# Properties

 Label 1152.2.i.a.385.1 Level $1152$ Weight $2$ Character 1152.385 Analytic conductor $9.199$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$1152 = 2^{7} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1152.i (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$9.19876631285$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 385.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 1152.385 Dual form 1152.2.i.a.769.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{5} +(1.00000 - 1.73205i) q^{7} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(-1.50000 - 0.866025i) q^{3} +(-1.00000 - 1.73205i) q^{5} +(1.00000 - 1.73205i) q^{7} +(1.50000 + 2.59808i) q^{9} +(-2.50000 + 4.33013i) q^{11} +(2.00000 + 3.46410i) q^{13} +3.46410i q^{15} +1.00000 q^{17} -5.00000 q^{19} +(-3.00000 + 1.73205i) q^{21} +(2.00000 + 3.46410i) q^{23} +(0.500000 - 0.866025i) q^{25} -5.19615i q^{27} +(-3.00000 + 5.19615i) q^{29} +(7.50000 - 4.33013i) q^{33} -4.00000 q^{35} +10.0000 q^{37} -6.92820i q^{39} +(1.50000 + 2.59808i) q^{41} +(4.50000 - 7.79423i) q^{43} +(3.00000 - 5.19615i) q^{45} +(-4.00000 + 6.92820i) q^{47} +(1.50000 + 2.59808i) q^{49} +(-1.50000 - 0.866025i) q^{51} +12.0000 q^{53} +10.0000 q^{55} +(7.50000 + 4.33013i) q^{57} +(-3.50000 - 6.06218i) q^{59} +(2.00000 - 3.46410i) q^{61} +6.00000 q^{63} +(4.00000 - 6.92820i) q^{65} +(3.50000 + 6.06218i) q^{67} -6.92820i q^{69} +6.00000 q^{71} -13.0000 q^{73} +(-1.50000 + 0.866025i) q^{75} +(5.00000 + 8.66025i) q^{77} +(-1.00000 + 1.73205i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-6.00000 + 10.3923i) q^{83} +(-1.00000 - 1.73205i) q^{85} +(9.00000 - 5.19615i) q^{87} +10.0000 q^{89} +8.00000 q^{91} +(5.00000 + 8.66025i) q^{95} +(-6.50000 + 11.2583i) q^{97} -15.0000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 3 q^{3} - 2 q^{5} + 2 q^{7} + 3 q^{9} + O(q^{10})$$ $$2 q - 3 q^{3} - 2 q^{5} + 2 q^{7} + 3 q^{9} - 5 q^{11} + 4 q^{13} + 2 q^{17} - 10 q^{19} - 6 q^{21} + 4 q^{23} + q^{25} - 6 q^{29} + 15 q^{33} - 8 q^{35} + 20 q^{37} + 3 q^{41} + 9 q^{43} + 6 q^{45} - 8 q^{47} + 3 q^{49} - 3 q^{51} + 24 q^{53} + 20 q^{55} + 15 q^{57} - 7 q^{59} + 4 q^{61} + 12 q^{63} + 8 q^{65} + 7 q^{67} + 12 q^{71} - 26 q^{73} - 3 q^{75} + 10 q^{77} - 2 q^{79} - 9 q^{81} - 12 q^{83} - 2 q^{85} + 18 q^{87} + 20 q^{89} + 16 q^{91} + 10 q^{95} - 13 q^{97} - 30 q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −1.50000 0.866025i −0.866025 0.500000i
$$4$$ 0 0
$$5$$ −1.00000 1.73205i −0.447214 0.774597i 0.550990 0.834512i $$-0.314250\pi$$
−0.998203 + 0.0599153i $$0.980917\pi$$
$$6$$ 0 0
$$7$$ 1.00000 1.73205i 0.377964 0.654654i −0.612801 0.790237i $$-0.709957\pi$$
0.990766 + 0.135583i $$0.0432908\pi$$
$$8$$ 0 0
$$9$$ 1.50000 + 2.59808i 0.500000 + 0.866025i
$$10$$ 0 0
$$11$$ −2.50000 + 4.33013i −0.753778 + 1.30558i 0.192201 + 0.981356i $$0.438437\pi$$
−0.945979 + 0.324227i $$0.894896\pi$$
$$12$$ 0 0
$$13$$ 2.00000 + 3.46410i 0.554700 + 0.960769i 0.997927 + 0.0643593i $$0.0205004\pi$$
−0.443227 + 0.896410i $$0.646166\pi$$
$$14$$ 0 0
$$15$$ 3.46410i 0.894427i
$$16$$ 0 0
$$17$$ 1.00000 0.242536 0.121268 0.992620i $$-0.461304\pi$$
0.121268 + 0.992620i $$0.461304\pi$$
$$18$$ 0 0
$$19$$ −5.00000 −1.14708 −0.573539 0.819178i $$-0.694430\pi$$
−0.573539 + 0.819178i $$0.694430\pi$$
$$20$$ 0 0
$$21$$ −3.00000 + 1.73205i −0.654654 + 0.377964i
$$22$$ 0 0
$$23$$ 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i $$-0.0297381\pi$$
−0.578610 + 0.815604i $$0.696405\pi$$
$$24$$ 0 0
$$25$$ 0.500000 0.866025i 0.100000 0.173205i
$$26$$ 0 0
$$27$$ 5.19615i 1.00000i
$$28$$ 0 0
$$29$$ −3.00000 + 5.19615i −0.557086 + 0.964901i 0.440652 + 0.897678i $$0.354747\pi$$
−0.997738 + 0.0672232i $$0.978586\pi$$
$$30$$ 0 0
$$31$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$32$$ 0 0
$$33$$ 7.50000 4.33013i 1.30558 0.753778i
$$34$$ 0 0
$$35$$ −4.00000 −0.676123
$$36$$ 0 0
$$37$$ 10.0000 1.64399 0.821995 0.569495i $$-0.192861\pi$$
0.821995 + 0.569495i $$0.192861\pi$$
$$38$$ 0 0
$$39$$ 6.92820i 1.10940i
$$40$$ 0 0
$$41$$ 1.50000 + 2.59808i 0.234261 + 0.405751i 0.959058 0.283211i $$-0.0913998\pi$$
