Properties

Label 1152.4.d.d.577.1
Level $1152$
Weight $4$
Character 1152.577
Analytic conductor $67.970$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1152,4,Mod(577,1152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1152.577");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.9702003266\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 128)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 577.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1152.577
Dual form 1152.4.d.d.577.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{5} +O(q^{10})\) \(q-4.00000i q^{5} +92.0000i q^{13} -94.0000 q^{17} +109.000 q^{25} -284.000i q^{29} -396.000i q^{37} +230.000 q^{41} -343.000 q^{49} +572.000i q^{53} -468.000i q^{61} +368.000 q^{65} -1098.00 q^{73} +376.000i q^{85} -1670.00 q^{89} -594.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 188 q^{17} + 218 q^{25} + 460 q^{41} - 686 q^{49} + 736 q^{65} - 2196 q^{73} - 3340 q^{89} - 1188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 4.00000i − 0.357771i −0.983870 0.178885i \(-0.942751\pi\)
0.983870 0.178885i \(-0.0572491\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) 92.0000i 1.96279i 0.192012 + 0.981393i \(0.438499\pi\)
−0.192012 + 0.981393i \(0.561501\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −94.0000 −1.34108 −0.670540 0.741874i \(-0.733937\pi\)
−0.670540 + 0.741874i \(0.733937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 109.000 0.872000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 284.000i − 1.81853i −0.416214 0.909267i \(-0.636643\pi\)
0.416214 0.909267i \(-0.363357\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 396.000i − 1.75951i −0.475424 0.879757i \(-0.657705\pi\)
0.475424 0.879757i \(-0.342295\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 230.000 0.876097 0.438048 0.898951i \(-0.355670\pi\)
0.438048 + 0.898951i \(0.355670\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 572.000i 1.48246i 0.671253 + 0.741229i \(0.265757\pi\)
−0.671253 + 0.741229i \(0.734243\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) − 468.000i − 0.982316i −0.871071 0.491158i \(-0.836574\pi\)
0.871071 0.491158i \(-0.163426\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 368.000 0.702227
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −1098.00 −1.76043 −0.880214 0.474578i \(-0.842601\pi\)
−0.880214 + 0.474578i \(0.842601\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 376.000i 0.479799i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1670.00 −1.98898 −0.994492 0.104809i \(-0.966577\pi\)
−0.994492 + 0.104809i \(0.966577\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −594.000 −0.621769 −0.310884 0.950448i \(-0.600625\pi\)
−0.310884 + 0.950448i \(0.600625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1940.00i − 1.91126i −0.294570 0.955630i \(-0.595177\pi\)
0.294570 0.955630i \(-0.404823\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) − 1460.00i − 1.28296i −0.767140 0.641480i \(-0.778321\pi\)
0.767140 0.641480i \(-0.221679\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2002.00 −1.66666 −0.833329 0.552778i \(-0.813568\pi\)
−0.833329 + 0.552778i \(0.813568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 936.000i − 0.669747i
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1606.00 1.00153 0.500766 0.865583i \(-0.333052\pi\)
0.500766 + 0.865583i \(0.333052\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −1136.00 −0.650618
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 940.000i 0.516831i 0.966034 + 0.258415i \(0.0832003\pi\)
−0.966034 + 0.258415i \(0.916800\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3924.00i − 1.99471i −0.0726920 0.997354i \(-0.523159\pi\)
0.0726920 0.997354i \(-0.476841\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −6267.00 −2.85253
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2012.00i − 0.884217i −0.896962 0.442108i \(-0.854231\pi\)
0.896962 0.442108i \(-0.145769\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) − 2860.00i − 1.17449i −0.809410 0.587243i \(-0.800213\pi\)
0.809410 0.587243i \(-0.199787\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1584.00 −0.629503
