Properties

Label 1152.2.i.k.769.6
Level $1152$
Weight $2$
Character 1152.769
Analytic conductor $9.199$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 2 x^{11} + 3 x^{10} - 8 x^{9} + 22 x^{8} - 42 x^{7} + 51 x^{6} - 126 x^{5} + 198 x^{4} - 216 x^{3} + 243 x^{2} - 486 x + 729\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 769.6
Root \(0.952418 - 1.44669i\) of defining polynomial
Character \(\chi\) \(=\) 1152.769
Dual form 1152.2.i.k.385.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.72908 - 0.101475i) q^{3} +(-1.24278 + 2.15256i) q^{5} +(0.909142 + 1.57468i) q^{7} +(2.97941 - 0.350917i) q^{9} +O(q^{10})\) \(q+(1.72908 - 0.101475i) q^{3} +(-1.24278 + 2.15256i) q^{5} +(0.909142 + 1.57468i) q^{7} +(2.97941 - 0.350917i) q^{9} +(0.598407 + 1.03647i) q^{11} +(-2.83342 + 4.90762i) q^{13} +(-1.93043 + 3.84805i) q^{15} -5.30021 q^{17} -4.55980 q^{19} +(1.73177 + 2.63049i) q^{21} +(-2.01328 + 3.48711i) q^{23} +(-0.589008 - 1.02019i) q^{25} +(5.11601 - 0.909098i) q^{27} +(-3.01513 - 5.22236i) q^{29} +(2.81647 - 4.87827i) q^{31} +(1.13987 + 1.73141i) q^{33} -4.51946 q^{35} +5.18127 q^{37} +(-4.40119 + 8.77317i) q^{39} +(4.57620 - 7.92621i) q^{41} +(3.99129 + 6.91313i) q^{43} +(-2.94738 + 6.84946i) q^{45} +(1.39470 + 2.41570i) q^{47} +(1.84692 - 3.19896i) q^{49} +(-9.16447 + 0.537841i) q^{51} -1.54470 q^{53} -2.97475 q^{55} +(-7.88424 + 0.462707i) q^{57} +(-1.85725 + 3.21686i) q^{59} +(4.01513 + 6.95441i) q^{61} +(3.26129 + 4.37258i) q^{63} +(-7.04263 - 12.1982i) q^{65} +(-6.91372 + 11.9749i) q^{67} +(-3.12726 + 6.23377i) q^{69} -11.1794 q^{71} +12.3969 q^{73} +(-1.12196 - 1.70422i) q^{75} +(-1.08807 + 1.88460i) q^{77} +(4.36480 + 7.56006i) q^{79} +(8.75371 - 2.09105i) q^{81} +(8.89267 + 15.4025i) q^{83} +(6.58700 - 11.4090i) q^{85} +(-5.74333 - 8.72390i) q^{87} -0.455297 q^{89} -10.3039 q^{91} +(4.37486 - 8.72069i) q^{93} +(5.66683 - 9.81524i) q^{95} +(-1.01640 - 1.76045i) q^{97} +(2.14661 + 2.87808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 2 q^{5} + 6 q^{7} - 2 q^{9} + O(q^{10}) \) \( 12 q + 4 q^{3} - 2 q^{5} + 6 q^{7} - 2 q^{9} + 4 q^{11} + 10 q^{13} + 4 q^{15} + 4 q^{17} + 4 q^{19} + 2 q^{21} + 8 q^{23} - 14 q^{25} - 14 q^{27} - 2 q^{29} + 8 q^{31} - 10 q^{33} + 8 q^{35} + 22 q^{39} - 2 q^{41} - 2 q^{43} + 10 q^{45} - 14 q^{47} - 18 q^{49} - 38 q^{51} + 24 q^{53} - 16 q^{55} - 38 q^{57} + 6 q^{59} + 14 q^{61} - 16 q^{63} - 8 q^{65} + 4 q^{67} - 50 q^{69} - 28 q^{71} + 60 q^{73} + 50 q^{75} + 2 q^{77} + 16 q^{79} + 22 q^{81} + 24 q^{83} + 16 q^{85} - 36 q^{87} - 48 q^{89} - 52 q^{91} + 42 q^{93} - 20 q^{95} - 14 q^{97} + 68 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.72908 0.101475i 0.998282 0.0585868i
\(4\) 0 0
\(5\) −1.24278 + 2.15256i −0.555788 + 0.962654i 0.442053 + 0.896989i \(0.354250\pi\)
−0.997842 + 0.0656650i \(0.979083\pi\)
\(6\) 0 0
\(7\) 0.909142 + 1.57468i 0.343623 + 0.595173i 0.985103 0.171967i \(-0.0550123\pi\)
−0.641479 + 0.767140i \(0.721679\pi\)
\(8\) 0 0
\(9\) 2.97941 0.350917i 0.993135 0.116972i
\(10\) 0 0
\(11\) 0.598407 + 1.03647i 0.180426 + 0.312508i 0.942026 0.335540i \(-0.108919\pi\)
−0.761599 + 0.648048i \(0.775586\pi\)
\(12\) 0 0
\(13\) −2.83342 + 4.90762i −0.785848 + 1.36113i 0.142643 + 0.989774i \(0.454440\pi\)
−0.928491 + 0.371355i \(0.878893\pi\)
\(14\) 0 0
\(15\) −1.93043 + 3.84805i −0.498435 + 0.993562i
\(16\) 0 0
\(17\) −5.30021 −1.28549 −0.642745 0.766080i \(-0.722205\pi\)
−0.642745 + 0.766080i \(0.722205\pi\)
\(18\) 0 0
\(19\) −4.55980 −1.04609 −0.523045 0.852305i \(-0.675204\pi\)
−0.523045 + 0.852305i \(0.675204\pi\)
\(20\) 0 0
\(21\) 1.73177 + 2.63049i 0.377902 + 0.574019i
\(22\) 0 0
\(23\) −2.01328 + 3.48711i −0.419798 + 0.727112i −0.995919 0.0902526i \(-0.971233\pi\)
0.576120 + 0.817365i \(0.304566\pi\)
\(24\) 0 0
\(25\) −0.589008 1.02019i −0.117802 0.204038i
\(26\) 0 0
\(27\) 5.11601 0.909098i 0.984576 0.174956i
\(28\) 0 0
\(29\) −3.01513 5.22236i −0.559896 0.969768i −0.997505 0.0706027i \(-0.977508\pi\)
0.437609 0.899166i \(-0.355826\pi\)
\(30\) 0 0
\(31\) 2.81647 4.87827i 0.505853 0.876163i −0.494124 0.869391i \(-0.664511\pi\)
0.999977 0.00677135i \(-0.00215540\pi\)
\(32\) 0 0
\(33\) 1.13987 + 1.73141i 0.198425 + 0.301400i
\(34\) 0 0
\(35\) −4.51946 −0.763928
\(36\) 0 0
\(37\) 5.18127 0.851796 0.425898 0.904771i \(-0.359958\pi\)