−0.724797 + 0.688963i $$0.758066\pi$$
$$42$$ 0 0
$$43$$ 4.50000 7.79423i 0.686244 1.18861i −0.286801 0.957990i $$-0.592592\pi$$
0.973044 0.230618i $$-0.0740749\pi$$
$$44$$ 0 0
$$45$$ 3.00000 5.19615i 0.447214 0.774597i
$$46$$ 0 0
$$47$$ −4.00000 + 6.92820i −0.583460 + 1.01058i 0.411606 + 0.911362i $$0.364968\pi$$
−0.995066 + 0.0992202i $$0.968365\pi$$
$$48$$ 0 0
$$49$$ 1.50000 + 2.59808i 0.214286 + 0.371154i
$$50$$ 0 0
$$51$$ −1.50000 0.866025i −0.210042 0.121268i
$$52$$ 0 0
$$53$$ 12.0000 1.64833 0.824163 0.566352i $$-0.191646\pi$$
0.824163 + 0.566352i $$0.191646\pi$$
$$54$$ 0 0
$$55$$ 10.0000 1.34840
$$56$$ 0 0
$$57$$ 7.50000 + 4.33013i 0.993399 + 0.573539i
$$58$$ 0 0
$$59$$ −3.50000 6.06218i −0.455661 0.789228i 0.543065 0.839691i $$-0.317264\pi$$
−0.998726 + 0.0504625i $$0.983930\pi$$
$$60$$ 0 0
$$61$$ 2.00000 3.46410i 0.256074 0.443533i −0.709113 0.705095i $$-0.750904\pi$$
0.965187 + 0.261562i $$0.0842377\pi$$
$$62$$ 0 0
$$63$$ 6.00000 0.755929
$$64$$ 0 0
$$65$$ 4.00000 6.92820i 0.496139 0.859338i
$$66$$ 0 0
$$67$$ 3.50000 + 6.06218i 0.427593 + 0.740613i 0.996659 0.0816792i $$-0.0260283\pi$$
−0.569066 + 0.822292i $$0.692695\pi$$
$$68$$ 0 0
$$69$$ 6.92820i 0.834058i
$$70$$ 0 0
$$71$$ 6.00000 0.712069 0.356034 0.934473i $$-0.384129\pi$$
0.356034 + 0.934473i $$0.384129\pi$$
$$72$$ 0 0
$$73$$ −13.0000 −1.52153 −0.760767 0.649025i $$-0.775177\pi$$
−0.760767 + 0.649025i $$0.775177\pi$$
$$74$$ 0 0
$$75$$ −1.50000 + 0.866025i −0.173205 + 0.100000i
$$76$$ 0 0
$$77$$ 5.00000 + 8.66025i 0.569803 + 0.986928i
$$78$$ 0 0
$$79$$ −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i $$-0.869222\pi$$
0.804272 + 0.594261i $$0.202555\pi$$
$$80$$ 0 0
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 0 0
$$83$$ −6.00000 + 10.3923i −0.658586 + 1.14070i 0.322396 + 0.946605i $$0.395512\pi$$
−0.980982 + 0.194099i $$0.937822\pi$$
$$84$$ 0 0
$$85$$ −1.00000 1.73205i −0.108465 0.187867i
$$86$$ 0 0
$$87$$ 9.00000 5.19615i 0.964901 0.557086i
$$88$$ 0 0
$$89$$ 10.0000 1.06000 0.529999 0.847998i $$-0.322192\pi$$
0.529999 + 0.847998i $$0.322192\pi$$
$$90$$ 0 0
$$91$$ 8.00000 0.838628
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 5.00000 + 8.66025i 0.512989 + 0.888523i
$$96$$ 0 0
$$97$$ −6.50000 + 11.2583i −0.659975 + 1.14311i 0.320647 + 0.947199i $$0.396100\pi$$
−0.980622 + 0.195911i $$0.937234\pi$$
$$98$$ 0 0
$$99$$ −15.0000 −1.50756
$$100$$ 0 0
$$101$$ −3.00000 + 5.19615i −0.298511 + 0.517036i −0.975796 0.218685i $$-0.929823\pi$$
0.677284 + 0.735721i $$0.263157\pi$$
$$102$$ 0 0
$$103$$ 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i $$-0.0377120\pi$$
−0.598858 + 0.800855i $$0.704379\pi$$
$$104$$ 0 0
$$105$$ 6.00000 + 3.46410i 0.585540 + 0.338062i
$$106$$ 0 0
$$107$$ 11.0000 1.06341 0.531705 0.846930i $$-0.321551\pi$$
0.531705 + 0.846930i $$0.321551\pi$$
$$108$$ 0 0
$$109$$ 12.0000 1.14939 0.574696 0.818367i $$-0.305120\pi$$
0.574696 + 0.818367i $$0.305120\pi$$
$$110$$ 0 0
$$111$$ −15.0000 8.66025i −1.42374 0.821995i
$$112$$ 0 0
$$113$$ −7.00000 12.1244i −0.658505 1.14056i −0.981003 0.193993i $$-0.937856\pi$$
0.322498 0.946570i $$-0.395477\pi$$
$$114$$ 0 0
$$115$$ 4.00000 6.92820i 0.373002 0.646058i
$$116$$ 0 0
$$117$$ −6.00000 + 10.3923i −0.554700 + 0.960769i
$$118$$ 0 0
$$119$$ 1.00000 1.73205i 0.0916698 0.158777i
$$120$$ 0 0
$$121$$ −7.00000 12.1244i −0.636364 1.10221i
$$122$$ 0 0
$$123$$ 5.19615i 0.468521i
$$124$$ 0 0
$$125$$ −12.0000 −1.07331
$$126$$ 0 0
$$127$$ 20.0000 1.77471 0.887357 0.461084i $$-0.152539\pi$$
0.887357 + 0.461084i $$0.152539\pi$$
$$128$$ 0 0
$$129$$ −13.5000 + 7.79423i −1.18861 + 0.686244i
$$130$$ 0 0
$$131$$ 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i $$0.00897729\pi$$
−0.475380 + 0.879781i $$0.657689\pi$$
$$132$$ 0 0
$$133$$ −5.00000 + 8.66025i −0.433555 + 0.750939i
$$134$$ 0 0
$$135$$ −9.00000 + 5.19615i −0.774597 + 0.447214i
$$136$$ 0 0
$$137$$ −0.500000 + 0.866025i −0.0427179 + 0.0739895i −0.886594 0.462549i $$-0.846935\pi$$
0.843876 + 0.536538i $$0.180268\pi$$
$$138$$ 0 0
