Properties

Label 1152.2.v.a
Level $1152$
Weight $2$
Character orbit 1152.v
Analytic conductor $9.199$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.v (of order \(8\), degree \(4\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 32)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} +O(q^{10})\) \( q + ( 1 + \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{5} + ( -1 - \zeta_{8}^{2} ) q^{7} + ( -2 + 2 \zeta_{8} - \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{11} + ( 1 - \zeta_{8}^{3} ) q^{13} + ( 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{17} + ( 2 + 3 \zeta_{8} - 3 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{19} + ( 3 - 3 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{23} + ( 1 + 5 \zeta_{8} + \zeta_{8}^{2} ) q^{25} + ( 1 - 2 \zeta_{8} - 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{29} + 4 q^{31} + ( 1 - 3 \zeta_{8} - 3 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{35} + ( 1 + \zeta_{8} ) q^{37} + ( 3 - 3 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{41} + ( -4 + 4 \zeta_{8} + 3 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{43} + ( 4 \zeta_{8} + 6 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{47} -5 \zeta_{8}^{2} q^{49} + ( -1 + \zeta_{8} + 4 \zeta_{8}^{2} + 4 \zeta_{8}^{3} ) q^{53} + ( 5 - 5 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{55} + ( -4 - 4 \zeta_{8} + \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{59} + ( 1 + \zeta_{8}^{3} ) q^{61} + ( 2 + 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{65} + ( 2 - 3 \zeta_{8} - 3 \zeta_{8}^{2} + 2 \zeta_{8}^{3} ) q^{67} + ( -3 + 4 \zeta_{8} - 3 \zeta_{8}^{2} ) q^{71} + ( 7 - 7 \zeta_{8}^{2} ) q^{73} + ( 1 - 3 \zeta_{8} + 3 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{77} + 6 \zeta_{8}^{2} q^{79} + ( 4 - \zeta_{8} + \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{83} + ( 2 - 2 \zeta_{8} + 6 \zeta_{8}^{2} + 6 \zeta_{8}^{3} ) q^{85} + ( -3 + 8 \zeta_{8} - 3 \zeta_{8}^{2} ) q^{89} + ( -1 - \zeta_{8} - \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{91} + ( 16 + 3 \zeta_{8} - 3 \zeta_{8}^{3} ) q^{95} + ( -10 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{5} - 4 q^{7} + O(q^{10}) \) \( 4 q + 4 q^{5} - 4 q^{7} - 8 q^{11} + 4 q^{13} + 8 q^{19} + 12 q^{23} + 4 q^{25} + 4 q^{29} + 16 q^{31} + 4 q^{35} + 4 q^{37} + 12 q^{41} - 16 q^{43} - 4 q^{53} + 20 q^{55} - 16 q^{59} + 4 q^{61} + 8 q^{65} + 8 q^{67} - 12 q^{71} + 28 q^{73} + 4 q^{77} + 16 q^{83} + 8 q^{85} - 12 q^{89} - 4 q^{91} + 64 q^{95} - 40 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(1\) \(\zeta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
145.1
0.707107 0.707107i
−0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
0 0 0 3.12132 1.29289i 0 −1.00000 + 1.00000i 0 0 0
433.1 0 0 0 −1.12132 + 2.70711i 0 −1.00000 1.00000i 0 0 0
721.1 0 0 0 −1.12132 2.70711i 0 −1.00000 + 1.00000i 0 0 0
