Properties

Label 1152.2.i.i
Level $1152$
Weight $2$
Character orbit 1152.i
Analytic conductor $9.199$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 2 x^{11} + 3 x^{10} - 8 x^{9} + 22 x^{8} - 42 x^{7} + 51 x^{6} - 126 x^{5} + 198 x^{4} - 216 x^{3} + 243 x^{2} - 486 x + 729\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} + \beta_{6} ) q^{3} + ( \beta_{4} - \beta_{5} - \beta_{6} ) q^{5} + ( -2 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{6} + \beta_{9} + \beta_{10} ) q^{7} -\beta_{9} q^{9} +O(q^{10})\) \( q + ( \beta_{1} + \beta_{6} ) q^{3} + ( \beta_{4} - \beta_{5} - \beta_{6} ) q^{5} + ( -2 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{6} + \beta_{9} + \beta_{10} ) q^{7} -\beta_{9} q^{9} + ( \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} + 2 \beta_{6} + \beta_{8} - \beta_{10} ) q^{11} + ( 1 + \beta_{1} - \beta_{3} + \beta_{4} + 2 \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{13} + ( -1 - \beta_{1} - \beta_{2} - \beta_{4} - 2 \beta_{5} - \beta_{6} - \beta_{7} + \beta_{9} + \beta_{11} ) q^{15} + ( \beta_{1} + \beta_{4} + \beta_{6} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{17} + ( -2 - 2 \beta_{1} - \beta_{2} + \beta_{4} - 2 \beta_{6} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} ) q^{19} + ( 1 - \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{21} + ( 2 \beta_{1} - 2 \beta_{5} - \beta_{7} + \beta_{8} + \beta_{10} ) q^{23} + ( -3 + \beta_{1} - \beta_{2} - \beta_{3} + 2 \beta_{5} + 2 \beta_{6} - \beta_{7} + \beta_{8} + \beta_{9} ) q^{25} + ( -\beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{8} + \beta_{10} ) q^{27} + ( 1 + 2 \beta_{1} + 2 \beta_{2} - \beta_{4} + \beta_{6} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{29} + ( -2 \beta_{3} + 2 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} - \beta_{10} ) q^{31} + ( -1 - \beta_{1} - 2 \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{33} + ( -3 - \beta_{1} - 3 \beta_{2} + \beta_{4} - \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{35} + ( -\beta_{1} + \beta_{2} + \beta_{3} - \beta_{7} + \beta_{8} ) q^{37} + ( -5 - \beta_{1} - \beta_{2} + \beta_{3} - \beta_{4} + 3 \beta_{5} + \beta_{6} - 2 \beta_{7} + 2 \beta_{10} + \beta_{11} ) q^{39} + ( -1 - \beta_{1} + \beta_{3} - 2 \beta_{4} - \beta_{7} + \beta_{8} + \beta_{9} + \beta_{10} + \beta_{11} ) q^{41} + ( 1 + 2 \beta_{1} + 2 \beta_{2} - 2 \beta_{4} + 3 \beta_{6} - \beta_{7} + \beta_{11} ) q^{43} + ( 5 + \beta_{1} + 