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −5362.00 −1.99982 −0.999910 0.0134266i \(-0.995726\pi\)
−0.999910 + 0.0134266i \(0.995726\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 5404.00i 1.95441i 0.212295 + 0.977206i \(0.431906\pi\)
−0.212295 + 0.977206i \(0.568094\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) − 920.000i − 0.313442i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 8648.00i − 2.63225i
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) − 2684.00i − 0.774514i −0.921972 0.387257i \(-0.873423\pi\)
0.921972 0.387257i \(-0.126577\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −598.000 −0.168139 −0.0840693 0.996460i \(-0.526792\pi\)
−0.0840693 + 0.996460i \(0.526792\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 5310.00 1.41928 0.709641 0.704563i \(-0.248857\pi\)
0.709641 + 0.704563i \(0.248857\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1372.00i 0.357771i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1534.00 0.372328 0.186164 0.982519i \(-0.440394\pi\)
0.186164 + 0.982519i \(0.440394\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 2288.00 0.530380
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 8140.00i − 1.84500i −0.385999 0.922499i \(-0.626143\pi\)
0.385999 0.922499i \(-0.373857\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 1316.00i 0.285454i 0.989762 + 0.142727i \(0.0455871\pi\)
−0.989762 + 0.142727i \(0.954413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −7430.00 −1.57735 −0.788677 0.614807i \(-0.789234\pi\)
−0.788677 + 0.614807i \(0.789234\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3923.00 0.798494
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 3452.00i 0.688287i 0.938917 + 0.344143i \(0.111831\pi\)
−0.938917 + 0.344143i \(0.888169\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1872.00 −0.351444
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −6838.00 −1.23485 −0.617423 0.786632i \(-0.711823\pi\)
−0.617423 + 0.786632i \(0.711823\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4676.00i 0.828487i 0.910166 + 0.414243i \(0.135954\pi\)
−0.910166 + 0.414243i \(0.864046\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 10028.0i 1.71155i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12366.0 −1.99887 −0.999435 0.0336216i \(-0.989296\pi\)
−0.999435 + 0.0336216i \(0.989296\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 8964.00i − 1.37488i −0.726243 0.687438i \(-0.758735\pi\)
0.726243 0.687438i \(-0.241265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3298.00 −0.497266 −0.248633 0.968598i \(-0.579981\pi\)
−0.248633 + 0.968598i \(0.579981\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 6859.00 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4392.00i 0.629830i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 6372.00i 0.884530i 0.896884 + 0.442265i \(0.145825\pi\)
−0.896884 + 0.442265i \(0.854175\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 26128.0 3.56939
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15340.0i 1.99941i 0.0243735 + 0.999703i \(0.492241\pi\)
−0.0243735 + 0.999703i \(0.507759\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 12564.0i − 1.58834i −0.607699 0.794168i \(-0.707907\pi\)
0.607699 0.794168i \(-0.292093\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2398.00 −0.298629 −0.149315 0.988790i \(-0.547707\pi\)
−0.149315 + 0.988790i \(0.547707\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 7146.00 0.863929 0.431964 0.901891i \(-0.357821\pi\)
0.431964 + 0.901891i \(0.357821\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 13412.0i 1.55264i 0.630340 + 0.776319i \(0.282916\pi\)
−0.630340 + 0.776319i \(0.717084\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10246.0 −1.16942
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 4862.00 0.539614 0.269807 0.962914i \(-0.413040\pi\)
0.269807 + 0.962914i \(0.413040\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 6680.00i 0.711601i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16114.0 1.69369 0.846845 0.531840i \(-0.178499\pi\)
0.846845 + 0.531840i \(0.178499\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 16506.0 1.68954 0.844768 0.535132i \(-0.179738\pi\)
