# Properties

 Label 1152.2.d.e Level $1152$ Weight $2$ Character orbit 1152.d Analytic conductor $9.199$ Analytic rank $0$ Dimension $2$ CM discriminant -4 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1152,2,Mod(577,1152)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1152, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1152.577");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1152 = 2^{7} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1152.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.19876631285$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2i$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta q^{5}+O(q^{10})$$ q + b * q^5 $$q + \beta q^{5} - 2 \beta q^{13} + 8 q^{17} + q^{25} + 5 \beta q^{29} + 6 \beta q^{37} + 8 q^{41} - 7 q^{49} + 7 \beta q^{53} - 6 \beta q^{61} + 8 q^{65} - 6 q^{73} + 8 \beta q^{85} + 16 q^{89} + 18 q^{97} +O(q^{100})$$ q + b * q^5 - 2*b * q^13 + 8 * q^17 + q^25 + 5*b * q^29 + 6*b * q^37 + 8 * q^41 - 7 * q^49 + 7*b * q^53 - 6*b * q^61 + 8 * q^65 - 6 * q^73 + 8*b * q^85 + 16 * q^89 + 18 * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q+O(q^{10})$$ 2 * q $$2 q + 16 q^{17} + 2 q^{25} + 16 q^{41} - 14 q^{49} + 16 q^{65} - 12 q^{73} + 32 q^{89} + 36 q^{97}+O(q^{100})$$ 2 * q + 16 * q^17 + 2 * q^25 + 16 * q^41 - 14 * q^49 + 16 * q^65 - 12 * q^73 + 32 * q^89 + 36 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 − 1.00000i 1.00000i
0 0 0 2.00000i 0 0 0 0 0
577.2 0 0 0 2.00000i 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by $$\Q(\sqrt{-1})$$
8.b even 2 1 inner
8.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.2.d.e yes 2
3.b odd 2 1 1152.2.d.b 2
4.b odd 2 1 CM 1152.2.d.e yes 2
8.b even 2 1 inner 1152.2.d.e yes 2
8.d odd 2 1 inner 1152.2.d.e yes 2
12.b even 2 1 1152.2.d.b 2
16.e even 4 1 2304.2.a.c 1
16.e even 4 1 2304.2.a.n 1
16.f odd 4 1 2304.2.a.c 1
16.f odd 4 1 2304.2.a.n 1
24.f even 2 1 1152.2.d.b 2
24.h odd 2 1 1152.2.d.b 2
48.i odd 4 1 2304.2.a.d 1
48.i odd 4 1 2304.2.a.m 1
48.k even 4 1 2304.2.a.d 1
48.k even 4 1 2304.2.a.m 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.2.d.b 2 3.b odd 2 1
1152.2.d.b 2 12.b even 2 1
1152.2.d.b 2 24.f even 2 1
1152.2.d.b 2 24.h odd 2 1
1152.2.d.e yes 2 1.a even 1 1 trivial
1152.2.d.e yes 2 4.b odd 2 1 CM
1152.2.d.e yes 2 8.b even 2 1 inner
1152.2.d.e yes 2 8.d odd 2 1 inner
2304.2.a.c 1 16.e even 4 1
2304.2.a.c 1 16.f odd 4 1
2304.2.a.d 1 48.i odd 4 1
2304.2.a.d 1 48.k even 4 1
2304.2.a.m 1 48.i odd 4 1
2304.2.a.m 1 48.k even 4 1
2304.2.a.n 1 16.e even 4 1
2304.2.a.n 1 16.f odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1152, [\chi])$$:

 $$T_{5}^{2} + 4$$ T5^2 + 4 $$T_{7}$$ T7 $$T_{17} - 8$$ T17 - 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 4$$
$7$ $$T^{2}$$
$11$ $$T^{2}$$
$13$ $$T^{2} + 16$$
$17$ $$(T - 8)^{2}$$
$19$ $$T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2} + 100$$
$31$ $$T^{2}$$
$37$ $$T^{2} + 144$$
$41$ $$(T - 8)^{2}$$
$43$ $$T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2} + 196$$
$59$ $$T^{2}$$
$61$ $$T^{2} + 144$$
$67$ $$T^{2}$$
$71$ $$T^{2}$$
$73$ $$(T + 6)^{2}$$
$79$ $$T^{2}$$
$83$ $$T^{2}$$
$89$ $$(T - 16)^{2}$$
$97$ $$(T - 18)^{2}$$