Properties

Label 1152.3.m.f
Level $1152$
Weight $3$
Character orbit 1152.m
Analytic conductor $31.390$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1152.m (of order \(4\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(31.3897264543\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{28} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{11} q^{5} + \beta_{3} q^{7} +O(q^{10})\) \( q + \beta_{11} q^{5} + \beta_{3} q^{7} + ( 2 + 2 \beta_{2} - \beta_{5} - \beta_{10} ) q^{11} + ( \beta_{3} - \beta_{5} + \beta_{6} - \beta_{8} + \beta_{10} - \beta_{14} - \beta_{15} ) q^{13} + ( \beta_{1} + \beta_{3} - \beta_{6} - \beta_{7} - \beta_{9} ) q^{17} + ( 2 - 2 \beta_{2} - \beta_{6} + \beta_{9} - \beta_{12} + 2 \beta_{13} + \beta_{15} ) q^{19} + ( 8 - \beta_{1} - 2 \beta_{3} + 2 \beta_{5} - 2 \beta_{10} + 2 \beta_{11} - 2 \beta_{13} + 2 \beta_{14} ) q^{23} + ( -5 \beta_{2} - 2 \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} - \beta_{9} + 2 \beta_{10} + \beta_{11} - \beta_{12} - \beta_{13} - \beta_{14} - 2 \beta_{15} ) q^{25} + ( 2 + 2 \beta_{2} - \beta_{3} + 3 \beta_{5} - \beta_{6} - 2 \beta_{7} + \beta_{8} + 2 \beta_{14} + \beta_{15} ) q^{29} + ( 8 \beta_{2} + 2 \beta_{5} - \beta_{7} - \beta_{8} + \beta_{9} + \beta_{10} - 2 \beta_{11} - \beta_{12} + 2 \beta_{15} ) q^{31} + ( 6 - 6 \beta_{2} - 2 \beta_{3} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} + \beta_{11} - \beta_{12} - 2 \beta_{15} ) q^{35} + ( 6 - 6 \beta_{2} - \beta_{3} - \beta_{8} + 2 \beta_{9} - \beta_{11} - 2 \beta_{12} - \beta_{13} - \beta_{15} ) q^{37} + ( -3 \beta_{4} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + 3 \beta_{8} - \beta_{9} - 2 \beta_{10} + 2 \beta_{11} + 2 \beta_{13} + 2 \beta_{14} + \beta_{15} ) q^{41} + ( -10 - 10 \beta_{2} + 2 \beta_{3} + 2 \beta_{5} - \beta_{6} - \beta_{7} - 2 \beta_{8} + \beta_{10} - 2 \beta_{14} + \beta_{15} ) q^{43} + ( 24 \beta_{2} + 3 \beta_{4} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{8} + 2 \beta_{10} + 2 \beta_{11} - 2 \beta_{13} - 2 \beta_{14} - 2 \beta_{15} ) q^{47} + ( 7 - 4 \beta_{1} + 4 \beta_{3} - 5 \beta_{5} - \beta_{6} + \beta_{7} + \beta_{9} - 5 \beta_{11} - \beta_{12} + \beta_{13} - \beta_{14} ) q^{49} + ( -10 + 2 \beta_{1} + 10 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} + \beta_{6} + 3 \beta_{8} + 2 \beta_{9} + \beta_{11} + 2 \beta_{12} - 2 \beta_{13} - \beta_{15} ) q^{53} + ( -16 - 2 \beta_{1} - 2 \beta_{3} + 6 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{9} - \beta_{10} + 6 \beta_{11} - \beta_{12} ) q^{55} + ( -8 - 8 \beta_{2} - 2 \beta_{3} - 4 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} + 