$$139$$ −0.500000 0.866025i −0.0424094 0.0734553i 0.844042 0.536278i $$-0.180170\pi$$
−0.886451 + 0.462822i $$0.846837\pi$$
$$140$$ 0 0
$$141$$ 12.0000 6.92820i 1.01058 0.583460i
$$142$$ 0 0
$$143$$ −20.0000 −1.67248
$$144$$ 0 0
$$145$$ 12.0000 0.996546
$$146$$ 0 0
$$147$$ 5.19615i 0.428571i
$$148$$ 0 0
$$149$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$150$$ 0 0
$$151$$ 8.00000 13.8564i 0.651031 1.12762i −0.331842 0.943335i $$-0.607670\pi$$
0.982873 0.184284i $$-0.0589965\pi$$
$$152$$ 0 0
$$153$$ 1.50000 + 2.59808i 0.121268 + 0.210042i
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 0 0
$$157$$ −12.0000 20.7846i −0.957704 1.65879i −0.728055 0.685519i $$-0.759575\pi$$
−0.229650 0.973273i $$-0.573758\pi$$
$$158$$ 0 0
$$159$$ −18.0000 10.3923i −1.42749 0.824163i
$$160$$ 0 0
$$161$$ 8.00000 0.630488
$$162$$ 0 0
$$163$$ 4.00000 0.313304 0.156652 0.987654i $$-0.449930\pi$$
0.156652 + 0.987654i $$0.449930\pi$$
$$164$$ 0 0
$$165$$ −15.0000 8.66025i −1.16775 0.674200i
$$166$$ 0 0
$$167$$ −1.00000 1.73205i −0.0773823 0.134030i 0.824737 0.565516i $$-0.191323\pi$$
−0.902120 + 0.431486i $$0.857990\pi$$
$$168$$ 0 0
$$169$$ −1.50000 + 2.59808i −0.115385 + 0.199852i
$$170$$ 0 0
$$171$$ −7.50000 12.9904i −0.573539 0.993399i
$$172$$ 0 0
$$173$$ −9.00000 + 15.5885i −0.684257 + 1.18517i 0.289412 + 0.957205i $$0.406540\pi$$
−0.973670 + 0.227964i $$0.926793\pi$$
$$174$$ 0 0
$$175$$ −1.00000 1.73205i −0.0755929 0.130931i
$$176$$ 0 0
$$177$$ 12.1244i 0.911322i
$$178$$ 0 0
$$179$$ −12.0000 −0.896922 −0.448461 0.893802i $$-0.648028\pi$$
−0.448461 + 0.893802i $$0.648028\pi$$
$$180$$ 0 0
$$181$$ 20.0000 1.48659 0.743294 0.668965i $$-0.233262\pi$$
0.743294 + 0.668965i $$0.233262\pi$$
$$182$$ 0 0
$$183$$ −6.00000 + 3.46410i −0.443533 + 0.256074i
$$184$$ 0 0
$$185$$ −10.0000 17.3205i −0.735215 1.27343i
$$186$$ 0 0
$$187$$ −2.50000 + 4.33013i −0.182818 + 0.316650i
$$188$$ 0 0
$$189$$ −9.00000 5.19615i −0.654654 0.377964i
$$190$$ 0 0
$$191$$ 1.00000 1.73205i 0.0723575 0.125327i −0.827577 0.561353i $$-0.810281\pi$$
0.899934 + 0.436026i $$0.143614\pi$$
$$192$$ 0 0
$$193$$ −0.500000 0.866025i −0.0359908 0.0623379i 0.847469 0.530845i $$-0.178125\pi$$
−0.883460 + 0.468507i $$0.844792\pi$$
$$194$$ 0 0
$$195$$ −12.0000 + 6.92820i −0.859338 + 0.496139i
$$196$$ 0 0
$$197$$ −20.0000 −1.42494 −0.712470 0.701702i $$-0.752424\pi$$
−0.712470 + 0.701702i $$0.752424\pi$$
$$198$$ 0 0
$$199$$ −2.00000 −0.141776 −0.0708881 0.997484i $$-0.522583\pi$$
−0.0708881 + 0.997484i $$0.522583\pi$$
$$200$$ 0 0
$$201$$ 12.1244i 0.855186i
$$202$$ 0 0
$$203$$ 6.00000 + 10.3923i 0.421117 + 0.729397i
$$204$$ 0 0
$$205$$ 3.00000 5.19615i 0.209529 0.362915i
$$206$$ 0 0
$$207$$ −6.00000 + 10.3923i −0.417029 + 0.722315i
$$208$$ 0 0
$$209$$ 12.5000 21.6506i 0.864643 1.49761i
$$210$$ 0 0
$$211$$ 10.0000 + 17.3205i 0.688428 + 1.19239i 0.972346 + 0.233544i $$0.0750324\pi$$
−0.283918 + 0.958849i $$0.591634\pi$$
$$212$$ 0 0
$$213$$ −9.00000 5.19615i −0.616670 0.356034i
$$214$$ 0 0
$$215$$ −18.0000 −1.22759
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 19.5000 + 11.2583i 1.31769 + 0.760767i
$$220$$ 0 0
$$221$$ 2.00000 + 3.46410i 0.134535 + 0.233021i
$$222$$ 0 0
$$223$$ −12.0000 + 20.7846i −0.803579 + 1.39184i 0.113666 + 0.993519i $$0.463740\pi$$
−0.917246 + 0.398321i $$0.869593\pi$$
$$224$$ 0 0
$$225$$ 3.00000 0.200000
$$226$$ 0 0
$$227$$ 1.50000 2.59808i 0.0995585 0.172440i −0.811943 0.583736i $$-0.801590\pi$$
0.911502 + 0.411296i $$0.134924\pi$$
$$228$$ 0 0
$$229$$ 7.00000 + 12.1244i 0.462573 + 0.801200i 0.999088 0.0426906i $$-0.0135930\pi$$
−0.536515 + 0.843891i $$0.680260\pi$$
$$230$$ 0 0
$$231$$ 17.3205i 1.13961i
$$232$$ 0 0
$$233$$ −9.00000 −0.589610 −0.294805 0.955557i $$-0.595255\pi$$
−0.294805 + 0.955557i $$0.595255\pi$$
$$234$$ 0 0
$$235$$ 16.0000 1.04372
$$236$$ 0 0
$$237$$ 3.00000 1.73205i 0.194871 0.112509i
$$238$$ 0 0
$$239$$ 6.00000 + 10.3923i 0.388108 + 0.672222i 0.992195 0.124696i $$-0.0397955\pi$$
−0.604087 + 0.796918i $$0.706462\pi$$
$$240$$ 0 0
$$241$$ −12.5000 + 21.6506i −0.805196 + 1.39464i 0.110963 + 0.993825i $$0.464606\pi$$
−0.916159 + 0.400815i $$0.868727\pi$$