2 \beta_{2} + \beta_{3} + \beta_{4} - 4 \beta_{5} - \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{45} + ( 2 - \beta_{1} + \beta_{2} - 2 \beta_{4} - \beta_{5} + \beta_{6} + \beta_{9} + \beta_{10} ) q^{47} + ( 2 \beta_{1} - \beta_{3} - \beta_{4} - 3 \beta_{5} + \beta_{6} - \beta_{7} - \beta_{9} ) q^{49} + ( 4 + \beta_{1} - 2 \beta_{2} + \beta_{3} - 3 \beta_{5} + 2 \beta_{8} + \beta_{9} + 2 \beta_{10} ) q^{51} + ( 4 + 3 \beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{6} + \beta_{7} + \beta_{8} ) q^{53} + ( 1 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{6} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{55} + ( -3 - \beta_{1} - \beta_{2} + \beta_{3} - 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{8} + 3 \beta_{9} + 2 \beta_{10} ) q^{57} + ( -2 - 3 \beta_{1} - 2 \beta_{5} - 3 \beta_{6} - \beta_{7} + 2 \beta_{11} ) q^{59} + ( 1 - 2 \beta_{1} - 2 \beta_{2} + \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{9} + \beta_{10} - \beta_{11} ) q^{61} + ( 1 + 2 \beta_{1} + 4 \beta_{2} - \beta_{3} - \beta_{4} + 4 \beta_{5} + 4 \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{63} + ( -3 + 3 \beta_{1} - 2 \beta_{2} - \beta_{3} - 2 \beta_{5} - 2 \beta_{6} - \beta_{7} + \beta_{8} + 2 \beta_{9} + \beta_{10} + 3 \beta_{11} ) q^{65} + ( 3 \beta_{1} + \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + \beta_{9} + 2 \beta_{10} ) q^{67} + ( -5 - 2 \beta_{1} - 3 \beta_{2} - 2 \beta_{3} + \beta_{4} - 3 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{69} + ( 1 - \beta_{1} - 3 \beta_{2} + \beta_{4} - 3 \beta_{6} - \beta_{8} - \beta_{9} + \beta_{10} - \beta_{11} ) q^{71} + ( 2 - 3 \beta_{1} - 2 \beta_{2} + \beta_{4} - \beta_{6} - 2 \beta_{7} - \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{73} + ( -1 - 2 \beta_{1} + 2 \beta_{2} - \beta_{3} - 4 \beta_{4} - \beta_{5} + 3 \beta_{6} + \beta_{7} - \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{75} + ( -2 - 6 \beta_{1} + 2 \beta_{3} + \beta_{4} - \beta_{5} - 5 \beta_{6} + 2 \beta_{9} + 2 \beta_{11} ) q^{77} + ( -3 - \beta_{3} - \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + \beta_{7} + \beta_{8} + \beta_{9} + \beta_{11} ) q^{79} + ( -\beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} + 4 \beta_{5} + \beta_{6} + \beta_{8} + 2 \beta_{9} + \beta_{10} - \beta_{11} ) q^{81} + ( -6 - \beta_{2} + \beta_{3} - \beta_{4} + 3 \beta_{5} - 2 \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{9} + 3 \beta_{10} + 2 \beta_{11} ) q^{83} + ( -1 - \beta_{1} + \beta_{3} - \beta_{5} - 6 \beta_{6} - 3 \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} + \beta_{11} ) q^{85} + ( 2 - \beta_{1} - 3 \beta_{2} - \beta_{3} + 4 \beta_{4} - 4 \beta_{5} - 3 \beta_{6} - \beta_{7} - 2 \beta_{8} - 2 \beta_{9} + \beta_{10} ) q^{87} + ( -6 - 3 \beta_{1} - \beta_{2} - \beta_{3} - 2 \beta_{6} - \beta_{7} - \beta_{8} ) q^{89} + ( 2 - 4 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - \beta_{6} - \beta_{7} + 2 \beta_{9} - 2 \beta_{10} ) q^{91} + ( 1 - \beta_{2} - \beta_{4} + 4 \beta_{5} - \beta_{6} + \beta_{9} + 3 \beta_{10} - \beta_{11} ) q^{93} + ( 2 + 2 \beta_{1} - 2 \beta_{3} + 2 \beta_{4} + 4 \beta_{5} + 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{95} + ( -4 - 4 \beta_{1} - \beta_{2} + 2 \beta_{3} + 4 \beta_{5} - 2 \beta_{6} - 2 \beta_{8} + \beta_{9} + 3 \beta_{10} - \beta_{11} ) q^{97} + ( -8 - 2 \beta_{1} + \beta_{3} + 5 \beta_{5} - 2 \beta_{6} + \beta_{9} + 2 \beta_{10} - 2 \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{3} - 2 q^{5} - 6 q^{7} - 2 q^{9} + O(q^{10}) \) \( 12 q - 4 q^{3} - 2 q^{5} - 6 q^{7} - 2 q^{9} - 4 q^{11} + 10 q^{13} - 4 q^{15} + 4 q^{17} - 4 q^{19} + 2 q^{21} - 8 q^{23} - 14 q^{25} + 14 q^{27} - 2 q^{29} - 8 q^{31} - 10 q^{33} - 8 q^{35} - 22 q^{39} - 2 q^{41} + 2 q^{43} + 10 q^{45} + 14 q^{47} - 18 q^{49} + 38 q^{51} + 24 q^{53} + 16 q^{55} - 38 q^{57} - 6 q^{59} + 14 q^{61} + 16 q^{63} - 8 q^{65} - 4 q^{67} - 50 q^{69} + 28 q^{71} + 60 q^{73} - 50 q^{75} + 2 q^{77} - 16 q^{79} + 22 q^{81} - 24 q^{83} + 16 q^{85} + 36 q^{87} - 48 q^{89} + 52 q^{91} + 42 q^{93} + 20 q^{95} - 14 q^{97} - 68 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 2 x^{11} + 3 x^{10} - 8 x^{9} + 22 x^{8} - 42 x^{7} + 51 x^{6} - 126 x^{5} + 198 x^{4} - 216 x^{3} + 243 x^{2} - 486 x + 729\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{11} - 2 \nu^{10} + 3 \nu^{9} - 8 \nu^{8} + 22 \nu^{7} - 42 \nu^{6} + 51 \nu^{5} - 126 \nu^{4} + 198 \nu^{3} - 216 \nu^{2} + 243 \nu - 486 \)\()/243\)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{11} + 2 \nu^{10} - 3 \nu^{9} + 8 \nu^{8} - 13 \nu^{7} + 24 \nu^{6} - 51 \nu^{5} + 108 \nu^{4} - 81 \nu^{3} + 54 \nu^{2} - 135 \nu + 162 \)\()/162\)
\(\beta_{3}\)\(=\)\((\)\( 4 \nu^{11} - 2 \nu^{10} + 9 \nu^{9} - 5 \nu^{8} + 40 \nu^{7} + 15 \nu^{5} - 279 \nu^{4} + 36 \nu^{3} - 324 \nu^{2} - 405 \nu - 1701 \)\()/486\)