0.425898 + 0.904771i \(0.359958\pi\)
\(38\) 0 0
\(39\) −4.40119 + 8.77317i −0.704754 + 1.40483i
\(40\) 0 0
\(41\) 4.57620 7.92621i 0.714682 1.23787i −0.248400 0.968658i \(-0.579905\pi\)
0.963082 0.269208i \(-0.0867619\pi\)
\(42\) 0 0
\(43\) 3.99129 + 6.91313i 0.608667 + 1.05424i 0.991460 + 0.130408i \(0.0416287\pi\)
−0.382794 + 0.923834i \(0.625038\pi\)
\(44\) 0 0
\(45\) −2.94738 + 6.84946i −0.439369 + 1.02106i
\(46\) 0 0
\(47\) 1.39470 + 2.41570i 0.203438 + 0.352366i 0.949634 0.313361i \(-0.101455\pi\)
−0.746196 + 0.665727i \(0.768122\pi\)
\(48\) 0 0
\(49\) 1.84692 3.19896i 0.263846 0.456994i
\(50\) 0 0
\(51\) −9.16447 + 0.537841i −1.28328 + 0.0753128i
\(52\) 0 0
\(53\) −1.54470 −0.212181 −0.106091 0.994356i \(-0.533833\pi\)
−0.106091 + 0.994356i \(0.533833\pi\)
\(54\) 0 0
\(55\) −2.97475 −0.401116
\(56\) 0 0
\(57\) −7.88424 + 0.462707i −1.04429 + 0.0612871i
\(58\) 0 0
\(59\) −1.85725 + 3.21686i −0.241794 + 0.418799i −0.961225 0.275764i \(-0.911069\pi\)
0.719431 + 0.694563i \(0.244402\pi\)
\(60\) 0 0
\(61\) 4.01513 + 6.95441i 0.514085 + 0.890421i 0.999866 + 0.0163411i \(0.00520175\pi\)
−0.485781 + 0.874080i \(0.661465\pi\)
\(62\) 0 0
\(63\) 3.26129 + 4.37258i 0.410883 + 0.550893i
\(64\) 0 0
\(65\) −7.04263 12.1982i −0.873531 1.51300i
\(66\) 0 0
\(67\) −6.91372 + 11.9749i −0.844645 + 1.46297i 0.0412836 + 0.999147i \(0.486855\pi\)
−0.885929 + 0.463821i \(0.846478\pi\)
\(68\) 0 0
\(69\) −3.12726 + 6.23377i −0.376478 + 0.750458i
\(70\) 0 0
\(71\) −11.1794 −1.32675 −0.663376 0.748287i \(-0.730877\pi\)
−0.663376 + 0.748287i \(0.730877\pi\)
\(72\) 0 0
\(73\) 12.3969 1.45095 0.725473 0.688251i \(-0.241621\pi\)
0.725473 + 0.688251i \(0.241621\pi\)
\(74\) 0 0
\(75\) −1.12196 1.70422i −0.129553 0.196786i
\(76\) 0 0
\(77\) −1.08807 + 1.88460i −0.123998 + 0.214770i
\(78\) 0 0
\(79\) 4.36480 + 7.56006i 0.491079 + 0.850573i 0.999947 0.0102710i \(-0.00326940\pi\)
−0.508869 + 0.860844i \(0.669936\pi\)
\(80\) 0 0
\(81\) 8.75371 2.09105i 0.972635 0.232339i
\(82\) 0 0
\(83\) 8.89267 + 15.4025i 0.976097 + 1.69065i 0.676267 + 0.736657i \(0.263597\pi\)
0.299830 + 0.953993i \(0.403070\pi\)
\(84\) 0 0
\(85\) 6.58700 11.4090i 0.714461 1.23748i
\(86\) 0 0
\(87\) −5.74333 8.72390i −0.615750 0.935300i
\(88\) 0 0
\(89\) −0.455297 −0.0482614 −0.0241307 0.999709i \(-0.507682\pi\)
−0.0241307 + 0.999709i \(0.507682\pi\)
\(90\) 0 0
\(91\) −10.3039 −1.08014
\(92\) 0 0
\(93\) 4.37486 8.72069i 0.453652 0.904294i
\(94\) 0 0
\(95\) 5.66683 9.81524i 0.581405 1.00702i
\(96\) 0 0
\(97\) −1.01640 1.76045i −0.103199 0.178747i 0.809802 0.586704i \(-0.199575\pi\)
−0.913001 + 0.407957i \(0.866241\pi\)
\(98\) 0 0
\(99\) 2.14661 + 2.87808i 0.215743 + 0.289258i
\(100\) 0 0
\(101\) −3.06107 5.30192i −0.304587 0.527561i 0.672582 0.740023i \(-0.265185\pi\)
−0.977169 + 0.212462i \(0.931852\pi\)
\(102\) 0 0
\(103\) 3.09086 5.35352i 0.304551 0.527498i −0.672610 0.739997i \(-0.734827\pi\)
0.977161 + 0.212499i \(0.0681602\pi\)
\(104\) 0 0
\(105\) −7.81448 + 0.458613i −0.762616 + 0.0447561i
\(106\) 0 0
\(107\) 16.2193 1.56798 0.783990 0.620774i \(-0.213182\pi\)
0.783990 + 0.620774i \(0.213182\pi\)
\(108\) 0 0
\(109\) 2.08460 0.199669 0.0998344 0.995004i \(-0.468169\pi\)
0.0998344 + 0.995004i \(0.468169\pi\)
\(110\) 0 0
\(111\) 8.95881 0.525771i 0.850333 0.0499040i
\(112\) 0 0
\(113\) 1.45933 2.52763i 0.137282 0.237779i −0.789185 0.614156i \(-0.789497\pi\)
0.926467 + 0.376376i \(0.122830\pi\)
\(114\) 0 0
\(115\) −5.00414 8.66742i −0.466638 0.808241i
\(116\) 0 0
\(117\) −6.71973 + 15.6161i −0.621239 + 1.44371i
\(118\) 0 0
\(119\) −4.81865 8.34614i −0.441725 0.765090i
\(120\) 0 0
\(121\) 4.78382 8.28582i 0.434893 0.753256i
\(122\) 0 0
\(123\) 7.10828 14.1694i 0.640932 1.27761i
\(124\) 0 0
\(125\) −9.49978 −0.849686
\(126\) 0 0
\(127\) 15.0618 1.33652 0.668261 0.743926i \(-0.267039\pi\)
0.668261 + 0.743926i \(0.267039\pi\)
\(128\) 0 0
\(129\) 7.60276 + 11.5483i 0.669386 + 1.01677i
\(130\) 0 0
\(131\) 1.89311 3.27896i 0.165402 0.286484i −0.771396 0.636355i \(-0.780441\pi\)
0.936798 + 0.349871i \(0.113775\pi\)
\(132\) 0 0
\(133\) −4.14551 7.18023i −0.359461 0.622605i
\(134\) 0 0
\(135\) −4.40119 + 12.1423i −0.378794 + 1.04504i
\(136\) 0 0
\(137\) 6.39448 + 11.0756i 0.546317 + 0.946250i 0.998523 + 0.0543357i \(0.0173041\pi\)
−0.452205 + 0.891914i \(0.649363\pi\)