$$242$$ 0 0
$$243$$ 13.5000 7.79423i 0.866025 0.500000i
$$244$$ 0 0
$$245$$ 3.00000 5.19615i 0.191663 0.331970i
$$246$$ 0 0
$$247$$ −10.0000 17.3205i −0.636285 1.10208i
$$248$$ 0 0
$$249$$ 18.0000 10.3923i 1.14070 0.658586i
$$250$$ 0 0
$$251$$ −3.00000 −0.189358 −0.0946792 0.995508i $$-0.530183\pi$$
−0.0946792 + 0.995508i $$0.530183\pi$$
$$252$$ 0 0
$$253$$ −20.0000 −1.25739
$$254$$ 0 0
$$255$$ 3.46410i 0.216930i
$$256$$ 0 0
$$257$$ −1.50000 2.59808i −0.0935674 0.162064i 0.815442 0.578838i $$-0.196494\pi$$
−0.909010 + 0.416775i $$0.863160\pi$$
$$258$$ 0 0
$$259$$ 10.0000 17.3205i 0.621370 1.07624i
$$260$$ 0 0
$$261$$ −18.0000 −1.11417
$$262$$ 0 0
$$263$$ −9.00000 + 15.5885i −0.554964 + 0.961225i 0.442943 + 0.896550i $$0.353935\pi$$
−0.997906 + 0.0646755i $$0.979399\pi$$
$$264$$ 0 0
$$265$$ −12.0000 20.7846i −0.737154 1.27679i
$$266$$ 0 0
$$267$$ −15.0000 8.66025i −0.917985 0.529999i
$$268$$ 0 0
$$269$$ 4.00000 0.243884 0.121942 0.992537i $$-0.461088\pi$$
0.121942 + 0.992537i $$0.461088\pi$$
$$270$$ 0 0
$$271$$ −8.00000 −0.485965 −0.242983 0.970031i $$-0.578126\pi$$
−0.242983 + 0.970031i $$0.578126\pi$$
$$272$$ 0 0
$$273$$ −12.0000 6.92820i −0.726273 0.419314i
$$274$$ 0 0
$$275$$ 2.50000 + 4.33013i 0.150756 + 0.261116i
$$276$$ 0 0
$$277$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −15.0000 + 25.9808i −0.894825 + 1.54988i −0.0608039 + 0.998150i $$0.519366\pi$$
−0.834021 + 0.551733i $$0.813967\pi$$
$$282$$ 0 0
$$283$$ 12.0000 + 20.7846i 0.713326 + 1.23552i 0.963602 + 0.267342i $$0.0861454\pi$$
−0.250276 + 0.968175i $$0.580521\pi$$
$$284$$ 0 0
$$285$$ 17.3205i 1.02598i
$$286$$ 0 0
$$287$$ 6.00000 0.354169
$$288$$ 0 0
$$289$$ −16.0000 −0.941176
$$290$$ 0 0
$$291$$ 19.5000 11.2583i 1.14311 0.659975i
$$292$$ 0 0
$$293$$ −5.00000 8.66025i −0.292103 0.505937i 0.682204 0.731162i $$-0.261022\pi$$
−0.974307 + 0.225225i $$0.927688\pi$$
$$294$$ 0 0
$$295$$ −7.00000 + 12.1244i −0.407556 + 0.705907i
$$296$$ 0 0
$$297$$ 22.5000 + 12.9904i 1.30558 + 0.753778i
$$298$$ 0 0
$$299$$ −8.00000 + 13.8564i −0.462652 + 0.801337i
$$300$$ 0 0
$$301$$ −9.00000 15.5885i −0.518751 0.898504i
$$302$$ 0 0
$$303$$ 9.00000 5.19615i 0.517036 0.298511i
$$304$$ 0 0
$$305$$ −8.00000 −0.458079
$$306$$ 0 0
$$307$$ −3.00000 −0.171219 −0.0856095 0.996329i $$-0.527284\pi$$
−0.0856095 + 0.996329i $$0.527284\pi$$
$$308$$ 0 0
$$309$$ 13.8564i 0.788263i
$$310$$ 0 0
$$311$$ −5.00000 8.66025i −0.283524 0.491078i 0.688726 0.725022i $$-0.258170\pi$$
−0.972250 + 0.233944i $$0.924837\pi$$
$$312$$ 0 0
$$313$$ −12.5000 + 21.6506i −0.706542 + 1.22377i 0.259590 + 0.965719i $$0.416412\pi$$
−0.966132 + 0.258047i $$0.916921\pi$$
$$314$$ 0 0
$$315$$ −6.00000 10.3923i −0.338062 0.585540i
$$316$$ 0 0
$$317$$ −6.00000 + 10.3923i −0.336994 + 0.583690i −0.983866 0.178908i $$-0.942743\pi$$
0.646872 + 0.762598i $$0.276077\pi$$
$$318$$ 0 0
$$319$$ −15.0000 25.9808i −0.839839 1.45464i
$$320$$ 0 0
$$321$$ −16.5000 9.52628i −0.920940 0.531705i
$$322$$ 0 0
$$323$$ −5.00000 −0.278207
$$324$$ 0 0
$$325$$ 4.00000 0.221880
$$326$$ 0 0
$$327$$ −18.0000 10.3923i −0.995402 0.574696i
$$328$$ 0 0
$$329$$ 8.00000 + 13.8564i 0.441054 + 0.763928i
$$330$$ 0 0
$$331$$ 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i $$-0.648095\pi$$
0.998298 0.0583130i $$-0.0185721\pi$$
$$332$$ 0 0
$$333$$ 15.0000 + 25.9808i 0.821995 + 1.42374i
$$334$$ 0 0
$$335$$ 7.00000 12.1244i 0.382451 0.662424i
$$336$$ 0 0
$$337$$ −9.50000 16.4545i −0.517498 0.896333i −0.999793 0.0203242i $$-0.993530\pi$$
0.482295 0.876009i $$-0.339803\pi$$
$$338$$ 0 0
$$339$$ 24.2487i 1.31701i
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 20.0000 1.07990
$$344$$ 0 0
$$345$$ −12.0000 + 6.92820i −0.646058 + 0.373002i
$$346$$ 0 0
$$347$$ 1.50000 + 2.59808i 0.0805242 + 0.139472i 0.903475 0.428640i $$-0.141007\pi$$
−0.822951 + 0.568112i $$0.807674\pi$$
$$348$$ 0 0
$$349$$ −8.00000 + 13.8564i −0.428230 + 0.741716i −0.996716 0.0809766i $$-0.974196\pi$$
0.568486 + 0.822693i $$0.307529\pi$$
$$350$$ 0 0
$$351$$ 18.0000 10.3923i 0.960769 0.554700i
$$352$$ 0 0