\(\beta_{4}\)\(=\)\((\)\( -2 \nu^{11} + \nu^{10} - 3 \nu^{9} + 13 \nu^{8} - 38 \nu^{7} + 33 \nu^{6} - 69 \nu^{5} + 243 \nu^{4} - 234 \nu^{3} + 189 \nu^{2} - 297 \nu + 1215 \)\()/162\)
\(\beta_{5}\)\(=\)\((\)\( -11 \nu^{11} + 4 \nu^{10} - 33 \nu^{9} + 52 \nu^{8} - 179 \nu^{7} + 192 \nu^{6} - 327 \nu^{5} + 954 \nu^{4} - 693 \nu^{3} + 1404 \nu^{2} - 567 \nu + 4374 \)\()/486\)
\(\beta_{6}\)\(=\)\((\)\( 16 \nu^{11} + \nu^{10} + 36 \nu^{9} - 29 \nu^{8} + 196 \nu^{7} - 135 \nu^{6} + 240 \nu^{5} - 1035 \nu^{4} + 306 \nu^{3} - 1377 \nu^{2} - 324 \nu - 6075 \)\()/486\)
\(\beta_{7}\)\(=\)\((\)\( -2 \nu^{11} - 4 \nu^{9} + 7 \nu^{8} - 30 \nu^{7} + 26 \nu^{6} - 48 \nu^{5} + 165 \nu^{4} - 108 \nu^{3} + 234 \nu^{2} - 216 \nu + 891 \)\()/54\)
\(\beta_{8}\)\(=\)\((\)\( -17 \nu^{11} - 2 \nu^{10} - 42 \nu^{9} + 46 \nu^{8} - 275 \nu^{7} + 210 \nu^{6} - 444 \nu^{5} + 1494 \nu^{4} - 1125 \nu^{3} + 2538 \nu^{2} - 972 \nu + 9234 \)\()/486\)
\(\beta_{9}\)\(=\)\((\)\( 25 \nu^{11} - 2 \nu^{10} + 78 \nu^{9} - 92 \nu^{8} + 463 \nu^{7} - 462 \nu^{6} + 870 \nu^{5} - 2430 \nu^{4} + 1845 \nu^{3} - 4482 \nu^{2} + 1944 \nu - 13122 \)\()/486\)
\(\beta_{10}\)\(=\)\((\)\( 11 \nu^{11} - 4 \nu^{10} + 24 \nu^{9} - 34 \nu^{8} + 161 \nu^{7} - 138 \nu^{6} + 210 \nu^{5} - 756 \nu^{4} + 513 \nu^{3} - 918 \nu^{2} - 54 \nu - 4050 \)\()/162\)
\(\beta_{11}\)\(=\)\((\)\( -2 \nu^{11} - 4 \nu^{9} + 7 \nu^{8} - 30 \nu^{7} + 26 \nu^{6} - 48 \nu^{5} + 165 \nu^{4} - 108 \nu^{3} + 234 \nu^{2} - 135 \nu + 918 \)\()/27\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{11} - 2 \beta_{7} - 1\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{11} - \beta_{7} + 3 \beta_{6} - 3 \beta_{4} - 3 \beta_{3} - 2\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(\beta_{11} - 3 \beta_{9} - 6 \beta_{8} + \beta_{7} - 3 \beta_{5} - 3 \beta_{3} + 3 \beta_{1} + 5\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(-\beta_{11} + 3 \beta_{10} - 3 \beta_{9} - 6 \beta_{8} - \beta_{7} - 9 \beta_{6} - 3 \beta_{5} + 9 \beta_{4} - 3 \beta_{3} - 3 \beta_{2} - 6 \beta_{1} - 14\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(-5 \beta_{11} + 3 \beta_{10} - 9 \beta_{8} + 7 \beta_{7} - 9 \beta_{6} + 9 \beta_{5} + 9 \beta_{4} - 9 \beta_{3} - 21 \beta_{2} - 18 \beta_{1} - 7\)\()/3\)
\(\nu^{6}\)\(=\)\((\)\(2 \beta_{11} + 6 \beta_{10} - 6 \beta_{9} - 21 \beta_{8} - 7 \beta_{7} - 30 \beta_{6} - 6 \beta_{5} + 12 \beta_{4} + 15 \beta_{3} - 15 \beta_{2} - 39 \beta_{1} + 13\)\()/3\)