\(138\) 0 0
\(139\) 4.46539 7.73428i 0.378749 0.656013i −0.612131 0.790756i \(-0.709688\pi\)
0.990881 + 0.134743i \(0.0430209\pi\)
\(140\) 0 0
\(141\) 2.65668 + 4.03540i 0.223733 + 0.339842i
\(142\) 0 0
\(143\) −6.78214 −0.567151
\(144\) 0 0
\(145\) 14.9886 1.24473
\(146\) 0 0
\(147\) 2.86885 5.71866i 0.236619 0.471667i
\(148\) 0 0
\(149\) −4.65170 + 8.05698i −0.381082 + 0.660054i −0.991217 0.132244i \(-0.957782\pi\)
0.610135 + 0.792297i \(0.291115\pi\)
\(150\) 0 0
\(151\) 7.83527 + 13.5711i 0.637625 + 1.10440i 0.985953 + 0.167026i \(0.0534164\pi\)
−0.348328 + 0.937373i \(0.613250\pi\)
\(152\) 0 0
\(153\) −15.7915 + 1.85993i −1.27667 + 0.150367i
\(154\) 0 0
\(155\) 7.00051 + 12.1252i 0.562294 + 0.973922i
\(156\) 0 0
\(157\) 9.75491 16.8960i 0.778526 1.34845i −0.154265 0.988030i \(-0.549301\pi\)
0.932791 0.360418i \(-0.117366\pi\)
\(158\) 0 0
\(159\) −2.67091 + 0.156749i −0.211817 + 0.0124310i
\(160\) 0 0
\(161\) −7.32144 −0.577010
\(162\) 0 0
\(163\) −5.02888 −0.393892 −0.196946 0.980414i \(-0.563102\pi\)
−0.196946 + 0.980414i \(0.563102\pi\)
\(164\) 0 0
\(165\) −5.14358 + 0.301864i −0.400427 + 0.0235001i
\(166\) 0 0
\(167\) 7.65066 13.2513i 0.592026 1.02542i −0.401933 0.915669i \(-0.631662\pi\)
0.993959 0.109750i \(-0.0350050\pi\)
\(168\) 0 0
\(169\) −9.55650 16.5523i −0.735115 1.27326i
\(170\) 0 0
\(171\) −13.5855 + 1.60011i −1.03891 + 0.122364i
\(172\) 0 0
\(173\) −5.30192 9.18320i −0.403098 0.698186i 0.591000 0.806671i \(-0.298733\pi\)
−0.994098 + 0.108486i \(0.965400\pi\)
\(174\) 0 0
\(175\) 1.07098 1.85500i 0.0809588 0.140225i
\(176\) 0 0
\(177\) −2.88490 + 5.75066i −0.216842 + 0.432246i
\(178\) 0 0
\(179\) −9.27314 −0.693107 −0.346553 0.938030i \(-0.612648\pi\)
−0.346553 + 0.938030i \(0.612648\pi\)
\(180\) 0 0
\(181\) −2.32975 −0.173169 −0.0865845 0.996245i \(-0.527595\pi\)
−0.0865845 + 0.996245i \(0.527595\pi\)
\(182\) 0 0
\(183\) 7.64817 + 11.6173i 0.565369 + 0.858773i
\(184\) 0 0
\(185\) −6.43918 + 11.1530i −0.473418 + 0.819985i
\(186\) 0 0
\(187\) −3.17169 5.49352i −0.231937 0.401726i
\(188\) 0 0
\(189\) 6.08272 + 7.22958i 0.442453 + 0.525874i
\(190\) 0 0
\(191\) −8.54208 14.7953i −0.618083 1.07055i −0.989835 0.142219i \(-0.954576\pi\)
0.371752 0.928332i \(-0.378757\pi\)
\(192\) 0 0
\(193\) −12.1360 + 21.0202i −0.873568 + 1.51306i −0.0152882 + 0.999883i \(0.504867\pi\)
−0.858280 + 0.513182i \(0.828467\pi\)
\(194\) 0 0
\(195\) −13.4151 20.3769i −0.960672 1.45922i
\(196\) 0 0
\(197\) 15.6971 1.11837 0.559186 0.829042i \(-0.311114\pi\)
0.559186 + 0.829042i \(0.311114\pi\)
\(198\) 0 0
\(199\) −14.4764 −1.02620 −0.513101 0.858328i \(-0.671503\pi\)
−0.513101 + 0.858328i \(0.671503\pi\)
\(200\) 0 0
\(201\) −10.7392 + 21.4071i −0.757484 + 1.50994i
\(202\) 0 0
\(203\) 5.48237 9.49574i 0.384787 0.666470i
\(204\) 0 0
\(205\) 11.3744 + 19.7011i 0.794424 + 1.37598i
\(206\) 0 0
\(207\) −4.77470 + 11.0960i −0.331865 + 0.771225i
\(208\) 0 0
\(209\) −2.72862 4.72610i −0.188742 0.326911i
\(210\) 0 0
\(211\) 3.21103 5.56167i 0.221056 0.382881i −0.734073 0.679071i \(-0.762383\pi\)
0.955129 + 0.296190i \(0.0957162\pi\)
\(212\) 0 0
\(213\) −19.3300 + 1.13443i −1.32447 + 0.0777301i
\(214\) 0 0
\(215\) −19.8412 −1.35316
\(216\) 0 0
\(217\) 10.2423 0.695291
\(218\) 0 0
\(219\) 21.4351 1.25798i 1.44845 0.0850062i
\(220\) 0 0
\(221\) 15.0177 26.0114i 1.01020 1.74972i
\(222\) 0 0
\(223\) −7.90683 13.6950i −0.529481 0.917087i −0.999409 0.0343825i \(-0.989054\pi\)
0.469928 0.882705i \(-0.344280\pi\)
\(224\) 0 0
\(225\) −2.11290 2.83287i −0.140860 0.188858i
\(226\) 0 0
\(227\) −3.00928 5.21223i −0.199733 0.345948i 0.748709 0.662899i \(-0.230674\pi\)
−0.948442 + 0.316951i \(0.897341\pi\)
\(228\) 0 0
\(229\) 13.8177 23.9329i 0.913098 1.58153i 0.103436 0.994636i \(-0.467016\pi\)
0.809662 0.586896i \(-0.199650\pi\)
\(230\) 0 0
\(231\) −1.69012 + 3.36903i −0.111202 + 0.221666i
\(232\) 0 0
\(233\) −12.1858 −0.798321 −0.399161 0.916881i \(-0.630698\pi\)
−0.399161 + 0.916881i \(0.630698\pi\)
\(234\) 0 0
\(235\) −6.93324 −0.452275
\(236\) 0 0
\(237\) 8.31423 + 12.6290i 0.540068 + 0.820342i
\(238\) 0 0
\(239\) −7.82794 + 13.5584i −0.506347 + 0.877019i 0.493626 + 0.869674i \(0.335671\pi\)
−0.999973 + 0.00734451i \(0.997662\pi\)
\(240\) 0 0
\(241\) 9.39281 + 16.2688i 0.605044 + 1.04797i 0.992045 + 0.125887i \(0.0401778\pi\)