$$353$$ 4.50000 7.79423i 0.239511 0.414845i −0.721063 0.692869i $$-0.756346\pi$$
0.960574 + 0.278024i $$0.0896796\pi$$
$$354$$ 0 0
$$355$$ −6.00000 10.3923i −0.318447 0.551566i
$$356$$ 0 0
$$357$$ −3.00000 + 1.73205i −0.158777 + 0.0916698i
$$358$$ 0 0
$$359$$ 34.0000 1.79445 0.897226 0.441572i $$-0.145579\pi$$
0.897226 + 0.441572i $$0.145579\pi$$
$$360$$ 0 0
$$361$$ 6.00000 0.315789
$$362$$ 0 0
$$363$$ 24.2487i 1.27273i
$$364$$ 0 0
$$365$$ 13.0000 + 22.5167i 0.680451 + 1.17858i
$$366$$ 0 0
$$367$$ 11.0000 19.0526i 0.574195 0.994535i −0.421933 0.906627i $$-0.638648\pi$$
0.996129 0.0879086i $$-0.0280183\pi$$
$$368$$ 0 0
$$369$$ −4.50000 + 7.79423i −0.234261 + 0.405751i
$$370$$ 0 0
$$371$$ 12.0000 20.7846i 0.623009 1.07908i
$$372$$ 0 0
$$373$$ 16.0000 + 27.7128i 0.828449 + 1.43492i 0.899255 + 0.437425i $$0.144109\pi$$
−0.0708063 + 0.997490i $$0.522557\pi$$
$$374$$ 0 0
$$375$$ 18.0000 + 10.3923i 0.929516 + 0.536656i
$$376$$ 0 0
$$377$$ −24.0000 −1.23606
$$378$$ 0 0
$$379$$ −25.0000 −1.28416 −0.642082 0.766636i $$-0.721929\pi$$
−0.642082 + 0.766636i $$0.721929\pi$$
$$380$$ 0 0
$$381$$ −30.0000 17.3205i −1.53695 0.887357i
$$382$$ 0 0
$$383$$ −3.00000 5.19615i −0.153293 0.265511i 0.779143 0.626846i $$-0.215654\pi$$
−0.932436 + 0.361335i $$0.882321\pi$$
$$384$$ 0 0
$$385$$ 10.0000 17.3205i 0.509647 0.882735i
$$386$$ 0 0
$$387$$ 27.0000 1.37249
$$388$$ 0 0
$$389$$ 19.0000 32.9090i 0.963338 1.66855i 0.249323 0.968420i $$-0.419792\pi$$
0.714015 0.700130i $$-0.246875\pi$$
$$390$$ 0 0
$$391$$ 2.00000 + 3.46410i 0.101144 + 0.175187i
$$392$$ 0 0
$$393$$ 20.7846i 1.04844i
$$394$$ 0 0
$$395$$ 4.00000 0.201262
$$396$$ 0 0
$$397$$ 18.0000 0.903394 0.451697 0.892171i $$-0.350819\pi$$
0.451697 + 0.892171i $$0.350819\pi$$
$$398$$ 0 0
$$399$$ 15.0000 8.66025i 0.750939 0.433555i
$$400$$ 0 0
$$401$$ 1.50000 + 2.59808i 0.0749064 + 0.129742i 0.901046 0.433724i $$-0.142801\pi$$
−0.826139 + 0.563466i $$0.809468\pi$$
$$402$$ 0 0
$$403$$ 0 0
$$404$$ 0 0
$$405$$ 18.0000 0.894427
$$406$$ 0 0
$$407$$ −25.0000 + 43.3013i −1.23920 + 2.14636i
$$408$$ 0 0
$$409$$ −12.5000 21.6506i −0.618085 1.07056i −0.989835 0.142222i $$-0.954575\pi$$
0.371750 0.928333i $$-0.378758\pi$$
$$410$$ 0 0
$$411$$ 1.50000 0.866025i 0.0739895 0.0427179i
$$412$$ 0 0
$$413$$ −14.0000 −0.688895
$$414$$ 0 0
$$415$$ 24.0000 1.17811
$$416$$ 0 0
$$417$$ 1.73205i 0.0848189i
$$418$$ 0 0
$$419$$ 10.0000 + 17.3205i 0.488532 + 0.846162i 0.999913 0.0131919i $$-0.00419923\pi$$
−0.511381 + 0.859354i $$0.670866\pi$$
$$420$$ 0 0
$$421$$ 1.00000 1.73205i 0.0487370 0.0844150i −0.840628 0.541613i $$-0.817814\pi$$
0.889365 + 0.457198i $$0.151147\pi$$
$$422$$ 0 0
$$423$$ −24.0000 −1.16692
$$424$$ 0 0
$$425$$ 0.500000 0.866025i 0.0242536 0.0420084i
$$426$$ 0 0
$$427$$ −4.00000 6.92820i −0.193574 0.335279i
$$428$$ 0 0
$$429$$ 30.0000 + 17.3205i 1.44841 + 0.836242i
$$430$$ 0 0
$$431$$ −10.0000 −0.481683 −0.240842 0.970564i $$-0.577423\pi$$
−0.240842 + 0.970564i $$0.577423\pi$$
$$432$$ 0 0
$$433$$ 33.0000 1.58588 0.792939 0.609301i $$-0.208550\pi$$
0.792939 + 0.609301i $$0.208550\pi$$
$$434$$ 0 0
$$435$$ −18.0000 10.3923i −0.863034 0.498273i
$$436$$ 0 0
$$437$$ −10.0000 17.3205i −0.478365 0.828552i
$$438$$ 0 0
$$439$$ −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i $$0.360782\pi$$
−0.996284 + 0.0861252i $$0.972552\pi$$
$$440$$ 0 0
$$441$$ −4.50000 + 7.79423i −0.214286 + 0.371154i
$$442$$ 0 0
$$443$$ −7.50000 + 12.9904i −0.356336 + 0.617192i −0.987346 0.158583i $$-0.949307\pi$$
0.631010 + 0.775775i $$0.282641\pi$$
$$444$$ 0 0
$$445$$ −10.0000 17.3205i −0.474045 0.821071i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 17.0000 0.802280 0.401140 0.916017i $$-0.368614\pi$$
0.401140 + 0.916017i $$0.368614\pi$$
$$450$$ 0 0
$$451$$ −15.0000 −0.706322
$$452$$ 0 0
$$453$$ −24.0000 + 13.8564i −1.12762 + 0.651031i
$$454$$ 0 0
$$455$$ −8.00000 13.8564i −0.375046 0.649598i
$$456$$ 0 0
$$457$$ 1.50000 2.59808i 0.0701670 0.121533i −0.828807 0.559534i $$-0.810980\pi$$
0.898974 + 0.438001i $$0.144313\pi$$
$$458$$ 0 0
$$459$$ 5.19615i 0.242536i
$$460$$ 0 0
$$461$$ 10.0000 17.3205i 0.465746 0.806696i −0.533488 0.845807i $$-0.679119\pi$$