\(\nu^{7}\)\(=\)\((\)\(13 \beta_{11} + 18 \beta_{10} + 21 \beta_{9} + 24 \beta_{8} - 23 \beta_{7} - 24 \beta_{6} + 21 \beta_{5} - 12 \beta_{4} + 9 \beta_{3} + 18 \beta_{2} - 48 \beta_{1} + 17\)\()/3\)
\(\nu^{8}\)\(=\)\((\)\(41 \beta_{11} + 3 \beta_{10} + 27 \beta_{9} - 25 \beta_{7} + 69 \beta_{6} + 99 \beta_{5} - 33 \beta_{4} - 33 \beta_{3} - 21 \beta_{2} + 54 \beta_{1} + 55\)\()/3\)
\(\nu^{9}\)\(=\)\((\)\(130 \beta_{11} - 21 \beta_{10} - 30 \beta_{9} - 69 \beta_{8} - 95 \beta_{7} + 87 \beta_{6} - 165 \beta_{5} - 51 \beta_{4} - 45 \beta_{3} + 39 \beta_{2} + 12 \beta_{1} - 94\)\()/3\)
\(\nu^{10}\)\(=\)\((\)\(-16 \beta_{11} - 66 \beta_{10} - 66 \beta_{9} - 69 \beta_{8} + 92 \beta_{7} + 165 \beta_{6} - 174 \beta_{5} - 93 \beta_{4} - 258 \beta_{3} + 129 \beta_{2} + 21 \beta_{1} + 241\)\()/3\)
\(\nu^{11}\)\(=\)\((\)\(-176 \beta_{11} + 36 \beta_{10} - 324 \beta_{9} - 450 \beta_{8} + 70 \beta_{7} - 138 \beta_{6} - 18 \beta_{5} + 498 \beta_{4} - 186 \beta_{3} - 360 \beta_{2} + 153 \beta_{1} + 248\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-\beta_{5}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
385.1
0.952418 + 1.44669i
−0.433633 + 1.67689i
1.73202 0.0102491i
−1.28252 + 1.16410i
1.19051 1.25805i
−1.15879 1.28733i
0.952418 1.44669i
−0.433633 1.67689i
1.73202 + 0.0102491i
−1.28252 1.16410i
1.19051 + 1.25805i
−1.15879 + 1.28733i
0 −1.72908 0.101475i 0 −1.24278 2.15256i 0 −0.909142 + 1.57468i 0 2.97941 + 0.350917i 0
385.2 0 −1.23541 + 1.21398i 0 2.22043 + 3.84590i 0 −1.45488 + 2.51992i 0 0.0524919 2.99954i 0
385.3 0 −0.857134 1.50510i 0 0.551563 + 0.955334i 0 1.62490 2.81442i 0 −1.53064 + 2.58014i 0
385.4 0 −0.366879 + 1.69275i 0 −1.05471 1.82681i 0 1.43914 2.49267i 0 −2.73080 1.24207i 0
385.5 0 0.494250 1.66004i 0 0.268104 + 0.464369i 0 −2.35014 + 4.07056i 0 −2.51143 1.64095i 0
385.6 0 1.69425 + 0.359877i 0 −1.74260 3.01828i 0 −1.34988 + 2.33807i 0 2.74098 + 1.21944i 0
769.1 0 −1.72908 + 0.101475i 0 −1.24278 + 2.15256i 0 −0.909142 1.57468i 0 2.97941 0.350917i 0
769.2 0 −1.23541 1.21398i 0 2.22043 3.84590i 0 −1.45488 2.51992i 0 0.0524919 + 2.99954i 0
769.3 0 −0.857134 + 1.50510i 0 0.551563 0.955334i 0 1.62490 + 2.81442i 0 −1.53064 2.58014i 0
769.4 0 −0.366879 1.69275i 0 −1.05471 + 1.82681i 0 1.43914 + 2.49267i 0 −2.73080 + 1.24207i 0
769.5 0 0.494250 + 1.66004i 0 0.268104 0.464369i 0 −2.35014 4.07056i 0 −2.51143 + 1.64095i 0
769.6 0 1.69425 0.359877i 0 −1.74260 + 3.01828i 0 −1.34988 2.33807i 0 2.74098 1.21944i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 769.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.2.i.i 12