−0.387001 + 0.922079i \(0.626489\pi\)
\(242\) 0 0
\(243\) 14.9236 4.50386i 0.957352 0.288923i
\(244\) 0 0
\(245\) 4.59064 + 7.95121i 0.293285 + 0.507984i
\(246\) 0 0
\(247\) 12.9198 22.3778i 0.822068 1.42386i
\(248\) 0 0
\(249\) 16.9391 + 25.7298i 1.07347 + 1.63056i
\(250\) 0 0
\(251\) 11.1684 0.704942 0.352471 0.935823i \(-0.385342\pi\)
0.352471 + 0.935823i \(0.385342\pi\)
\(252\) 0 0
\(253\) −4.81905 −0.302971
\(254\) 0 0
\(255\) 10.2317 20.3955i 0.640734 1.27722i
\(256\) 0 0
\(257\) 3.19941 5.54154i 0.199574 0.345672i −0.748817 0.662777i \(-0.769378\pi\)
0.948390 + 0.317106i \(0.102711\pi\)
\(258\) 0 0
\(259\) 4.71051 + 8.15885i 0.292697 + 0.506966i
\(260\) 0 0
\(261\) −10.8159 14.5015i −0.669488 0.897619i
\(262\) 0 0
\(263\) 6.71632 + 11.6330i 0.414146 + 0.717322i 0.995338 0.0964440i \(-0.0307469\pi\)
−0.581192 + 0.813766i \(0.697414\pi\)
\(264\) 0 0
\(265\) 1.91973 3.32507i 0.117928 0.204257i
\(266\) 0 0
\(267\) −0.787243 + 0.0462014i −0.0481785 + 0.00282748i
\(268\) 0 0
\(269\) −26.6295 −1.62363 −0.811814 0.583916i \(-0.801520\pi\)
−0.811814 + 0.583916i \(0.801520\pi\)
\(270\) 0 0
\(271\) 14.9630 0.908936 0.454468 0.890763i \(-0.349829\pi\)
0.454468 + 0.890763i \(0.349829\pi\)
\(272\) 0 0
\(273\) −17.8162 + 1.04559i −1.07829 + 0.0632821i
\(274\) 0 0
\(275\) 0.704933 1.22098i 0.0425091 0.0736278i
\(276\) 0 0
\(277\) 8.36861 + 14.4949i 0.502821 + 0.870912i 0.999995 + 0.00326057i \(0.00103787\pi\)
−0.497174 + 0.867651i \(0.665629\pi\)
\(278\) 0 0
\(279\) 6.67954 15.5227i 0.399893 0.929319i
\(280\) 0 0
\(281\) −2.80547 4.85922i −0.167361 0.289877i 0.770131 0.637886i \(-0.220191\pi\)
−0.937491 + 0.348009i \(0.886858\pi\)
\(282\) 0 0
\(283\) 6.41074 11.1037i 0.381079 0.660048i −0.610138 0.792295i \(-0.708886\pi\)
0.991217 + 0.132247i \(0.0422194\pi\)
\(284\) 0 0
\(285\) 8.80238 17.5463i 0.521408 1.03936i
\(286\) 0 0
\(287\) 16.6417 0.982326
\(288\) 0 0
\(289\) 11.0923 0.652487
\(290\) 0 0
\(291\) −1.93607 2.94081i −0.113494 0.172393i
\(292\) 0 0
\(293\) 7.24047 12.5409i 0.422993 0.732645i −0.573238 0.819389i \(-0.694313\pi\)
0.996231 + 0.0867441i \(0.0276463\pi\)
\(294\) 0 0
\(295\) −4.61632 7.99570i −0.268772 0.465528i
\(296\) 0 0
\(297\) 4.00371 + 4.75858i 0.232319 + 0.276121i
\(298\) 0 0
\(299\) −11.4089 19.7609i −0.659796 1.14280i
\(300\) 0 0
\(301\) −7.25731 + 12.5700i −0.418304 + 0.724524i
\(302\) 0 0
\(303\) −5.83083 8.85680i −0.334972 0.508810i
\(304\) 0 0
\(305\) −19.9597 −1.14289
\(306\) 0 0
\(307\) −19.4320 −1.10905 −0.554523 0.832169i \(-0.687099\pi\)
−0.554523 + 0.832169i \(0.687099\pi\)
\(308\) 0 0
\(309\) 4.80108 9.57029i 0.273124 0.544435i
\(310\) 0 0
\(311\) 3.47547 6.01968i 0.197076 0.341345i −0.750503 0.660867i \(-0.770189\pi\)
0.947579 + 0.319522i \(0.103522\pi\)
\(312\) 0 0
\(313\) −2.19252 3.79756i −0.123929 0.214651i 0.797385 0.603471i \(-0.206216\pi\)
−0.921314 + 0.388820i \(0.872883\pi\)
\(314\) 0 0
\(315\) −13.4653 + 1.58595i −0.758684 + 0.0893584i
\(316\) 0 0
\(317\) −15.6742 27.1485i −0.880350 1.52481i −0.850952 0.525244i \(-0.823974\pi\)
−0.0293983 0.999568i \(-0.509359\pi\)
\(318\) 0 0
\(319\) 3.60855 6.25020i 0.202040 0.349944i
\(320\) 0 0
\(321\) 28.0444 1.64586i 1.56529 0.0918629i
\(322\) 0 0
\(323\) 24.1679 1.34474
\(324\) 0 0
\(325\) 6.67562 0.370297
\(326\) 0 0
\(327\) 3.60444 0.211536i 0.199326 0.0116979i
\(328\) 0 0
\(329\) −2.53597 + 4.39243i −0.139812 + 0.242162i
\(330\) 0 0
\(331\) 11.1515 + 19.3150i 0.612943 + 1.06165i 0.990742 + 0.135760i \(0.0433477\pi\)
−0.377799 + 0.925888i \(0.623319\pi\)
\(332\) 0 0
\(333\) 15.4371 1.81820i 0.845948 0.0996365i
\(334\) 0 0
\(335\) −17.1845 29.7644i −0.938888 1.62620i
\(336\) 0 0
\(337\) −10.4077 + 18.0266i −0.566943 + 0.981974i 0.429923 + 0.902866i \(0.358541\pi\)
−0.996866 + 0.0791086i \(0.974793\pi\)
\(338\) 0 0
\(339\) 2.26679 4.51855i 0.123115 0.245414i
\(340\) 0 0
\(341\) 6.74158 0.365077
\(342\) 0 0
\(343\) 19.4444 1.04990
\(344\) 0 0
\(345\) −9.53206 14.4788i −0.513189 0.779514i
\(346\) 0 0
\(347\) −14.4912 + 25.0995i −0.777929 + 1.34741i 0.155204 + 0.987882i \(0.450396\pi\)
−0.933133 + 0.359530i \(0.882937\pi\)
\(348\) 0 0
\(349\) −7.60709 13.1759i −0.407198 0.705288i 0.587377 0.809314i \(-0.300161\pi\)
−0.994575 + 0.104026i \(0.966827\pi\)
\(350\) 0 0
\(351\) −10.0343 + 27.6833i −0.535590 + 1.47762i
\(352\) 0 0