0.844768 + 0.535132i \(0.179738\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 19660.0i − 1.98624i −0.117093 0.993121i \(-0.537358\pi\)
0.117093 0.993121i \(-0.462642\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 36432.0 3.45355
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2376.00i 0.222451i
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 26696.0i 2.43880i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −7760.00 −0.683793
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 17996.0i − 1.56711i −0.621323 0.783555i \(-0.713404\pi\)
0.621323 0.783555i \(-0.286596\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −23738.0 −1.99612 −0.998062 0.0622265i \(-0.980180\pi\)
−0.998062 + 0.0622265i \(0.980180\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21160.0i 1.71959i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 24460.0i 1.94384i 0.235311 + 0.971920i \(0.424389\pi\)
−0.235311 + 0.971920i \(0.575611\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −5840.00 −0.459006
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 24836.0i 1.88929i 0.328093 + 0.944646i \(0.393594\pi\)
−0.328093 + 0.944646i \(0.606406\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 8008.00i 0.596282i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 26806.0 1.97498 0.987492 0.157669i \(-0.0503978\pi\)
0.987492 + 0.157669i \(0.0503978\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −3454.00 −0.249206 −0.124603 0.992207i \(-0.539766\pi\)
−0.124603 + 0.992207i \(0.539766\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 15502.0 1.07351 0.536755 0.843738i \(-0.319650\pi\)
0.536755 + 0.843738i \(0.319650\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 17030.0 1.15585 0.577927 0.816089i \(-0.303862\pi\)
0.577927 + 0.816089i \(0.303862\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 5324.00i − 0.357771i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 19548.0i − 1.28799i −0.765031 0.643994i \(-0.777276\pi\)
0.765031 0.643994i \(-0.222724\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15466.0 1.00914 0.504569 0.863372i \(-0.331652\pi\)
0.504569 + 0.863372i \(0.331652\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 9881.00 0.632384
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 37224.0i 2.35965i
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) − 31556.0i − 1.96279i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 28850.0 1.77770 0.888851 0.458197i \(-0.151505\pi\)
0.888851 + 0.458197i \(0.151505\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1012.00i 0.0606472i 0.999540 + 0.0303236i \(0.00965378\pi\)
−0.999540 + 0.0303236i \(0.990346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 22068.0i 1.29856i 0.760551 + 0.649278i \(0.224929\pi\)
−0.760551 + 0.649278i \(0.775071\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 4462.00 0.255568 0.127784 0.991802i \(-0.459214\pi\)
0.127784 + 0.991802i \(0.459214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 34996.0i − 1.98671i −0.115072 0.993357i \(-0.536710\pi\)
0.115072 0.993357i \(-0.463290\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) − 6424.00i − 0.358319i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −52624.0 −2.90975
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −21620.0 −1.17492
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31252.0i 1.68384i 0.539602 + 0.841920i \(0.318575\pi\)
−0.539602 + 0.841920i \(0.681425\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 8404.00i 0.445161i 0.974914 + 0.222580i \(0.0714479\pi\)
−0.974914 + 0.222580i \(0.928552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 30956.0i − 1.58576i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 8732.00i 0.440005i 0.975499 + 0.220003i \(0.0706066\pi\)
−0.975499 + 0.220003i \(0.929393\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 3760.00 0.184907
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22516.0i 1.08105i 0.841327 + 0.540527i \(0.181775\pi\)
−0.841327 + 0.540527i \(0.818225\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −31882.0 −1.51869 −0.759344 0.650689i \(-0.774480\pi\)