2 \beta_{8} - 2 \beta_{10} + 2 \beta_{15} ) q^{59} + ( 2 - 4 \beta_{1} + 2 \beta_{2} + \beta_{3} + 4 \beta_{4} - \beta_{5} + \beta_{6} + 2 \beta_{7} - \beta_{8} + 5 \beta_{10} + \beta_{14} - \beta_{15} ) q^{61} + ( 2 - 5 \beta_{1} - 3 \beta_{3} - 2 \beta_{5} - 3 \beta_{6} + \beta_{7} + \beta_{9} + 2 \beta_{10} - 2 \beta_{11} + 2 \beta_{13} - 2 \beta_{14} ) q^{65} + ( -20 + \beta_{1} + 20 \beta_{2} - 2 \beta_{3} + \beta_{4} - 2 \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{11} - 4 \beta_{12} - 2 \beta_{15} ) q^{67} + ( -32 + 2 \beta_{3} ) q^{71} + ( 6 \beta_{2} + 4 \beta_{4} - 3 \beta_{5} - \beta_{6} - \beta_{7} + \beta_{9} + 3 \beta_{11} - \beta_{12} + \beta_{13} + \beta_{14} - 4 \beta_{15} ) q^{73} + ( 14 - 6 \beta_{1} + 14 \beta_{2} + 5 \beta_{3} + 6 \beta_{4} - 2 \beta_{5} + \beta_{6} + 2 \beta_{7} - 5 \beta_{8} + 2 \beta_{10} - \beta_{15} ) q^{77} + ( -8 \beta_{2} + 6 \beta_{4} - 6 \beta_{5} - 5 \beta_{8} + 2 \beta_{10} + 6 \beta_{11} - 2 \beta_{12} ) q^{79} + ( -10 + 10 \beta_{2} - 2 \beta_{6} - 2 \beta_{9} + 3 \beta_{11} - 3 \beta_{12} + 4 \beta_{13} + 2 \beta_{15} ) q^{83} + ( -10 - 8 \beta_{1} + 10 \beta_{2} + 4 \beta_{3} - 8 \beta_{4} - 2 \beta_{6} + 4 \beta_{8} - 2 \beta_{9} + 8 \beta_{11} + 2 \beta_{12} - 2 \beta_{13} - 4 \beta_{15} ) q^{85} + ( -10 \beta_{2} + 6 \beta_{4} - 8 \beta_{8} + 2 \beta_{10} - 2 \beta_{12} - 4 \beta_{15} ) q^{89} + ( 30 - 3 \beta_{1} + 30 \beta_{2} + 3 \beta_{4} - 8 \beta_{5} - 5 \beta_{6} + 3 \beta_{7} - 5 \beta_{10} + 2 \beta_{14} + 5 \beta_{15} ) q^{91} + ( -40 \beta_{2} + 5 \beta_{4} + 6 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{9} - 6 \beta_{11} - 2 \beta_{12} + 2 \beta_{13} + 2 \beta_{14} + 6 \beta_{15} ) q^{95} + ( 6 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{7} - 2 \beta_{9} + 6 \beta_{10} + 2 \beta_{11} + 4 \beta_{12} + 2 \beta_{13} - 2 \beta_{14} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + O(q^{10}) \) \( 16q + 32q^{11} + 32q^{19} + 128q^{23} + 32q^{29} + 96q^{35} + 96q^{37} - 160q^{43} + 112q^{49} - 160q^{53} - 256q^{55} - 128q^{59} + 32q^{61} + 32q^{65} - 320q^{67} - 512q^{71} + 224q^{77} - 160q^{83} - 160q^{85} + 480q^{91} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{16} - 6 x^{14} - 4 x^{13} + 10 x^{12} + 56 x^{11} + 88 x^{10} - 128 x^{9} - 496 x^{8} - 512 x^{7} + 1408 x^{6} + 3584 x^{5} + 2560 x^{4} - 4096 x^{3} - 24576 x^{2} + 65536\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 5 \nu^{15} - 18 \nu^{14} - 134 \nu^{13} - 168 \nu^{12} + 170 \nu^{11} + 1156 \nu^{10} + 1848 \nu^{9} - 2928 \nu^{8} - 15600 \nu^{7} - 25632 \nu^{6} + 1792 \nu^{5} + 73472 \nu^{4} + 112128 \nu^{3} - 23552 \nu^{2} - 528384 \nu - 753664 \)\()/12288\)
