
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −49088.0 −2.66763
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 20030.0i 1.07920i 0.841920 + 0.539602i \(0.181425\pi\)
−0.841920 + 0.539602i \(0.818575\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 8404.00i − 0.445161i −0.974914 0.222580i \(-0.928552\pi\)
0.974914 0.222580i \(-0.0714479\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 46670.0i 2.39073i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) − 8732.00i − 0.440005i −0.975499 0.220003i \(-0.929393\pi\)
0.975499 0.220003i \(-0.0706066\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 77308.0 3.80181
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 22516.0i − 1.08105i −0.841327 0.540527i \(-0.818225\pi\)
0.841327 0.540527i \(-0.181775\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27320.0 1.30138 0.650689 0.759344i \(-0.274480\pi\)
0.650689 + 0.759344i \(0.274480\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −9650.00 −0.452520 −0.226260 0.974067i \(-0.572650\pi\)
−0.226260 + 0.974067i \(0.572650\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 39542.0i − 1.83988i −0.392060 0.919940i \(-0.628237\pi\)
0.392060 0.919940i \(-0.371763\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 86328.0 3.92507
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −43056.0 −1.92807
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 41954.0i 1.86460i 0.361685 + 0.932300i \(0.382202\pi\)
−0.361685 + 0.932300i \(0.617798\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 39704.0 1.72549 0.862743 0.505643i \(-0.168745\pi\)
0.862743 + 0.505643i \(0.168745\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1850.00i 0.0786424i 0.999227 + 0.0393212i \(0.0125196\pi\)
−0.999227 + 0.0393212i \(0.987480\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) − 41740.0i − 1.74872i −0.485276 0.874361i \(-0.661281\pi\)
0.485276 0.874361i \(-0.338719\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −35672.0 −1.48375
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 7489.00 0.307065
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 137874.i − 5.61303i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 45468.0i − 1.82508i −0.408986 0.912541i \(-0.634117\pi\)
0.408986 0.912541i \(-0.365883\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20056.0 −0.799416 −0.399708 0.916642i \(-0.630889\pi\)
−0.399708 + 0.916642i \(0.630889\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −89804.0 −3.52997
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 29844.0i − 1.14910i −0.818470 0.574550i \(-0.805177\pi\)
0.818470 0.574550i \(-0.194823\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 51808.0 1.98122 0.990611 0.136714i \(-0.0436541\pi\)
0.990611 + 0.136714i \(0.0436541\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 53872.0i − 1.99194i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −62920.0 −2.31108
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 142164.i 5.05332i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 47480.0 1.67682 0.838411 0.545038i \(-0.183485\pi\)
0.838411 + 0.545038i \(0.183485\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −51946.0 −1.81110 −0.905551 0.424238i \(-0.860542\pi\)
−0.905551 + 0.424238i \(0.860542\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 31378.0i 1.08703i 0.839400 + 0.543514i \(0.182907\pi\)
−0.839400 + 0.543514i \(0.817093\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) − 101016.i − 3.45534i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −15512.0 −0.527264 −0.263632 0.964623i \(-0.584921\pi\)
−0.263632 + 0.964623i \(0.584921\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 117964.i − 3.93512i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 22936.0 0.751062 0.375531 0.926810i \(-0.377460\pi\)
0.375531 + 0.926810i \(0.377460\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 25828.0 0.835481
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34164.0i 1.08524i 0.839978 + 0.542620i \(0.182568\pi\)
−0.839978 + 0.542620i \(0.817432\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.d.f.577.2 yes 2
3.2 odd 2 1152.4.d.c.577.1 2
4.3 odd 2 CM 1152.4.d.f.577.2 yes 2
8.3 odd 2 inner 1152.4.d.f.577.1 yes 2
8.5 even 2 inner 1152.4.d.f.577.1 yes 2
12.11 even 2 1152.4.d.c.577.1 2
16.3 odd 4 2304.4.a.p.1.1 1
16.5 even 4 2304.4.a.a.1.1 1
16.11 odd 4 2304.4.a.a.1.1 1
16.13 even 4 2304.4.a.p.1.1 1
24.5 odd 2 1152.4.d.c.577.2 yes 2
24.11 even 2 1152.4.d.c.577.2 yes 2
48.5 odd 4 2304.4.a.o.1.1 1
48.11 even 4 2304.4.a.o.1.1 1
48.29 odd 4 2304.4.a.b.1.1 1
48.35 even 4 2304.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1152.4.d.c.577.1 2 3.2 odd 2
1152.4.d.c.577.1 2 12.11 even 2
1152.4.d.c.577.2 yes 2 24.5 odd 2
1152.4.d.c.577.2 yes 2 24.11 even 2
1152.4.d.f.577.1 yes 2 8.3 odd 2 inner
1152.4.d.f.577.1 yes 2 8.5 even 2 inner
1152.4.d.f.577.2 yes 2 1.1 even 1 trivial
1152.4.d.f.577.2 yes 2 4.3 odd 2 CM
2304.4.a.a.1.1 1 16.5 even 4
2304.4.a.a.1.1 1 16.11 odd 4
2304.4.a.b.1.1 1 48.29 odd 4
2304.4.a.b.1.1 1 48.35 even 4
2304.4.a.o.1.1 1 48.5 odd 4
2304.4.a.o.1.1 1 48.11 even 4
2304.4.a.p.1.1 1 16.3 odd 4
2304.4.a.p.1.1 1 16.13 even 4