\(353\) −6.78818 11.7575i −0.361298 0.625787i 0.626877 0.779119i \(-0.284333\pi\)
−0.988175 + 0.153332i \(0.951000\pi\)
\(354\) 0 0
\(355\) 13.8935 24.0643i 0.737393 1.27720i
\(356\) 0 0
\(357\) −9.17874 13.9421i −0.485790 0.737896i
\(358\) 0 0
\(359\) 31.6623 1.67107 0.835536 0.549436i \(-0.185158\pi\)
0.835536 + 0.549436i \(0.185158\pi\)
\(360\) 0 0
\(361\) 1.79179 0.0943046
\(362\) 0 0
\(363\) 7.43078 14.8122i 0.390015 0.777441i
\(364\) 0 0
\(365\) −15.4066 + 26.6850i −0.806419 + 1.39676i
\(366\) 0 0
\(367\) 4.90625 + 8.49788i 0.256104 + 0.443585i 0.965195 0.261532i \(-0.0842276\pi\)
−0.709091 + 0.705117i \(0.750894\pi\)
\(368\) 0 0
\(369\) 10.8529 25.2212i 0.564980 1.31297i
\(370\) 0 0
\(371\) −1.40435 2.43241i −0.0729105 0.126285i
\(372\) 0 0
\(373\) 4.98487 8.63404i 0.258107 0.447054i −0.707628 0.706585i \(-0.750235\pi\)
0.965735 + 0.259531i \(0.0835681\pi\)
\(374\) 0 0
\(375\) −16.4258 + 0.963992i −0.848226 + 0.0497804i
\(376\) 0 0
\(377\) 34.1725 1.75997
\(378\) 0 0
\(379\) −30.2351 −1.55307 −0.776537 0.630072i \(-0.783026\pi\)
−0.776537 + 0.630072i \(0.783026\pi\)
\(380\) 0 0
\(381\) 26.0431 1.52841i 1.33423 0.0783026i
\(382\) 0 0
\(383\) −9.86835 + 17.0925i −0.504249 + 0.873386i 0.495739 + 0.868472i \(0.334897\pi\)
−0.999988 + 0.00491371i \(0.998436\pi\)
\(384\) 0 0
\(385\) −2.70447 4.68429i −0.137833 0.238733i
\(386\) 0 0
\(387\) 14.3176 + 19.1964i 0.727805 + 0.975807i
\(388\) 0 0
\(389\) 3.60577 + 6.24537i 0.182820 + 0.316653i 0.942840 0.333247i \(-0.108144\pi\)
−0.760020 + 0.649900i \(0.774811\pi\)
\(390\) 0 0
\(391\) 10.6708 18.4824i 0.539647 0.934696i
\(392\) 0 0
\(393\) 2.94060 5.86168i 0.148333 0.295683i
\(394\) 0 0
\(395\) −21.6980 −1.09174
\(396\) 0 0
\(397\) −20.8930 −1.04859 −0.524296 0.851536i \(-0.675671\pi\)
−0.524296 + 0.851536i \(0.675671\pi\)
\(398\) 0 0
\(399\) −7.89651 11.9945i −0.395320 0.600476i
\(400\) 0 0
\(401\) −1.59174 + 2.75697i −0.0794877 + 0.137677i −0.903029 0.429580i \(-0.858662\pi\)
0.823541 + 0.567256i \(0.191995\pi\)
\(402\) 0 0
\(403\) 15.9605 + 27.6443i 0.795047 + 1.37706i
\(404\) 0 0
\(405\) −6.37784 + 21.4416i −0.316918 + 1.06544i
\(406\) 0 0
\(407\) 3.10051 + 5.37024i 0.153687 + 0.266193i
\(408\) 0 0
\(409\) 11.5046 19.9265i 0.568865 0.985302i −0.427814 0.903867i \(-0.640716\pi\)
0.996679 0.0814356i \(-0.0259505\pi\)
\(410\) 0 0
\(411\) 12.1804 + 18.5016i 0.600817 + 0.912617i
\(412\) 0 0
\(413\) −6.75403 −0.332344
\(414\) 0 0
\(415\) −44.2065 −2.17001
\(416\) 0 0
\(417\) 6.93616 13.8263i 0.339665 0.677076i
\(418\) 0 0
\(419\) −1.36640 + 2.36667i −0.0667528 + 0.115619i −0.897470 0.441075i \(-0.854597\pi\)
0.830717 + 0.556694i \(0.187931\pi\)
\(420\) 0 0
\(421\) −2.98079 5.16288i −0.145275 0.251624i 0.784201 0.620507i \(-0.213073\pi\)
−0.929475 + 0.368884i \(0.879740\pi\)
\(422\) 0 0
\(423\) 5.00310 + 6.70792i 0.243259 + 0.326150i
\(424\) 0 0
\(425\) 3.12187 + 5.40724i 0.151433 + 0.262289i
\(426\) 0 0
\(427\) −7.30065 + 12.6451i −0.353303 + 0.611939i
\(428\) 0 0
\(429\) −11.7268 + 0.688220i −0.566177 + 0.0332276i
\(430\) 0 0
\(431\) 20.5125 0.988051 0.494026 0.869447i \(-0.335525\pi\)
0.494026 + 0.869447i \(0.335525\pi\)
\(432\) 0 0
\(433\) −41.5464 −1.99659 −0.998295 0.0583639i \(-0.981412\pi\)
−0.998295 + 0.0583639i \(0.981412\pi\)
\(434\) 0 0
\(435\) 25.9164 1.52097i 1.24260 0.0729250i
\(436\) 0 0
\(437\) 9.18017 15.9005i 0.439147 0.760625i
\(438\) 0 0
\(439\) 15.0834 + 26.1253i 0.719894 + 1.24689i 0.961042 + 0.276404i \(0.0891428\pi\)
−0.241148 + 0.970488i \(0.577524\pi\)
\(440\) 0 0
\(441\) 4.38016 10.1791i 0.208579 0.484720i
\(442\) 0 0
\(443\) −9.67554 16.7585i −0.459699 0.796222i 0.539246 0.842148i \(-0.318709\pi\)
−0.998945 + 0.0459267i \(0.985376\pi\)
\(444\) 0 0
\(445\) 0.565834 0.980054i 0.0268231 0.0464590i
\(446\) 0 0
\(447\) −7.22556 + 14.4032i −0.341757 + 0.681246i
\(448\) 0 0
\(449\) 13.4220 0.633424 0.316712 0.948522i \(-0.397421\pi\)
0.316712 + 0.948522i \(0.397421\pi\)
\(450\) 0 0
\(451\) 10.9537 0.515790
\(452\) 0 0
\(453\) 14.9249 + 22.6703i 0.701233 + 1.06515i
\(454\) 0 0
\(455\) 12.8055 22.1798i 0.600331 1.03980i
\(456\) 0 0
\(457\) −3.06037 5.30072i −0.143158 0.247957i 0.785526 0.618828i \(-0.212392\pi\)
−0.928684 + 0.370871i \(0.879059\pi\)
\(458\) 0 0
\(459\) −27.1159 + 4.81841i −1.26566 + 0.224904i
\(460\) 0 0