\(\beta_{2}\)\(=\)\((\)\(-347 \nu^{15} - 626 \nu^{14} + 1234 \nu^{13} + 4536 \nu^{12} + 5530 \nu^{11} - 11868 \nu^{10} - 59096 \nu^{9} - 66544 \nu^{8} + 88528 \nu^{7} + 450272 \nu^{6} + 454272 \nu^{5} - 499456 \nu^{4} - 2271744 \nu^{3} - 3177472 \nu^{2} + 3719168 \nu + 10231808\)\()/368640\)
\(\beta_{3}\)\(=\)\((\)\( 47 \nu^{15} + 110 \nu^{14} - 90 \nu^{13} - 528 \nu^{12} - 610 \nu^{11} + 1684 \nu^{10} + 8376 \nu^{9} + 11728 \nu^{8} - 5136 \nu^{7} - 52256 \nu^{6} - 60800 \nu^{5} + 73472 \nu^{4} + 350720 \nu^{3} + 537600 \nu^{2} - 172032 \nu - 1228800 \)\()/40960\)
\(\beta_{4}\)\(=\)\((\)\( -53 \nu^{15} - 89 \nu^{14} + 226 \nu^{13} + 714 \nu^{12} + 730 \nu^{11} - 2082 \nu^{10} - 9224 \nu^{9} - 8056 \nu^{8} + 19792 \nu^{7} + 75248 \nu^{6} + 67008 \nu^{5} - 110464 \nu^{4} - 377856 \nu^{3} - 429568 \nu^{2} + 837632 \nu + 1974272 \)\()/30720\)
\(\beta_{5}\)\(=\)\((\)\(-751 \nu^{15} - 448 \nu^{14} + 6626 \nu^{13} + 14076 \nu^{12} + 5306 \nu^{11} - 54888 \nu^{10} - 156376 \nu^{9} - 19520 \nu^{8} + 641360 \nu^{7} + 1598464 \nu^{6} + 829440 \nu^{5} - 3026432 \nu^{4} - 7073280 \nu^{3} - 4517888 \nu^{2} + 22466560 \nu + 41107456\)\()/368640\)
\(\beta_{6}\)\(=\)\((\)\(119 \nu^{15} + 1230 \nu^{14} + 3430 \nu^{13} + 2064 \nu^{12} - 9010 \nu^{11} - 25772 \nu^{10} - 2088 \nu^{9} + 157776 \nu^{8} + 431088 \nu^{7} + 442848 \nu^{6} - 394880 \nu^{5} - 1689856 \nu^{4} - 1328640 \nu^{3} + 4019200 \nu^{2} + 13664256 \nu + 14581760\)\()/122880\)
\(\beta_{7}\)\(=\)\((\)\(197 \nu^{15} - 244 \nu^{14} - 2572 \nu^{13} - 3852 \nu^{12} + 998 \nu^{11} + 22056 \nu^{10} + 40172 \nu^{9} - 35600 \nu^{8} - 275680 \nu^{7} - 517568 \nu^{6} - 54240 \nu^{5} + 1233664 \nu^{4} + 2280960 \nu^{3} - 88064 \nu^{2} - 9620480 \nu - 12972032\)\()/92160\)
\(\beta_{8}\)\(=\)\((\)\(1063 \nu^{15} + 2242 \nu^{14} - 2666 \nu^{13} - 14184 \nu^{12} - 21122 \nu^{11} + 26652 \nu^{10} + 189400 \nu^{9} + 278960 \nu^{8} - 106640 \nu^{7} - 1269472 \nu^{6} - 1748352 \nu^{5} + 775424 \nu^{4} + 6971904 \nu^{3} + 12336128 \nu^{2} - 4268032 \nu - 26214400\)\()/368640\)
\(\beta_{9}\)\(=\)\((\)\(-995 \nu^{15} - 3884 \nu^{14} - 4022 \nu^{13} + 5076 \nu^{12} + 30658 \nu^{11} + 28992 \nu^{10} - 122744 \nu^{9} - 468448 \nu^{8} - 716144 \nu^{7} + 66368 \nu^{6} + 1824000 \nu^{5} + 2557952 \nu^{4} - 2188800 \nu^{3} - 16144384 \nu^{2} - 20942848 \nu - 8568832\)\()/368640\)
\(\beta_{10}\)\(=\)\((\)\(134 \nu^{15} + 20 \nu^{14} - 1153 \nu^{13} - 2232 \nu^{12} - 622 \nu^{11} + 9756 \nu^{10} + 25118 \nu^{9} - 1448 \nu^{8} - 113704 \nu^{7} - 257408 \nu^{6} - 102288 \nu^{5} + 502912 \nu^{4} + 1184256 \nu^{3} + 538624 \nu^{2} - 3969536 \nu - 6232064\)\()/46080\)