3.b odd 2 1 3456.2.i.k 12
4.b odd 2 1 1152.2.i.k yes 12
8.b even 2 1 1152.2.i.l yes 12
8.d odd 2 1 1152.2.i.j yes 12
9.c even 3 1 inner 1152.2.i.i 12
9.d odd 6 1 3456.2.i.k 12
12.b even 2 1 3456.2.i.l 12
24.f even 2 1 3456.2.i.j 12
24.h odd 2 1 3456.2.i.i 12
36.f odd 6 1 1152.2.i.k yes 12
36.h even 6 1 3456.2.i.l 12
72.j odd 6 1 3456.2.i.i 12
72.l even 6 1 3456.2.i.j 12
72.n even 6 1 1152.2.i.l yes 12
72.p odd 6 1 1152.2.i.j yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.2.i.i 12 1.a even 1 1 trivial
1152.2.i.i 12 9.c even 3 1 inner
1152.2.i.j yes 12 8.d odd 2 1
1152.2.i.j yes 12 72.p odd 6 1
1152.2.i.k yes 12 4.b odd 2 1
1152.2.i.k yes 12 36.f odd 6 1
1152.2.i.l yes 12 8.b even 2 1
1152.2.i.l yes 12 72.n even 6 1
3456.2.i.i 12 24.h odd 2 1
3456.2.i.i 12 72.j odd 6 1
3456.2.i.j 12 24.f even 2 1
3456.2.i.j 12 72.l even 6 1
3456.2.i.k 12 3.b odd 2 1
3456.2.i.k 12 9.d odd 6 1
3456.2.i.l 12 12.b even 2 1
3456.2.i.l 12 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1152, [\chi])\):

\(T_{5}^{12} + \cdots\)
\(T_{7}^{12} + \cdots\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \)
$3$ \( 729 + 972 T + 729 T^{2} + 270 T^{3} - 45 T^{4} - 126 T^{5} - 102 T^{6} - 42 T^{7} - 5 T^{8} + 10 T^{9} + 9 T^{10} + 4 T^{11} + T^{12} \)
$5$ \( 2304 - 4224 T + 9424 T^{2} - 1720 T^{3} + 4665 T^{4} + 1674 T^{5} + 2928 T^{6} + 948 T^{7} + 465 T^{8} + 60 T^{9} + 24 T^{10} + 2 T^{11} + T^{12} \)
$7$ \( 394384 + 324048 T + 294516 T^{2} + 117452 T^{3} + 67353 T^{4} + 21192 T^{5} + 10164 T^{6} + 2400 T^{7} + 861 T^{8} + 152 T^{9} + 48 T^{10} + 6 T^{11} + T^{12} \)
$11$ \( 229441 + 288358 T + 330311 T^{2} + 161042 T^{3} + 95190 T^{4} + 30798 T^{5} + 16503 T^{6} + 3972 T^{7} + 1398 T^{8} + 128 T^{9} + 47 T^{10} + 4 T^{11} + T^{12} \)
$13$ \( 6533136 - 1216656 T + 2437516 T^{2} - 1295668 T^{3} + 927657 T^{4} - 322086 T^{5} + 104988 T^{6} - 20448 T^{7} + 4269 T^{8} - 588 T^{9} + 108 T^{10} - 10 T^{11} + T^{12} \)
$17$ \( ( 1812 - 3652 T + 1424 T^{2} + 176 T^{3} - 83 T^{4} - 2 T^{5} + T^{6} )^{2} \)
$19$ \( ( -3408 + 448 T + 1160 T^{2} - 80 T^{3} - 65 T^{4} + 2 T^{5} + T^{6} )^{2} \)
$23$ \( 204304 + 2778896 T + 37480148 T^{2} + 4772236 T^{3} + 3584841 T^{4} + 440466 T^{5} + 244716 T^{6} + 26772 T^{7} + 7377 T^{8} + 484 T^{9} + 128 T^{10} + 8 T^{11} + T^{12} \)