1009.1 0 0 0 3.12132 + 1.29289i 0 −1.00000 1.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
32.g even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.2.v.a 4
3.b odd 2 1 128.2.g.a 4
4.b odd 2 1 288.2.v.a 4
12.b even 2 1 32.2.g.a 4
24.f even 2 1 256.2.g.b 4
24.h odd 2 1 256.2.g.a 4
32.g even 8 1 inner 1152.2.v.a 4
32.h odd 8 1 288.2.v.a 4
48.i odd 4 1 512.2.g.b 4
48.i odd 4 1 512.2.g.c 4
48.k even 4 1 512.2.g.a 4
48.k even 4 1 512.2.g.d 4
60.h even 2 1 800.2.y.a 4
60.l odd 4 1 800.2.ba.a 4
60.l odd 4 1 800.2.ba.b 4
96.o even 8 1 32.2.g.a 4
96.o even 8 1 256.2.g.b 4
96.o even 8 1 512.2.g.a 4
96.o even 8 1 512.2.g.d 4
96.p odd 8 1 128.2.g.a 4
96.p odd 8 1 256.2.g.a 4
96.p odd 8 1 512.2.g.b 4
96.p odd 8 1 512.2.g.c 4
192.q odd 16 2 4096.2.a.f 4
192.s even 16 2 4096.2.a.e 4
480.bq odd 8 1 800.2.ba.a 4
480.bs even 8 1 800.2.y.a 4
480.ca odd 8 1 800.2.ba.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
32.2.g.a 4 12.b even 2 1
32.2.g.a 4 96.o even 8 1
128.2.g.a 4 3.b odd 2 1
128.2.g.a 4 96.p odd 8 1
256.2.g.a 4 24.h odd 2 1
256.2.g.a 4 96.p odd 8 1
256.2.g.b 4 24.f even 2 1
256.2.g.b 4 96.o even 8 1
288.2.v.a 4 4.b odd 2 1
288.2.v.a 4 32.h odd 8 1
512.2.g.a 4 48.k even 4 1
512.2.g.a 4 96.o even 8 1
512.2.g.b 4 48.i odd 4 1
512.2.g.b 4 96.p odd 8 1
512.2.g.c 4 48.i odd 4 1
512.2.g.c 4 96.p odd 8 1
512.2.g.d 4 48.k even 4 1
512.2.g.d 4 96.o even 8 1
800.2.y.a 4 60.h even 2 1
800.2.y.a 4 480.bs even 8 1
800.2.ba.a 4 60.l odd 4 1
800.2.ba.a 4 480.bq odd 8 1
800.2.ba.b 4 60.l odd 4 1
800.2.ba.b 4 480.ca odd 8 1
1152.2.v.a 4 1.a even 1 1 trivial
1152.2.v.a 4 32.g even 8 1 inner
4096.2.a.e 4 192.s even 16 2
4096.2.a.f 4 192.q odd 16 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 4 T_{5}^{3} + 6 T_{5}^{2} - 28 T_{5} + 98 \) acting on \(S_{2}^{\mathrm{new}}(1152, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 98 - 28 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$7$ \( ( 2 + 2 T + T^{2} )^{2} \)
$11$ \( 2 - 4 T + 18 T^{2} + 8 T^{3} + T^{4} \)
$13$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$17$ \( ( 8 + T^{2} )^{2} \)
$19$ \( 578 - 68 T + 18 T^{2} - 8 T^{3} + T^{4} \)
$23$ \( 4 - 24 T + 72 T^{2} - 12 T^{3} + T^{4} \)
$29$ \( 98 - 28 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$31$ \( ( -4 + T )^{4} \)
$37$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$41$ \( 4 - 24 T + 72 T^{2} - 12 T^{3} + T^{4} \)
$43$ \( 1922 + 868 T + 162 T^{2} + 16 T^{3} + T^{4} \)
$47$ \( 16 + 136 T^{2} + T^{4} \)
$53$ \( 98 - 140 T + 54 T^{2} + 4 T^{3} + T^{4} \)
$59$ \( 1058 + 460 T + 114 T^{2} + 16 T^{3} + T^{4} \)
$61$ \( 2 - 4 T + 6 T^{2} - 4 T^{3} + T^{4} \)
$67$ \( 578 - 68 T + 18 T^{2} - 8 T^{3} + T^{4} \)
$71$ \( 4 + 24 T + 72 T^{2} + 12 T^{3} + T^{4} \)
$73$ \( ( 98 - 14 T + T^{2} )^{2} \)
$79$ \( ( 36 + T^{2} )^{2} \)
$83$ \( 1058 - 460 T + 114 T^{2} - 16 T^{3} + T^{4} \)
$89$ \( 2116 - 552 T + 72 T^{2} + 12 T^{3} + T^{4} \)
$97$ \( ( 28 + 20 T + T^{2} )^{2} \)
show more
show less