\(\beta_{11}\)\(=\)\((\)\(545 \nu^{15} + 1574 \nu^{14} + 302 \nu^{13} - 5256 \nu^{12} - 12838 \nu^{11} + 1188 \nu^{10} + 82544 \nu^{9} + 190768 \nu^{8} + 127664 \nu^{7} - 372128 \nu^{6} - 897600 \nu^{5} - 303872 \nu^{4} + 2511360 \nu^{3} + 7066624 \nu^{2} + 3770368 \nu - 6053888\)\()/184320\)
\(\beta_{12}\)\(=\)\((\)\(-1417 \nu^{15} - 4300 \nu^{14} - 1186 \nu^{13} + 13356 \nu^{12} + 35366 \nu^{11} - 528 \nu^{10} - 219304 \nu^{9} - 508256 \nu^{8} - 401488 \nu^{7} + 933184 \nu^{6} + 2421504 \nu^{5} + 922624 \nu^{4} - 6455808 \nu^{3} - 18839552 \nu^{2} - 11743232 \nu + 13975552\)\()/368640\)
\(\beta_{13}\)\(=\)\((\)\(265 \nu^{15} + 526 \nu^{14} - 578 \nu^{13} - 2856 \nu^{12} - 4406 \nu^{11} + 6228 \nu^{10} + 41008 \nu^{9} + 59984 \nu^{8} - 23888 \nu^{7} - 271264 \nu^{6} - 338496 \nu^{5} + 217088 \nu^{4} + 1423872 \nu^{3} + 2561024 \nu^{2} - 1472512 \nu - 5570560\)\()/61440\)
\(\beta_{14}\)\(=\)\((\)\(1181 \nu^{15} + 2693 \nu^{14} - 2326 \nu^{13} - 13986 \nu^{12} - 22786 \nu^{11} + 22218 \nu^{10} + 190016 \nu^{9} + 302680 \nu^{8} - 52720 \nu^{7} - 1210544 \nu^{6} - 1754880 \nu^{5} + 602752 \nu^{4} + 6497280 \nu^{3} + 12133888 \nu^{2} - 3891200 \nu - 25296896\)\()/184320\)
\(\beta_{15}\)\(=\)\((\)\(-2519 \nu^{15} - 4382 \nu^{14} + 9178 \nu^{13} + 33552 \nu^{12} + 37810 \nu^{11} - 85236 \nu^{10} - 427352 \nu^{9} - 462928 \nu^{8} + 698896 \nu^{7} + 3347744 \nu^{6} + 3329664 \nu^{5} - 3795712 \nu^{4} - 16501248 \nu^{3} - 21873664 \nu^{2} + 28983296 \nu + 80101376\)\()/368640\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-2 \beta_{12} + 2 \beta_{11} - 2 \beta_{8} - 2 \beta_{6} + \beta_{4} + 4 \beta_{2} - \beta_{1}\)\()/16\)
\(\nu^{2}\)\(=\)\((\)\(-2 \beta_{14} + \beta_{12} + 2 \beta_{11} + \beta_{10} - \beta_{9} - \beta_{7} - 2 \beta_{5} - \beta_{4} - 2 \beta_{2} - \beta_{1} + 6\)\()/8\)
\(\nu^{3}\)\(=\)\((\)\(-\beta_{15} - 4 \beta_{13} + \beta_{12} + \beta_{11} + \beta_{10} - 2 \beta_{9} + \beta_{8} + 2 \beta_{7} + \beta_{6} + \beta_{5} - 3 \beta_{4} + \beta_{3} + 10 \beta_{2} + 6\)\()/8\)
\(\nu^{4}\)\(=\)\((\)\(\beta_{15} - \beta_{14} + \beta_{13} - \beta_{12} + 3 \beta_{11} - \beta_{10} + \beta_{9} - \beta_{8} + 2 \beta_{7} + 2 \beta_{6} - 7 \beta_{5} - 4 \beta_{4} - \beta_{3} + 22 \beta_{2} - 2 \beta_{1} + 8\)\()/4\)
\(\nu^{5}\)\(=\)\((\)\(-8 \beta_{15} - 8 \beta_{14} - 16 \beta_{13} + 2 \beta_{12} + 18 \beta_{11} + 8 \beta_{10} - 4 \beta_{9} - 14 \beta_{8} + 4 \beta_{7} + 14 \beta_{6} - 12 \beta_{5} + 23 \beta_{4} - 12 \beta_{3} - 28 \beta_{2} + 17 \beta_{1} - 80\)\()/8\)
