Defining parameters
| Level: | \( N \) | \(=\) | \( 1152 = 2^{7} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1152.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 17 \) | ||
| Sturm bound: | \(768\) | ||
| Trace bound: | \(17\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1152, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 608 | 60 | 548 |
| Cusp forms | 544 | 60 | 484 |
| Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)