\(461\) 5.80084 + 10.0473i 0.270172 + 0.467952i 0.968906 0.247430i \(-0.0795861\pi\)
−0.698734 + 0.715382i \(0.746253\pi\)
\(462\) 0 0
\(463\) 4.42830 7.67005i 0.205801 0.356457i −0.744587 0.667526i \(-0.767353\pi\)
0.950388 + 0.311068i \(0.100687\pi\)
\(464\) 0 0
\(465\) 13.3348 + 20.2551i 0.618387 + 0.939306i
\(466\) 0 0
\(467\) −7.20231 −0.333283 −0.166642 0.986018i \(-0.553292\pi\)
−0.166642 + 0.986018i \(0.553292\pi\)
\(468\) 0 0
\(469\) −25.1422 −1.16096
\(470\) 0 0
\(471\) 15.1524 30.2043i 0.698188 1.39174i
\(472\) 0 0
\(473\) −4.77684 + 8.27372i −0.219639 + 0.380426i
\(474\) 0 0
\(475\) 2.68576 + 4.65187i 0.123231 + 0.213443i
\(476\) 0 0
\(477\) −4.60230 + 0.542062i −0.210725 + 0.0248193i
\(478\) 0 0
\(479\) 12.2521 + 21.2213i 0.559815 + 0.969628i 0.997511 + 0.0705051i \(0.0224611\pi\)
−0.437696 + 0.899123i \(0.644206\pi\)
\(480\) 0 0
\(481\) −14.6807 + 25.4277i −0.669382 + 1.15940i
\(482\) 0 0
\(483\) −12.6593 + 0.742945i −0.576019 + 0.0338052i
\(484\) 0 0
\(485\) 5.05263 0.229428
\(486\) 0 0
\(487\) −37.7200 −1.70926 −0.854629 0.519239i \(-0.826215\pi\)
−0.854629 + 0.519239i \(0.826215\pi\)
\(488\) 0 0
\(489\) −8.69531 + 0.510307i −0.393215 + 0.0230769i
\(490\) 0 0
\(491\) −0.203651 + 0.352734i −0.00919063 + 0.0159186i −0.870584 0.492020i \(-0.836259\pi\)
0.861394 + 0.507938i \(0.169592\pi\)
\(492\) 0 0
\(493\) 15.9808 + 27.6796i 0.719741 + 1.24663i
\(494\) 0 0
\(495\) −8.86300 + 1.04389i −0.398362 + 0.0469194i
\(496\) 0 0
\(497\) −10.1637 17.6040i −0.455903 0.789647i
\(498\) 0 0
\(499\) −3.73644 + 6.47171i −0.167266 + 0.289714i −0.937458 0.348099i \(-0.886827\pi\)
0.770192 + 0.637813i \(0.220161\pi\)
\(500\) 0 0
\(501\) 11.8839 23.6889i 0.530933 1.05834i
\(502\) 0 0
\(503\) −34.5169 −1.53903 −0.769517 0.638626i \(-0.779503\pi\)
−0.769517 + 0.638626i \(0.779503\pi\)
\(504\) 0 0
\(505\) 15.2169 0.677145
\(506\) 0 0
\(507\) −18.2036 27.6505i −0.808449 1.22800i
\(508\) 0 0
\(509\) 1.41136 2.44454i 0.0625572 0.108352i −0.833051 0.553197i \(-0.813408\pi\)
0.895608 + 0.444845i \(0.146741\pi\)
\(510\) 0 0
\(511\) 11.2705 + 19.5211i 0.498579 + 0.863564i
\(512\) 0 0
\(513\) −23.3280 + 4.14531i −1.02996 + 0.183020i
\(514\) 0 0
\(515\) 7.68252 + 13.3065i 0.338532 + 0.586355i
\(516\) 0 0
\(517\) −1.66920 + 2.89114i −0.0734114 + 0.127152i
\(518\) 0 0
\(519\) −10.0993 15.3404i −0.443310 0.673370i
\(520\) 0 0
\(521\) 9.11300 0.399248 0.199624 0.979873i \(-0.436028\pi\)
0.199624 + 0.979873i \(0.436028\pi\)
\(522\) 0 0
\(523\) 1.96313 0.0858418 0.0429209 0.999078i \(-0.486334\pi\)
0.0429209 + 0.999078i \(0.486334\pi\)
\(524\) 0 0
\(525\) 1.66358 3.31611i 0.0726044 0.144727i
\(526\) 0 0
\(527\) −14.9279 + 25.8559i −0.650269 + 1.12630i
\(528\) 0 0
\(529\) 3.39339 + 5.87752i 0.147539 + 0.255544i
\(530\) 0 0
\(531\) −4.40466 + 10.2361i −0.191146 + 0.444207i
\(532\) 0 0
\(533\) 25.9325 + 44.9165i 1.12326 + 1.94555i
\(534\) 0 0
\(535\) −20.1570 + 34.9130i −0.871465 + 1.50942i
\(536\) 0 0
\(537\) −16.0340 + 0.940994i −0.691916 + 0.0406069i
\(538\) 0 0
\(539\) 4.42084 0.190419
\(540\) 0 0
\(541\) 3.46053 0.148780 0.0743899 0.997229i \(-0.476299\pi\)
0.0743899 + 0.997229i \(0.476299\pi\)
\(542\) 0 0
\(543\) −4.02832 + 0.236412i −0.172872 + 0.0101454i
\(544\) 0 0
\(545\) −2.59070 + 4.48723i −0.110974 + 0.192212i
\(546\) 0 0
\(547\) −4.80884 8.32915i −0.205611 0.356129i 0.744716 0.667381i \(-0.232585\pi\)
−0.950327 + 0.311252i \(0.899252\pi\)
\(548\) 0 0
\(549\) 14.4031 + 19.3110i 0.614711 + 0.824175i
\(550\) 0 0
\(551\) 13.7484 + 23.8129i 0.585702 + 1.01447i
\(552\) 0 0
\(553\) −7.93645 + 13.7463i −0.337492 + 0.584554i
\(554\) 0 0
\(555\) −10.0021 + 19.9378i −0.424565 + 0.846312i
\(556\) 0 0
\(557\) 9.47602 0.401512 0.200756 0.979641i \(-0.435660\pi\)
0.200756 + 0.979641i \(0.435660\pi\)
\(558\) 0 0
\(559\) −45.2360 −1.91328
\(560\) 0 0
\(561\) −6.04154 9.17686i −0.255074 0.387447i
\(562\) 0 0
\(563\) 20.8982 36.1967i 0.880753 1.52551i 0.0302481 0.999542i \(-0.490370\pi\)
0.850505 0.525967i \(-0.176296\pi\)
\(564\) 0 0
\(565\) 3.62725 + 6.28257i 0.152599 + 0.264310i
\(566\) 0 0
\(567\) 11.2511 + 11.8832i 0.472502 + 0.499049i
\(568\) 0 0
\(569\) 9.74041 + 16.8709i 0.408339 + 0.707265i 0.994704 0.102783i \(-0.0327747\pi\)
−0.586364 + 0.810047i \(0.699441\pi\)
\(570\) 0 0
\(571\) 9.27352 16.0622i 0.388085 0.672182i −0.604107 0.796903i \(-0.706470\pi\)