\(\nu^{6}\)\(=\)\((\)\(12 \beta_{15} + 4 \beta_{14} + 2 \beta_{13} + 9 \beta_{12} + 2 \beta_{11} + 9 \beta_{10} + 5 \beta_{9} + 8 \beta_{8} - 5 \beta_{7} + 6 \beta_{6} - 2 \beta_{5} - 21 \beta_{4} + 4 \beta_{3} - 2 \beta_{2} - 3 \beta_{1} - 102\)\()/4\)
\(\nu^{7}\)\(=\)\((\)\(-15 \beta_{15} - 4 \beta_{14} - 8 \beta_{13} - 3 \beta_{12} - 47 \beta_{11} - \beta_{10} - 10 \beta_{9} + 13 \beta_{8} + 14 \beta_{7} + 29 \beta_{6} - 33 \beta_{5} + 16 \beta_{4} + 11 \beta_{3} + 90 \beta_{2} - 5 \beta_{1} - 182\)\()/4\)
\(\nu^{8}\)\(=\)\((\)\(13 \beta_{15} + 21 \beta_{14} + 9 \beta_{13} + 26 \beta_{12} + 23 \beta_{11} - 24 \beta_{10} + 12 \beta_{9} + 9 \beta_{8} + 17 \beta_{7} + 8 \beta_{6} + 7 \beta_{5} + 12 \beta_{4} - 9 \beta_{3} - 16 \beta_{2} + 24 \beta_{1} - 146\)\()/2\)
\(\nu^{9}\)\(=\)\((\)\(-14 \beta_{15} + 24 \beta_{14} + 32 \beta_{13} - 84 \beta_{12} - 120 \beta_{11} + 66 \beta_{10} + 44 \beta_{9} + 24 \beta_{8} - 60 \beta_{7} + 28 \beta_{6} + 106 \beta_{5} + 81 \beta_{4} - 70 \beta_{3} + 40 \beta_{2} + 189 \beta_{1} - 276\)\()/4\)
\(\nu^{10}\)\(=\)\((\)\(88 \beta_{15} + 38 \beta_{14} + 80 \beta_{13} + 5 \beta_{12} - 166 \beta_{11} - 55 \beta_{10} + 59 \beta_{9} + 56 \beta_{8} - 33 \beta_{7} - 48 \beta_{6} + 86 \beta_{5} + 51 \beta_{4} + 128 \beta_{3} - 1018 \beta_{2} - 109 \beta_{1} - 786\)\()/2\)
\(\nu^{11}\)\(=\)\((\)\(-167 \beta_{15} + 48 \beta_{14} + 36 \beta_{13} + 143 \beta_{12} - 105 \beta_{11} + 27 \beta_{10} - 70 \beta_{9} + 59 \beta_{8} - 74 \beta_{7} + 3 \beta_{6} + 27 \beta_{5} + 161 \beta_{4} + 199 \beta_{3} + 1006 \beta_{2} + 62 \beta_{1} + 1210\)\()/2\)
\(\nu^{12}\)\(=\)\(127 \beta_{15} + 165 \beta_{14} + 227 \beta_{13} - 175 \beta_{12} - 131 \beta_{11} - 207 \beta_{10} - 21 \beta_{9} + 17 \beta_{8} + 30 \beta_{7} - 350 \beta_{6} + 511 \beta_{5} - 84 \beta_{4} - 71 \beta_{3} - 238 \beta_{2} + 174 \beta_{1} + 8\)
\(\nu^{13}\)\(=\)\((\)\(-520 \beta_{15} - 904 \beta_{14} + 32 \beta_{13} - 322 \beta_{12} + 174 \beta_{11} + 296 \beta_{10} + 532 \beta_{9} - 18 \beta_{8} - 452 \beta_{7} + 114 \beta_{6} + 348 \beta_{5} - 31 \beta_{4} - 20 \beta_{3} - 2788 \beta_{2} - 281 \beta_{1} + 6448\)\()/2\)
\(\nu^{14}\)\(=\)\(204 \beta_{15} + 484 \beta_{14} - 426 \beta_{13} - 25 \beta_{12} - 210 \beta_{11} - 113 \beta_{10} - 285 \beta_{9} - 888 \beta_{8} - 395 \beta_{7} - 670 \beta_{6} + 458 \beta_{5} + 97 \beta_{4} + 692 \beta_{3} - 4926 \beta_{2} - 153 \beta_{1} + 7174\)
