Properties

Label 1152.2.r
Level $1152$
Weight $2$
Character orbit 1152.r
Rep. character $\chi_{1152}(193,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $96$
Newform subspaces $8$
Sturm bound $384$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.r (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 8 \)
Sturm bound: \(384\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1152, [\chi])\).

Total New Old
Modular forms 416 96 320
Cusp forms 352 96 256
Eisenstein series 64 0 64

Trace form

\( 96 q + 48 q^{25} - 32 q^{33} + 16 q^{41} - 48 q^{49} - 16 q^{57} - 16 q^{81} + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1152, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1152.2.r.a 1152.r 72.n $4$ $9.199$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 1152.2.r.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(-\beta _{1}-\beta _{2}+\beta _{3})q^{3}+(1+2\beta _{1}-\beta _{2}+\cdots)q^{9}+\cdots\)
1152.2.r.b 1152.r 72.n $4$ $9.199$ \(\Q(\zeta_{12})\) None 1152.2.r.b \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}-4\zeta_{12}^{2}q^{7}+\cdots\)
1152.2.r.c 1152.r 72.n $4$ $9.199$ \(\Q(\zeta_{12})\) None 1152.2.r.b \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\zeta_{12}-\zeta_{12}^{3})q^{3}+4\zeta_{12}^{2}q^{7}+\cdots\)
1152.2.r.d 1152.r 72.n $4$ $9.199$ \(\Q(\sqrt{-2}, \sqrt{-3})\) \(\Q(\sqrt{-2}) \) 1152.2.r.a \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{6}]$ \(q+(-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(1-2\beta _{1}-\beta _{2}+\cdots)q^{9}+\cdots\)
1152.2.r.e 1152.r 72.n $16$ $9.199$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1152.2.r.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}+\beta _{5}-\beta _{8})q^{3}+\beta _{10}q^{5}+(-\beta _{3}+\cdots)q^{7}+\cdots\)
1152.2.r.f 1152.r 72.n $16$ $9.199$ 16.0.\(\cdots\).9 None 1152.2.r.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{3}+(\beta _{4}+\beta _{7})q^{5}+(\beta _{6}+\beta _{11}+\cdots)q^{7}+\cdots\)
1152.2.r.g 1152.r 72.n $24$ $9.199$ None 1152.2.r.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$
1152.2.r.h 1152.r 72.n $24$ $9.199$ None 1152.2.r.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1152, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1152, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)