0.999235 + 0.0391109i $$0.0124526\pi$$
$$462$$ 0 0
$$463$$ −1.00000 1.73205i −0.0464739 0.0804952i 0.841853 0.539707i $$-0.181465\pi$$
−0.888327 + 0.459212i $$0.848132\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 29.0000 1.34196 0.670980 0.741475i $$-0.265874\pi$$
0.670980 + 0.741475i $$0.265874\pi$$
$$468$$ 0 0
$$469$$ 14.0000 0.646460
$$470$$ 0 0
$$471$$ 41.5692i 1.91541i
$$472$$ 0 0
$$473$$ 22.5000 + 38.9711i 1.03455 + 1.79190i
$$474$$ 0 0
$$475$$ −2.50000 + 4.33013i −0.114708 + 0.198680i
$$476$$ 0 0
$$477$$ 18.0000 + 31.1769i 0.824163 + 1.42749i
$$478$$ 0 0
$$479$$ 9.00000 15.5885i 0.411220 0.712255i −0.583803 0.811895i $$-0.698436\pi$$
0.995023 + 0.0996406i $$0.0317693\pi$$
$$480$$ 0 0
$$481$$ 20.0000 + 34.6410i 0.911922 + 1.57949i
$$482$$ 0 0
$$483$$ −12.0000 6.92820i −0.546019 0.315244i
$$484$$ 0 0
$$485$$ 26.0000 1.18060
$$486$$ 0 0
$$487$$ −10.0000 −0.453143 −0.226572 0.973995i $$-0.572752\pi$$
−0.226572 + 0.973995i $$0.572752\pi$$
$$488$$ 0 0
$$489$$ −6.00000 3.46410i −0.271329 0.156652i
$$490$$ 0 0
$$491$$ −12.5000 21.6506i −0.564117 0.977079i −0.997131 0.0756923i $$-0.975883\pi$$
0.433014 0.901387i $$-0.357450\pi$$
$$492$$ 0 0
$$493$$ −3.00000 + 5.19615i −0.135113 + 0.234023i
$$494$$ 0 0
$$495$$ 15.0000 + 25.9808i 0.674200 + 1.16775i
$$496$$ 0 0
$$497$$ 6.00000 10.3923i 0.269137 0.466159i
$$498$$ 0 0
$$499$$ 2.50000 + 4.33013i 0.111915 + 0.193843i 0.916542 0.399937i $$-0.130968\pi$$
−0.804627 + 0.593780i $$0.797635\pi$$
$$500$$ 0 0
$$501$$ 3.46410i 0.154765i
$$502$$ 0 0
$$503$$ 4.00000 0.178351 0.0891756 0.996016i $$-0.471577\pi$$
0.0891756 + 0.996016i $$0.471577\pi$$
$$504$$ 0 0
$$505$$ 12.0000 0.533993
$$506$$ 0 0
$$507$$ 4.50000 2.59808i 0.199852 0.115385i
$$508$$ 0 0
$$509$$ −14.0000 24.2487i −0.620539 1.07481i −0.989385 0.145315i $$-0.953580\pi$$
0.368846 0.929490i $$-0.379753\pi$$
$$510$$ 0 0
$$511$$ −13.0000 + 22.5167i −0.575086 + 0.996078i
$$512$$ 0 0
$$513$$ 25.9808i 1.14708i
$$514$$ 0 0
$$515$$ 8.00000 13.8564i 0.352522 0.610586i
$$516$$ 0 0
$$517$$ −20.0000 34.6410i −0.879599 1.52351i
$$518$$ 0 0
$$519$$ 27.0000 15.5885i 1.18517 0.684257i
$$520$$ 0 0
$$521$$ −7.00000 −0.306676 −0.153338 0.988174i $$-0.549002\pi$$
−0.153338 + 0.988174i $$0.549002\pi$$
$$522$$ 0 0
$$523$$ −44.0000 −1.92399 −0.961993 0.273075i $$-0.911959\pi$$
−0.961993 + 0.273075i $$0.911959\pi$$
$$524$$ 0 0
$$525$$ 3.46410i 0.151186i
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 3.50000 6.06218i 0.152174 0.263573i
$$530$$ 0 0
$$531$$ 10.5000 18.1865i 0.455661 0.789228i
$$532$$ 0 0
$$533$$ −6.00000 + 10.3923i −0.259889 + 0.450141i
$$534$$ 0 0
$$535$$ −11.0000 19.0526i −0.475571 0.823714i
$$536$$ 0 0
$$537$$ 18.0000 + 10.3923i 0.776757 + 0.448461i
$$538$$ 0 0
$$539$$ −15.0000 −0.646096
$$540$$ 0 0
$$541$$ −2.00000 −0.0859867 −0.0429934 0.999075i $$-0.513689\pi$$
−0.0429934 + 0.999075i $$0.513689\pi$$
$$542$$ 0 0
$$543$$ −30.0000 17.3205i −1.28742 0.743294i
$$544$$ 0 0
$$545$$ −12.0000 20.7846i −0.514024 0.890315i
$$546$$ 0 0
$$547$$ 0.500000 0.866025i 0.0213785 0.0370286i −0.855138 0.518400i $$-0.826528\pi$$
0.876517 + 0.481371i $$0.159861\pi$$
$$548$$ 0 0
$$549$$ 12.0000 0.512148
$$550$$ 0 0
$$551$$ 15.0000 25.9808i 0.639021 1.10682i
$$552$$ 0 0
$$553$$ 2.00000 + 3.46410i 0.0850487 + 0.147309i
$$554$$ 0 0
$$555$$ 34.6410i 1.47043i
$$556$$ 0 0
$$557$$ 26.0000 1.10166 0.550828 0.834619i $$-0.314312\pi$$
0.550828 + 0.834619i $$0.314312\pi$$
$$558$$ 0 0
$$559$$ 36.0000 1.52264
$$560$$ 0 0
$$561$$ 7.50000 4.33013i 0.316650 0.182818i
$$562$$ 0 0
$$563$$ −16.5000 28.5788i −0.695392 1.20445i −0.970048 0.242912i $$-0.921897\pi$$
0.274656 0.961542i $$-0.411436\pi$$
$$564$$ 0 0
$$565$$ −14.0000 + 24.2487i −0.588984 + 1.02015i
$$566$$ 0 0
$$567$$ 9.00000 + 15.5885i 0.377964 + 0.654654i
$$568$$ 0 0
$$569$$ 9.50000 16.4545i 0.398261 0.689808i −0.595251 0.803540i $$-0.702947\pi$$
0.993511 + 0.113732i $$0.0362806\pi$$
$$570$$ 0 0
$$571$$ −9.50000 16.4545i −0.397563 0.688599i 0.595862 0.803087i $$-0.296811\pi$$
−0.993425 + 0.114488i $$0.963477\pi$$
$$572$$ 0 0