\(\nu^{15}\)\(=\)\(-1033 \beta_{15} - 1244 \beta_{14} + 920 \beta_{13} - 565 \beta_{12} + 1631 \beta_{11} + 1233 \beta_{10} - 654 \beta_{9} - 1245 \beta_{8} - 86 \beta_{7} - 1069 \beta_{6} - 695 \beta_{5} - 1836 \beta_{4} + 605 \beta_{3} + 14390 \beta_{2} - 3255 \beta_{1} + 4502\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(1\) \(-\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
415.1
−1.87459 + 0.697079i
1.84258 0.777752i
−0.455024 1.94755i
−1.25564 1.55672i
1.78012 0.911682i
−1.96679 0.362960i
0.125358 + 1.99607i
1.80398 + 0.863518i
−1.87459 0.697079i
1.84258 + 0.777752i
−0.455024 + 1.94755i
−1.25564 + 1.55672i
1.78012 + 0.911682i
−1.96679 + 0.362960i
0.125358 1.99607i
1.80398 0.863518i
0 0 0 −5.24354 5.24354i 0 −5.32796 0 0 0
415.2 0 0 0 −4.78830 4.78830i 0 −10.3302 0 0 0
415.3 0 0 0 −3.40572 3.40572i 0 12.1303 0 0 0
415.4 0 0 0 0.909023 + 0.909023i 0 −0.654713 0 0 0
415.5 0 0 0 1.00772 + 1.00772i 0 10.0236 0 0 0
415.6 0 0 0 1.69930 + 1.69930i 0 −5.74280 0 0 0
415.7 0 0 0 3.32679 + 3.32679i 0 −4.04088 0 0 0
415.8 0 0 0 6.49473 + 6.49473i 0 3.94273 0 0 0
991.1 0 0 0 −5.24354 + 5.24354i 0 −5.32796 0 0 0
991.2 0 0 0 −4.78830 + 4.78830i 0 −10.3302 0 0 0
991.3 0 0 0 −3.40572 + 3.40572i 0 12.1303 0 0 0
991.4 0 0 0 0.909023 0.909023i 0 −0.654713 0 0 0
991.5 0 0 0 1.00772 1.00772i 0 10.0236 0 0 0
991.6 0 0 0 1.69930 1.69930i 0 −5.74280 0 0 0
991.7 0 0 0 3.32679 3.32679i 0 −4.04088 0 0 0
991.8 0 0 0 6.49473 6.49473i 0 3.94273 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 991.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
16.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.3.m.f 16
3.b odd 2 1 384.3.l.a 16
4.b odd 2 1 1152.3.m.c 16
8.b even 2 1 144.3.m.c 16
8.d odd 2 1 576.3.m.c 16
12.b even 2 1 384.3.l.b 16
16.e even 4 1 576.3.m.c 16
16.e even 4 1 1152.3.m.c 16
16.f odd 4 1 144.3.m.c 16
16.f odd 4 1 inner 1152.3.m.f 16
24.f even 2 1 192.3.l.a 16
24.h odd 2 1 48.3.l.a 16
48.i odd 4 1 192.3.l.a 16
48.i odd 4 1 384.3.l.b 16
48.k even 4 1 48.3.l.a 16
48.k even 4 1 384.3.l.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
48.3.l.a 16 24.h odd 2 1
48.3.l.a 16 48.k even 4 1
144.3.m.c 16 8.b even 2 1
144.3.m.c 16 16.f odd 4 1
192.3.l.a 16 24.f even 2 1
192.3.l.a 16 48.i odd 4 1
384.3.l.a 16 3.b odd 2 1
384.3.l.a 16 48.k even 4 1
384.3.l.b 16 12.b even 2 1
384.3.l.b 16 48.i odd 4 1
576.3.m.c 16 8.d odd 2 1
576.3.m.c 16 16.e even 4 1
1152.3.m.c 16 4.b odd 2 1
1152.3.m.c 16 16.e even 4 1
1152.3.m.f 16 1.a even 1 1 trivial
1152.3.m.f 16 16.f odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1152, [\chi])\):

\(T_{5}^{16} + \cdots\)
\( T_{7}^{8} - 224 T_{7}^{6} - 448 T_{7}^{5} + 13704 T_{7}^{4} + 53248 T_{7}^{3} - 136576 T_{7}^{2} - 720640 T_{7} - 400880 \)