$29$ \( 229704336 - 4183056 T + 32858604 T^{2} - 1767348 T^{3} + 3426993 T^{4} - 152658 T^{5} + 156912 T^{6} - 1824 T^{7} + 5049 T^{8} - 12 T^{9} + 88 T^{10} + 2 T^{11} + T^{12} \)
$31$ \( 1021953024 + 495631872 T + 228769632 T^{2} + 52045488 T^{3} + 13689369 T^{4} + 2224782 T^{5} + 493116 T^{6} + 61968 T^{7} + 10629 T^{8} + 876 T^{9} + 136 T^{10} + 8 T^{11} + T^{12} \)
$37$ \( ( -128 - 1728 T + 876 T^{2} + 68 T^{3} - 60 T^{4} + T^{6} )^{2} \)
$41$ \( 2259009 - 2065122 T + 2667933 T^{2} - 80478 T^{3} + 510354 T^{4} + 82566 T^{5} + 105981 T^{6} + 20682 T^{7} + 6570 T^{8} + 366 T^{9} + 85 T^{10} + 2 T^{11} + T^{12} \)
$43$ \( 16621929 + 27837756 T + 56418615 T^{2} - 14401800 T^{3} + 7050474 T^{4} - 752652 T^{5} + 276603 T^{6} - 21570 T^{7} + 7890 T^{8} - 294 T^{9} + 103 T^{10} - 2 T^{11} + T^{12} \)
$47$ \( 2178576 - 5957136 T + 16361620 T^{2} - 1703324 T^{3} + 2631105 T^{4} - 213660 T^{5} + 360204 T^{6} - 18288 T^{7} + 9465 T^{8} - 1008 T^{9} + 216 T^{10} - 14 T^{11} + T^{12} \)
$53$ \( ( 1728 - 1440 T - 852 T^{2} + 516 T^{3} - 24 T^{4} - 12 T^{5} + T^{6} )^{2} \)
$59$ \( 4100737369 - 617828976 T + 445991811 T^{2} - 19319756 T^{3} + 27186894 T^{4} - 898488 T^{5} + 878379 T^{6} + 19926 T^{7} + 16110 T^{8} + 322 T^{9} + 171 T^{10} + 6 T^{11} + T^{12} \)
$61$ \( 60715264 + 44071552 T + 32605904 T^{2} + 7501016 T^{3} + 2859633 T^{4} + 104130 T^{5} + 165648 T^{6} - 5484 T^{7} + 7077 T^{8} - 964 T^{9} + 200 T^{10} - 14 T^{11} + T^{12} \)
$67$ \( 3020711521 + 277553050 T + 682121567 T^{2} - 149369170 T^{3} + 125064942 T^{4} - 12391614 T^{5} + 3517287 T^{6} + 99444 T^{7} + 52302 T^{8} + 632 T^{9} + 263 T^{10} + 4 T^{11} + T^{12} \)
$71$ \( ( 1728 - 3744 T - 4716 T^{2} + 1608 T^{3} - 72 T^{4} - 14 T^{5} + T^{6} )^{2} \)
$73$ \( ( 39892 + 6612 T - 7884 T^{2} + 488 T^{3} + 225 T^{4} - 30 T^{5} + T^{6} )^{2} \)
$79$ \( 674337024 + 939626112 T + 891690448 T^{2} + 449230360 T^{3} + 164418801 T^{4} + 35734362 T^{5} + 5956416 T^{6} + 652080 T^{7} + 61569 T^{8} + 4020 T^{9} + 324 T^{10} + 16 T^{11} + T^{12} \)
$83$ \( 734843664 + 354247344 T + 245346732 T^{2} + 40494492 T^{3} + 24855345 T^{4} + 3431790 T^{5} + 1844226 T^{6} + 85896 T^{7} + 38355 T^{8} + 3828 T^{9} + 534 T^{10} + 24 T^{11} + T^{12} \)
$89$ \( ( -2864 - 7776 T - 3324 T^{2} - 68 T^{3} + 156 T^{4} + 24 T^{5} + T^{6} )^{2} \)
$97$ \( 78140934369 + 46797289170 T + 25477010197 T^{2} + 3355901918 T^{3} + 696053802 T^{4} + 52089210 T^{5} + 11046045 T^{6} + 674454 T^{7} + 90978 T^{8} + 3282 T^{9} + 429 T^{10} + 14 T^{11} + T^{12} \)
show more
show less