$$573$$ −3.00000 + 1.73205i −0.125327 + 0.0723575i
$$574$$ 0 0
$$575$$ 4.00000 0.166812
$$576$$ 0 0
$$577$$ 23.0000 0.957503 0.478751 0.877951i $$-0.341090\pi$$
0.478751 + 0.877951i $$0.341090\pi$$
$$578$$ 0 0
$$579$$ 1.73205i 0.0719816i
$$580$$ 0 0
$$581$$ 12.0000 + 20.7846i 0.497844 + 0.862291i
$$582$$ 0 0
$$583$$ −30.0000 + 51.9615i −1.24247 + 2.15203i
$$584$$ 0 0
$$585$$ 24.0000 0.992278
$$586$$ 0 0
$$587$$ 2.50000 4.33013i 0.103186 0.178723i −0.809810 0.586693i $$-0.800430\pi$$
0.912996 + 0.407969i $$0.133763\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 30.0000 + 17.3205i 1.23404 + 0.712470i
$$592$$ 0 0
$$593$$ 6.00000 0.246390 0.123195 0.992382i $$-0.460686\pi$$
0.123195 + 0.992382i $$0.460686\pi$$
$$594$$ 0 0
$$595$$ −4.00000 −0.163984
$$596$$ 0 0
$$597$$ 3.00000 + 1.73205i 0.122782 + 0.0708881i
$$598$$ 0 0
$$599$$ −21.0000 36.3731i −0.858037 1.48616i −0.873799 0.486287i $$-0.838351\pi$$
0.0157622 0.999876i $$-0.494983\pi$$
$$600$$ 0 0
$$601$$ 4.50000 7.79423i 0.183559 0.317933i −0.759531 0.650471i $$-0.774572\pi$$
0.943090 + 0.332538i $$0.107905\pi$$
$$602$$ 0 0
$$603$$ −10.5000 + 18.1865i −0.427593 + 0.740613i
$$604$$ 0 0
$$605$$ −14.0000 + 24.2487i −0.569181 + 0.985850i
$$606$$ 0 0
$$607$$ 4.00000 + 6.92820i 0.162355 + 0.281207i 0.935713 0.352763i $$-0.114758\pi$$
−0.773358 + 0.633970i $$0.781424\pi$$
$$608$$ 0 0
$$609$$ 20.7846i 0.842235i
$$610$$ 0 0
$$611$$ −32.0000 −1.29458
$$612$$ 0 0
$$613$$ −26.0000 −1.05013 −0.525065 0.851062i $$-0.675959\pi$$
−0.525065 + 0.851062i $$0.675959\pi$$
$$614$$ 0 0
$$615$$ −9.00000 + 5.19615i −0.362915 + 0.209529i
$$616$$ 0 0
$$617$$ 8.50000 + 14.7224i 0.342197 + 0.592703i 0.984840 0.173463i $$-0.0554956\pi$$
−0.642643 + 0.766165i $$0.722162\pi$$
$$618$$ 0 0
$$619$$ −17.5000 + 30.3109i −0.703384 + 1.21830i 0.263887 + 0.964554i $$0.414995\pi$$
−0.967271 + 0.253744i $$0.918338\pi$$
$$620$$ 0 0
$$621$$ 18.0000 10.3923i 0.722315 0.417029i
$$622$$ 0 0
$$623$$ 10.0000 17.3205i 0.400642 0.693932i
$$624$$ 0 0
$$625$$ 9.50000 + 16.4545i 0.380000 + 0.658179i
$$626$$ 0 0
$$627$$ −37.5000 + 21.6506i −1.49761 + 0.864643i
$$628$$ 0 0
$$629$$ 10.0000 0.398726
$$630$$ 0 0
$$631$$ −22.0000 −0.875806 −0.437903 0.899022i $$-0.644279\pi$$
−0.437903 + 0.899022i $$0.644279\pi$$
$$632$$ 0 0
$$633$$ 34.6410i 1.37686i
$$634$$ 0 0
$$635$$ −20.0000 34.6410i −0.793676 1.37469i
$$636$$ 0 0
$$637$$ −6.00000 + 10.3923i −0.237729 + 0.411758i
$$638$$ 0 0
$$639$$ 9.00000 + 15.5885i 0.356034 + 0.616670i
$$640$$ 0 0
$$641$$ −16.5000 + 28.5788i −0.651711 + 1.12880i 0.330997 + 0.943632i $$0.392615\pi$$
−0.982708 + 0.185164i $$0.940718\pi$$
$$642$$ 0 0
$$643$$ 10.5000 + 18.1865i 0.414080 + 0.717207i 0.995331 0.0965169i $$-0.0307702\pi$$
−0.581252 + 0.813724i $$0.697437\pi$$
$$644$$ 0 0
$$645$$ 27.0000 + 15.5885i 1.06312 + 0.613795i
$$646$$ 0 0
$$647$$ 42.0000 1.65119 0.825595 0.564263i $$-0.190840\pi$$
0.825595 + 0.564263i $$0.190840\pi$$
$$648$$ 0 0
$$649$$ 35.0000 1.37387
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 9.00000 + 15.5885i 0.352197 + 0.610023i 0.986634 0.162951i $$-0.0521013\pi$$
−0.634437 + 0.772975i $$0.718768\pi$$
$$654$$ 0 0
$$655$$ 12.0000 20.7846i 0.468879 0.812122i
$$656$$ 0 0
$$657$$ −19.5000 33.7750i −0.760767 1.31769i
$$658$$ 0 0
$$659$$ 12.0000 20.7846i 0.467454 0.809653i −0.531855 0.846836i $$-0.678505\pi$$
0.999309 + 0.0371821i $$0.0118382\pi$$
$$660$$ 0 0
$$661$$ 1.00000 + 1.73205i 0.0388955 + 0.0673690i 0.884818 0.465937i $$-0.154283\pi$$
−0.845922 + 0.533306i $$0.820949\pi$$
$$662$$ 0 0
$$663$$ 6.92820i 0.269069i
$$664$$ 0 0
$$665$$ 20.0000 0.775567
$$666$$ 0 0
$$667$$ −24.0000 −0.929284
$$668$$ 0 0
$$669$$ 36.0000 20.7846i 1.39184 0.803579i
$$670$$ 0 0
$$671$$ 10.0000 + 17.3205i 0.386046 + 0.668651i
$$672$$ 0 0
$$673$$ −5.00000 + 8.66025i −0.192736 + 0.333828i −0.946156 0.323711i $$-0.895069\pi$$
0.753420 + 0.657539i $$0.228403\pi$$
$$674$$ 0 0
$$675$$ −4.50000 2.59808i −0.173205 0.100000i
$$676$$ 0 0
$$677$$ 14.0000 24.2487i 0.538064 0.931954i −0.460945 0.887429i $$-0.652489\pi$$
0.999008 0.0445248i $$-0.0141774\pi$$
$$678$$ 0 0