−0.759344 + 0.650689i \(0.774480\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −9650.00 −0.452520 −0.226260 0.974067i \(-0.572650\pi\)
−0.226260 + 0.974067i \(0.572650\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 16852.0i − 0.784119i −0.919940 0.392060i \(-0.871763\pi\)
0.919940 0.392060i \(-0.128237\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15696.0 −0.713649
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 43056.0 1.92807
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16276.0i 0.723370i 0.932300 + 0.361685i \(0.117798\pi\)
−0.932300 + 0.361685i \(0.882202\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23270.0 1.01129 0.505643 0.862743i \(-0.331255\pi\)
0.505643 + 0.862743i \(0.331255\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 47012.0i − 1.99845i −0.0393212 0.999227i \(-0.512520\pi\)
0.0393212 0.999227i \(-0.487480\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) 41740.0i 1.74872i 0.485276 + 0.874361i \(0.338719\pi\)
−0.485276 + 0.874361i \(0.661281\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 32242.0 1.34108
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −56267.0 −2.30706
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 25068.0i 1.02055i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) − 45468.0i − 1.82508i −0.408986 0.912541i \(-0.634117\pi\)
0.408986 0.912541i \(-0.365883\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −45994.0 −1.83328 −0.916642 0.399708i \(-0.869111\pi\)
−0.916642 + 0.399708i \(0.869111\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) −8048.00 −0.316347
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 29844.0i − 1.14910i −0.818470 0.574550i \(-0.805177\pi\)
0.818470 0.574550i \(-0.194823\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7150.00 0.273427 0.136714 0.990611i \(-0.456346\pi\)
0.136714 + 0.990611i \(0.456346\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 53768.0i − 1.98809i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −11440.0 −0.420197
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) − 43164.0i − 1.53430i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 30866.0 1.09008 0.545038 0.838411i \(-0.316515\pi\)
0.545038 + 0.838411i \(0.316515\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −51946.0 −1.81110 −0.905551 0.424238i \(-0.860542\pi\)
−0.905551 + 0.424238i \(0.860542\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 48460.0i − 1.67880i −0.543514 0.839400i \(-0.682907\pi\)
0.543514 0.839400i \(-0.317093\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) − 101016.i − 3.45534i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 56758.0 1.92925 0.964623 0.263632i \(-0.0849205\pi\)
0.964623 + 0.263632i \(0.0849205\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 21448.0i 0.715477i
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −56606.0 −1.85362 −0.926810 0.375531i \(-0.877460\pi\)
−0.926810 + 0.375531i \(0.877460\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 21616.0 0.699232
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 34164.0i 1.08524i 0.839978 + 0.542620i \(0.182568\pi\)
−0.839978 + 0.542620i \(0.817432\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.4.d.d.577.1 2
3.2 odd 2 128.4.b.c.65.2 yes 2
4.3 odd 2 CM 1152.4.d.d.577.1 2
8.3 odd 2 inner 1152.4.d.d.577.2 2
8.5 even 2 inner 1152.4.d.d.577.2 2
12.11 even 2 128.4.b.c.65.2 yes 2
16.3 odd 4 2304.4.a.g.1.1 1
16.5 even 4 2304.4.a.j.1.1 1
16.11 odd 4 2304.4.a.j.1.1 1
16.13 even 4 2304.4.a.g.1.1 1
24.5 odd 2 128.4.b.c.65.1 2
24.11 even 2 128.4.b.c.65.1 2
48.5 odd 4 256.4.a.d.1.1 1
48.11 even 4 256.4.a.d.1.1 1
48.29 odd 4 256.4.a.e.1.1 1
48.35 even 4 256.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.4.b.c.65.1 2 24.5 odd 2
128.4.b.c.65.1 2 24.11 even 2
128.4.b.c.65.2 yes 2 3.2 odd 2
128.4.b.c.65.2 yes 2 12.11 even 2
256.4.a.d.1.1 1 48.5 odd 4
256.4.a.d.1.1 1 48.11 even 4
256.4.a.e.1.1 1 48.29 odd 4
256.4.a.e.1.1 1 48.35 even 4
1152.4.d.d.577.1 2 1.1 even 1 trivial
1152.4.d.d.577.1 2 4.3 odd 2 CM
1152.4.d.d.577.2 2 8.3 odd 2 inner
1152.4.d.d.577.2 2 8.5 even 2 inner
2304.4.a.g.1.1 1 16.3 odd 4
2304.4.a.g.1.1 1 16.13 even 4
2304.4.a.j.1.1 1 16.5 even 4
2304.4.a.j.1.1 1 16.11 odd 4