0.992192 + 0.124721i \(0.0398035\pi\)
\(572\) 0 0
\(573\) −16.2713 24.7154i −0.679742 1.03250i
\(574\) 0 0
\(575\) 4.74336 0.197812
\(576\) 0 0
\(577\) 28.5458 1.18838 0.594188 0.804326i \(-0.297473\pi\)
0.594188 + 0.804326i \(0.297473\pi\)
\(578\) 0 0
\(579\) −18.8510 + 37.5770i −0.783422 + 1.56165i
\(580\) 0 0
\(581\) −16.1694 + 28.0062i −0.670820 + 1.16189i
\(582\) 0 0
\(583\) −0.924361 1.60104i −0.0382831 0.0663083i
\(584\) 0 0
\(585\) −25.2634 33.8720i −1.04451 1.40043i
\(586\) 0 0
\(587\) 1.49840 + 2.59531i 0.0618457 + 0.107120i 0.895290 0.445483i \(-0.146968\pi\)
−0.833445 + 0.552603i \(0.813635\pi\)
\(588\) 0 0
\(589\) −12.8425 + 22.2439i −0.529168 + 0.916545i
\(590\) 0 0
\(591\) 27.1415 1.59287i 1.11645 0.0655218i
\(592\) 0 0
\(593\) 24.7528 1.01648 0.508238 0.861216i \(-0.330297\pi\)
0.508238 + 0.861216i \(0.330297\pi\)
\(594\) 0 0
\(595\) 23.9541 0.982022
\(596\) 0 0
\(597\) −25.0307 + 1.46899i −1.02444 + 0.0601219i
\(598\) 0 0
\(599\) −19.2808 + 33.3954i −0.787794 + 1.36450i 0.139522 + 0.990219i \(0.455443\pi\)
−0.927316 + 0.374280i \(0.877890\pi\)
\(600\) 0 0
\(601\) −15.4398 26.7426i −0.629804 1.09085i −0.987591 0.157050i \(-0.949802\pi\)
0.357786 0.933803i \(-0.383532\pi\)
\(602\) 0 0
\(603\) −16.3966 + 38.1043i −0.667720 + 1.55173i
\(604\) 0 0
\(605\) 11.8905 + 20.5949i 0.483417 + 0.837302i
\(606\) 0 0
\(607\) −14.1298 + 24.4736i −0.573512 + 0.993352i 0.422689 + 0.906275i \(0.361086\pi\)
−0.996202 + 0.0870777i \(0.972247\pi\)
\(608\) 0 0
\(609\) 8.51585 16.9752i 0.345079 0.687869i
\(610\) 0 0
\(611\) −15.8071 −0.639487
\(612\) 0 0
\(613\) −28.6419 −1.15684 −0.578419 0.815740i \(-0.696330\pi\)
−0.578419 + 0.815740i \(0.696330\pi\)
\(614\) 0 0
\(615\) 21.6664 + 32.9104i 0.873674 + 1.32708i
\(616\) 0 0
\(617\) 1.80372 3.12413i 0.0726150 0.125773i −0.827432 0.561566i \(-0.810199\pi\)
0.900047 + 0.435794i \(0.143532\pi\)
\(618\) 0 0
\(619\) 4.76132 + 8.24686i 0.191374 + 0.331469i 0.945706 0.325024i \(-0.105372\pi\)
−0.754332 + 0.656493i \(0.772039\pi\)
\(620\) 0 0
\(621\) −7.12985 + 19.6703i −0.286111 + 0.789344i
\(622\) 0 0
\(623\) −0.413930 0.716947i −0.0165837 0.0287239i
\(624\) 0 0
\(625\) 14.7512 25.5498i 0.590047 1.02199i
\(626\) 0 0
\(627\) −5.19757 7.89490i −0.207571 0.315292i
\(628\) 0 0
\(629\) −27.4619 −1.09498
\(630\) 0 0
\(631\) 30.5885 1.21771 0.608855 0.793281i \(-0.291629\pi\)
0.608855 + 0.793281i \(0.291629\pi\)
\(632\) 0 0
\(633\) 4.98774 9.94238i 0.198245 0.395174i
\(634\) 0 0
\(635\) −18.7186 + 32.4215i −0.742824 + 1.28661i
\(636\) 0 0
\(637\) 10.4662 + 18.1280i 0.414686 + 0.718257i
\(638\) 0 0
\(639\) −33.3080 + 3.92304i −1.31764 + 0.155193i
\(640\) 0 0
\(641\) 4.09007 + 7.08420i 0.161548 + 0.279809i 0.935424 0.353528i \(-0.115018\pi\)
−0.773876 + 0.633337i \(0.781685\pi\)
\(642\) 0 0
\(643\) 13.0611 22.6225i 0.515079 0.892144i −0.484768 0.874643i \(-0.661096\pi\)
0.999847 0.0175005i \(-0.00557087\pi\)
\(644\) 0 0
\(645\) −34.3070 + 2.01339i −1.35084 + 0.0792773i
\(646\) 0 0
\(647\) 22.0170 0.865577 0.432789 0.901495i \(-0.357530\pi\)
0.432789 + 0.901495i \(0.357530\pi\)
\(648\) 0 0
\(649\) −4.44557 −0.174504
\(650\) 0 0
\(651\) 17.7097 1.03934i 0.694097 0.0407349i
\(652\) 0 0
\(653\) 1.14611 1.98512i 0.0448508 0.0776839i −0.842729 0.538339i \(-0.819052\pi\)
0.887579 + 0.460655i \(0.152385\pi\)
\(654\) 0 0
\(655\) 4.70544 + 8.15006i 0.183857 + 0.318449i
\(656\) 0 0
\(657\) 36.9353 4.35028i 1.44098 0.169720i
\(658\) 0 0
\(659\) 3.29926 + 5.71449i 0.128521 + 0.222605i 0.923104 0.384551i \(-0.125644\pi\)
−0.794583 + 0.607156i \(0.792310\pi\)
\(660\) 0 0
\(661\) 2.88305 4.99359i 0.112138 0.194228i −0.804494 0.593960i \(-0.797564\pi\)
0.916632 + 0.399732i \(0.130897\pi\)
\(662\) 0 0
\(663\) 23.3272 46.4997i 0.905955 1.80590i
\(664\) 0 0
\(665\) 20.6078 0.799137
\(666\) 0 0
\(667\) 24.2813 0.940174
\(668\) 0 0
\(669\) −15.0612 22.8774i −0.582300 0.884491i
\(670\) 0 0
\(671\) −4.80537 + 8.32314i −0.185509 + 0.321311i
\(672\) 0 0
\(673\) −22.6226 39.1835i −0.872038 1.51041i −0.859885 0.510488i \(-0.829465\pi\)
−0.0121528 0.999926i \(-0.503868\pi\)
\(674\) 0 0
\(675\) −3.94082 4.68384i −0.151682 0.180281i
\(676\) 0 0
\(677\) 3.70089 + 6.41013i 0.142237 + 0.246361i 0.928339 0.371736i \(-0.121237\pi\)
−0.786102 + 0.618097i \(0.787904\pi\)
\(678\) 0 0
\(679\) 1.84810 3.20100i 0.0709235 0.122843i