$$679$$ 13.0000 + 22.5167i 0.498894 + 0.864110i
$$680$$ 0 0
$$681$$ −4.50000 + 2.59808i −0.172440 + 0.0995585i
$$682$$ 0 0
$$683$$ 15.0000 0.573959 0.286980 0.957937i $$-0.407349\pi$$
0.286980 + 0.957937i $$0.407349\pi$$
$$684$$ 0 0
$$685$$ 2.00000 0.0764161
$$686$$ 0 0
$$687$$ 24.2487i 0.925146i
$$688$$ 0 0
$$689$$ 24.0000 + 41.5692i 0.914327 + 1.58366i
$$690$$ 0 0
$$691$$ 6.00000 10.3923i 0.228251 0.395342i −0.729039 0.684472i $$-0.760033\pi$$
0.957290 + 0.289130i $$0.0933661\pi$$
$$692$$ 0 0
$$693$$ −15.0000 + 25.9808i −0.569803 + 0.986928i
$$694$$ 0 0
$$695$$ −1.00000 + 1.73205i −0.0379322 + 0.0657004i
$$696$$ 0 0
$$697$$ 1.50000 + 2.59808i 0.0568166 + 0.0984092i
$$698$$ 0 0
$$699$$ 13.5000 + 7.79423i 0.510617 + 0.294805i
$$700$$ 0 0
$$701$$ −16.0000 −0.604312 −0.302156 0.953259i $$-0.597706\pi$$
−0.302156 + 0.953259i $$0.597706\pi$$
$$702$$ 0 0
$$703$$ −50.0000 −1.88579
$$704$$ 0 0
$$705$$ −24.0000 13.8564i −0.903892 0.521862i
$$706$$ 0 0
$$707$$ 6.00000 + 10.3923i 0.225653 + 0.390843i
$$708$$ 0 0
$$709$$ −10.0000 + 17.3205i −0.375558 + 0.650485i −0.990410 0.138157i $$-0.955882\pi$$
0.614852 + 0.788642i $$0.289216\pi$$
$$710$$ 0 0
$$711$$ −6.00000 −0.225018
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 20.0000 + 34.6410i 0.747958 + 1.29550i
$$716$$ 0 0
$$717$$ 20.7846i 0.776215i
$$718$$ 0 0
$$719$$ 30.0000 1.11881 0.559406 0.828894i $$-0.311029\pi$$
0.559406 + 0.828894i $$0.311029\pi$$
$$720$$ 0 0
$$721$$ 16.0000 0.595871
$$722$$ 0 0
$$723$$ 37.5000 21.6506i 1.39464 0.805196i
$$724$$ 0 0
$$725$$ 3.00000 + 5.19615i 0.111417 + 0.192980i
$$726$$ 0 0
$$727$$ 24.0000 41.5692i 0.890111 1.54172i 0.0503692 0.998731i $$-0.483960\pi$$
0.839742 0.542986i $$-0.182706\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ 4.50000 7.79423i 0.166439 0.288280i
$$732$$ 0 0
$$733$$ −9.00000 15.5885i −0.332423 0.575773i 0.650564 0.759452i $$-0.274533\pi$$
−0.982986 + 0.183679i $$0.941199\pi$$
$$734$$ 0 0
$$735$$ −9.00000 + 5.19615i −0.331970 + 0.191663i
$$736$$ 0 0
$$737$$ −35.0000 −1.28924
$$738$$ 0 0
$$739$$ −21.0000 −0.772497 −0.386249 0.922395i $$-0.626229\pi$$
−0.386249 + 0.922395i $$0.626229\pi$$
$$740$$ 0 0
$$741$$ 34.6410i 1.27257i
$$742$$ 0 0
$$743$$ 19.0000 + 32.9090i 0.697042 + 1.20731i 0.969487 + 0.245141i $$0.0788344\pi$$
−0.272445 + 0.962171i $$0.587832\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ −36.0000 −1.31717
$$748$$ 0 0
$$749$$ 11.0000 19.0526i 0.401931 0.696165i
$$750$$ 0 0
$$751$$ 1.00000 + 1.73205i 0.0364905 + 0.0632034i 0.883694 0.468065i $$-0.155049\pi$$
−0.847203 + 0.531269i $$0.821715\pi$$
$$752$$ 0 0
$$753$$ 4.50000 + 2.59808i 0.163989 + 0.0946792i
$$754$$ 0 0
$$755$$ −32.0000 −1.16460
$$756$$ 0 0
$$757$$ 14.0000 0.508839 0.254419 0.967094i $$-0.418116\pi$$
0.254419 + 0.967094i $$0.418116\pi$$
$$758$$ 0 0
$$759$$ 30.0000 + 17.3205i 1.08893 + 0.628695i
$$760$$ 0 0
$$761$$ −5.00000 8.66025i −0.181250 0.313934i 0.761057 0.648686i $$-0.224681\pi$$
−0.942306 + 0.334752i $$0.891348\pi$$
$$762$$ 0 0
$$763$$ 12.0000 20.7846i 0.434429 0.752453i
$$764$$ 0 0
$$765$$ 3.00000 5.19615i 0.108465 0.187867i
$$766$$ 0 0
$$767$$ 14.0000 24.2487i 0.505511 0.875570i
$$768$$ 0 0
$$769$$ −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i $$-0.178148\pi$$
−0.883493 + 0.468445i $$0.844814\pi$$
$$770$$ 0 0
$$771$$ 5.19615i 0.187135i
$$772$$ 0 0
$$773$$ −24.0000 −0.863220 −0.431610 0.902060i $$-0.642054\pi$$
−0.431610 + 0.902060i $$0.642054\pi$$
$$774$$ 0 0
$$775$$ 0 0
$$776$$ 0 0
$$777$$ −30.0000 + 17.3205i −1.07624 + 0.621370i
$$778$$ 0 0
$$779$$ −7.50000 12.9904i −0.268715 0.465429i
$$780$$ 0 0
$$781$$ −15.0000 + 25.9808i −0.536742 + 0.929665i
$$782$$ 0 0
$$783$$ 27.0000 + 15.5885i 0.964901 + 0.557086i
$$784$$ 0 0
$$785$$ −24.0000 + 41.5692i −0.856597 + 1.48367i
$$786$$ 0 0
$$787$$ −14.0000 24.2487i −0.499046 0.864373i 0.500953 0.865474i $$-0.332983\pi$$
−0.999999 + 0.00110111i $$0.999650\pi$$
$$788$$ 0 0
$$789$$ 27.0000 15.5885i 0.961225 0.554964i
$$790$$ 0 0
$$791$$ −28.0000 −0.995565
$$792$$ 0 0
$$793$$ 16.0000 0.568177
$$794$$ 0 0
$$795$$ 41.5692i 1.47431i
$$796$$ 0 0