Properties

Label 1152.4.d
Level $1152$
Weight $4$
Character orbit 1152.d
Rep. character $\chi_{1152}(577,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $17$
Sturm bound $768$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1152.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(768\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(1152, [\chi])\).

Total New Old
Modular forms 608 60 548
Cusp forms 544 60 484
Eisenstein series 64 0 64

Trace form

\( 60 q + O(q^{10}) \) \( 60 q - 104 q^{17} - 1588 q^{25} - 392 q^{41} + 1500 q^{49} - 416 q^{65} + 24 q^{73} - 1960 q^{89} + 2008 q^{97} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1152.4.d.a 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) None 128.4.b.a \(0\) \(0\) \(0\) \(-64\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{5}-2^{5}q^{7}-2iq^{11}-5iq^{13}+\cdots\)
1152.4.d.b 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) None 384.4.d.a \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{5}-12q^{7}-3iq^{11}-5iq^{13}+\cdots\)
1152.4.d.c 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1152.4.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+11iq^{5}+46iq^{13}-104q^{17}-359q^{25}+\cdots\)
1152.4.d.d 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 128.4.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+iq^{5}-23iq^{13}-94q^{17}+109q^{25}+\cdots\)
1152.4.d.e 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 128.4.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-5^{2}\beta q^{11}+90q^{17}+45\beta q^{19}+5^{3}q^{25}+\cdots\)
1152.4.d.f 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 1152.4.d.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+11iq^{5}-46iq^{13}+104q^{17}-359q^{25}+\cdots\)
1152.4.d.g 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) None 384.4.d.a \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{2}]$ \(q+2iq^{5}+12q^{7}+3iq^{11}-5iq^{13}+\cdots\)
1152.4.d.h 1152.d 8.b $2$ $67.970$ \(\Q(\sqrt{-1}) \) None 128.4.b.a \(0\) \(0\) \(0\) \(64\) $\mathrm{SU}(2)[C_{2}]$ \(q+3iq^{5}+2^{5}q^{7}+2iq^{11}-5iq^{13}+\cdots\)
1152.4.d.i 1152.d 8.b $4$ $67.970$ \(\Q(i, \sqrt{13})\) None 384.4.d.c \(0\) \(0\) \(0\) \(-32\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(-8+\beta _{3})q^{7}+(\beta _{1}+\cdots)q^{11}+\cdots\)
1152.4.d.j 1152.d 8.b $4$ $67.970$ \(\Q(\sqrt{2}, \sqrt{-5})\) None 128.4.b.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{5}+\beta _{2}q^{7}+7\beta _{1}q^{11}+\beta _{3}q^{13}+\cdots\)
1152.4.d.k 1152.d 8.b $4$ $67.970$ \(\Q(i, \sqrt{7})\) None 1152.4.d.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{5}+\beta _{2}q^{7}+\beta _{3}q^{11}-10\beta _{1}q^{13}+\cdots\)
1152.4.d.l 1152.d 8.b $4$ $67.970$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-6}) \) 1152.4.d.l \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{5}+\beta _{2}q^{7}+\beta _{1}q^{11}+17q^{25}+\cdots\)
1152.4.d.m 1152.d 8.b $4$ $67.970$ \(\Q(i, \sqrt{7})\) None 1152.4.d.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta _{1}q^{5}-\beta _{2}q^{7}-\beta _{3}q^{11}+10\beta _{1}q^{13}+\cdots\)
1152.4.d.n 1152.d 8.b $4$ $67.970$ \(\Q(\zeta_{8})\) None 384.4.d.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\zeta_{8}^{2}q^{5}+5\zeta_{8}^{3}q^{7}-5\zeta_{8}q^{11}+14\zeta_{8}^{2}q^{13}+\cdots\)
1152.4.d.o 1152.d 8.b $4$ $67.970$ \(\Q(i, \sqrt{13})\) None 384.4.d.c \(0\) \(0\) \(0\) \(32\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}+\beta _{2})q^{5}+(8-\beta _{3})q^{7}+(-\beta _{1}+\cdots)q^{11}+\cdots\)
1152.4.d.p 1152.d 8.b $8$ $67.970$ 8.0.1534132224.8 None 384.4.d.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}+\beta _{2}q^{7}+(\beta _{1}-\beta _{3})q^{11}+(\beta _{4}+\cdots)q^{13}+\cdots\)
1152.4.d.q 1152.d 8.b $8$ $67.970$ 8.0.\(\cdots\).260 None 1152.4.d.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+\beta _{2}q^{7}-\beta _{6}q^{11}-\beta _{3}q^{13}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(32, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(144, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)