\(680\) 0 0
\(681\) −5.73219 8.70698i −0.219658 0.333652i
\(682\) 0 0
\(683\) 9.88608 0.378281 0.189140 0.981950i \(-0.439430\pi\)
0.189140 + 0.981950i \(0.439430\pi\)
\(684\) 0 0
\(685\) −31.7878 −1.21455
\(686\) 0 0
\(687\) 21.4632 42.7840i 0.818873 1.63231i
\(688\) 0 0
\(689\) 4.37679 7.58082i 0.166742 0.288806i
\(690\) 0 0
\(691\) −4.43367 7.67934i −0.168665 0.292136i 0.769286 0.638905i \(-0.220612\pi\)
−0.937951 + 0.346769i \(0.887279\pi\)
\(692\) 0 0
\(693\) −2.58048 + 5.99681i −0.0980242 + 0.227800i
\(694\) 0 0
\(695\) 11.0990 + 19.2240i 0.421009 + 0.729209i
\(696\) 0 0
\(697\) −24.2548 + 42.0106i −0.918717 + 1.59126i
\(698\) 0 0
\(699\) −21.0703 + 1.23656i −0.796950 + 0.0467711i
\(700\) 0 0
\(701\) 38.9889 1.47259 0.736296 0.676660i \(-0.236573\pi\)
0.736296 + 0.676660i \(0.236573\pi\)
\(702\) 0 0
\(703\) −23.6256 −0.891055
\(704\) 0 0
\(705\) −11.9881 + 0.703553i −0.451498 + 0.0264973i
\(706\) 0 0
\(707\) 5.56589 9.64040i 0.209327 0.362564i
\(708\) 0 0
\(709\) −5.12709 8.88039i −0.192552 0.333510i 0.753543 0.657398i \(-0.228343\pi\)
−0.946095 + 0.323888i \(0.895010\pi\)
\(710\) 0 0
\(711\) 15.6575 + 20.9928i 0.587201 + 0.787292i
\(712\) 0 0
\(713\) 11.3407 + 19.6427i 0.424712 + 0.735623i
\(714\) 0 0
\(715\) 8.42872 14.5990i 0.315216 0.545970i
\(716\) 0 0
\(717\) −12.1593 + 24.2378i −0.454096 + 0.905178i
\(718\) 0 0
\(719\) −16.8003 −0.626545 −0.313272 0.949663i \(-0.601425\pi\)
−0.313272 + 0.949663i \(0.601425\pi\)
\(720\) 0 0
\(721\) 11.2401 0.418604
\(722\) 0 0
\(723\) 17.8918 + 27.1769i 0.665402 + 1.01072i
\(724\) 0 0
\(725\) −3.55187 + 6.15203i −0.131913 + 0.228481i
\(726\) 0 0
\(727\) 9.98309 + 17.2912i 0.370252 + 0.641296i 0.989604 0.143818i \(-0.0459379\pi\)
−0.619352 + 0.785113i \(0.712605\pi\)
\(728\) 0 0
\(729\) 25.3471 9.30190i 0.938781 0.344515i
\(730\) 0 0
\(731\) −21.1547 36.6410i −0.782436 1.35522i
\(732\) 0 0
\(733\) −2.98307 + 5.16683i −0.110182 + 0.190841i −0.915844 0.401535i \(-0.868477\pi\)
0.805661 + 0.592376i \(0.201810\pi\)
\(734\) 0 0
\(735\) 8.74441 + 13.2824i 0.322542 + 0.489929i
\(736\) 0 0
\(737\) −16.5489 −0.609585
\(738\) 0 0
\(739\) 0.673830 0.0247872 0.0123936 0.999923i \(-0.496055\pi\)
0.0123936 + 0.999923i \(0.496055\pi\)
\(740\) 0 0
\(741\) 20.0685 40.0039i 0.737237 1.46958i
\(742\) 0 0
\(743\) 15.4737 26.8013i 0.567676 0.983244i −0.429119 0.903248i \(-0.641176\pi\)
0.996795 0.0799963i \(-0.0254909\pi\)
\(744\) 0 0
\(745\) −11.5621 20.0261i −0.423602 0.733700i
\(746\) 0 0
\(747\) 31.8999 + 42.7699i 1.16716 + 1.56487i
\(748\) 0 0
\(749\) 14.7457 + 25.5402i 0.538794 + 0.933219i
\(750\) 0 0
\(751\) 0.0124745 0.0216064i 0.000455200 0.000788429i −0.865798 0.500394i \(-0.833188\pi\)
0.866253 + 0.499606i \(0.166522\pi\)
\(752\) 0 0
\(753\) 19.3110 1.13331i 0.703731 0.0413003i
\(754\) 0 0
\(755\) −38.9501 −1.41754
\(756\) 0 0
\(757\) −2.61883 −0.0951829 −0.0475914 0.998867i \(-0.515155\pi\)
−0.0475914 + 0.998867i \(0.515155\pi\)
\(758\) 0 0
\(759\) −8.33250 + 0.489014i −0.302451 + 0.0177501i
\(760\) 0 0
\(761\) 4.19437 7.26486i 0.152046 0.263351i −0.779934 0.625862i \(-0.784747\pi\)
0.931979 + 0.362511i \(0.118081\pi\)
\(762\) 0 0
\(763\) 1.89520 + 3.28258i 0.0686109 + 0.118837i
\(764\) 0 0
\(765\) 15.6217 36.3036i 0.564805 1.31256i
\(766\) 0 0
\(767\) −10.5247 18.2294i −0.380027 0.658225i
\(768\) 0 0
\(769\) −1.00513 + 1.74094i −0.0362460 + 0.0627800i −0.883579 0.468281i \(-0.844873\pi\)
0.847333 + 0.531061i \(0.178207\pi\)
\(770\) 0 0
\(771\) 4.96969 9.90640i 0.178979 0.356770i
\(772\) 0 0
\(773\) 10.2064 0.367099 0.183550 0.983010i \(-0.441241\pi\)
0.183550 + 0.983010i \(0.441241\pi\)
\(774\) 0 0
\(775\) −6.63569 −0.238361
\(776\) 0 0
\(777\) 8.97275 + 13.6293i 0.321896 + 0.488947i
\(778\) 0 0
\(779\) −20.8666 + 36.1419i −0.747622 + 1.29492i
\(780\) 0 0
\(781\) −6.68983 11.5871i −0.239381 0.414620i
\(782\) 0 0
\(783\) −20.1731 23.9766i −0.720927 0.856854i
\(784\) 0 0
\(785\) 24.2464 + 41.9960i 0.865392 + 1.49890i
\(786\) 0 0
\(787\) 13.6213 23.5928i 0.485547 0.840991i −0.514315 0.857601i \(-0.671954\pi\)
0.999862 + 0.0166097i \(0.00528727\pi\)
\(788\) 0 0
\(789\) 12.7935 + 19.4328i 0.455461 + 0.691827i
\(790\) 0 0
\(791\) 5.30694 0.188693
\(792\) 0 0
\(793\) −45.5062 −1.61597
\(794\) 0 0
\(795\) 2.98194 5.94409i 0.105759 0.210815i
\(796\) 0 0
\(797\) 6.73924