Properties

Label 1152.3.x
Level $1152$
Weight $3$
Character orbit 1152.x
Rep. character $\chi_{1152}(17,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $128$
Sturm bound $576$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1152.x (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 96 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(1152, [\chi])\).

Total New Old
Modular forms 1600 128 1472
Cusp forms 1472 128 1344
Eisenstein series 128 0 128

Trace form

\( 128q + O(q^{10}) \) \( 128q - 512q^{55} - 128q^{61} + 128q^{67} - 384q^{91} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{3}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(1152, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)