# Properties

 Label 1152.2.d.c Level $1152$ Weight $2$ Character orbit 1152.d Analytic conductor $9.199$ Analytic rank $0$ Dimension $2$ CM discriminant -8 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1152 = 2^{7} \cdot 3^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1152.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$9.19876631285$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-2})$$ Defining polynomial: $$x^{2} + 2$$ Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 128) Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = 2\sqrt{-2}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q +O(q^{10})$$ $$q -\beta q^{11} -6 q^{17} -3 \beta q^{19} + 5 q^{25} + 6 q^{41} -3 \beta q^{43} -7 q^{49} -5 \beta q^{59} -3 \beta q^{67} -2 q^{73} -\beta q^{83} + 18 q^{89} -10 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + O(q^{10})$$ $$2q - 12q^{17} + 10q^{25} + 12q^{41} - 14q^{49} - 4q^{73} + 36q^{89} - 20q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times$$.

 $$n$$ $$127$$ $$641$$ $$901$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
577.1
 1.41421i − 1.41421i
0 0 0 0 0 0 0 0 0
577.2 0 0 0 0 0 0 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by $$\Q(\sqrt{-2})$$
4.b odd 2 1 inner
8.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.2.d.c 2
3.b odd 2 1 128.2.b.a 2
4.b odd 2 1 inner 1152.2.d.c 2
8.b even 2 1 inner 1152.2.d.c 2
8.d odd 2 1 CM 1152.2.d.c 2
12.b even 2 1 128.2.b.a 2
15.d odd 2 1 3200.2.d.c 2
15.e even 4 2 3200.2.f.o 4
16.e even 4 2 2304.2.a.t 2
16.f odd 4 2 2304.2.a.t 2
24.f even 2 1 128.2.b.a 2
24.h odd 2 1 128.2.b.a 2
48.i odd 4 2 256.2.a.e 2
48.k even 4 2 256.2.a.e 2
60.h even 2 1 3200.2.d.c 2
60.l odd 4 2 3200.2.f.o 4
96.o even 8 2 1024.2.e.a 2
96.o even 8 2 1024.2.e.f 2
96.p odd 8 2 1024.2.e.a 2
96.p odd 8 2 1024.2.e.f 2
120.i odd 2 1 3200.2.d.c 2
120.m even 2 1 3200.2.d.c 2
120.q odd 4 2 3200.2.f.o 4
120.w even 4 2 3200.2.f.o 4
240.t even 4 2 6400.2.a.by 2
240.bm odd 4 2 6400.2.a.by 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
128.2.b.a 2 3.b odd 2 1
128.2.b.a 2 12.b even 2 1
128.2.b.a 2 24.f even 2 1
128.2.b.a 2 24.h odd 2 1
256.2.a.e 2 48.i odd 4 2
256.2.a.e 2 48.k even 4 2
1024.2.e.a 2 96.o even 8 2
1024.2.e.a 2 96.p odd 8 2
1024.2.e.f 2 96.o even 8 2
1024.2.e.f 2 96.p odd 8 2
1152.2.d.c 2 1.a even 1 1 trivial
1152.2.d.c 2 4.b odd 2 1 inner
1152.2.d.c 2 8.b even 2 1 inner
1152.2.d.c 2 8.d odd 2 1 CM
2304.2.a.t 2 16.e even 4 2
2304.2.a.t 2 16.f odd 4 2
3200.2.d.c 2 15.d odd 2 1
3200.2.d.c 2 60.h even 2 1
3200.2.d.c 2 120.i odd 2 1
3200.2.d.c 2 120.m even 2 1
3200.2.f.o 4 15.e even 4 2
3200.2.f.o 4 60.l odd 4 2
3200.2.f.o 4 120.q odd 4 2
3200.2.f.o 4 120.w even 4 2
6400.2.a.by 2 240.t even 4 2
6400.2.a.by 2 240.bm odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1152, [\chi])$$:

 $$T_{5}$$ $$T_{7}$$ $$T_{17} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$8 + T^{2}$$
$13$ $$T^{2}$$
$17$ $$( 6 + T )^{2}$$
$19$ $$72 + T^{2}$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2}$$
$37$ $$T^{2}$$
$41$ $$( -6 + T )^{2}$$
$43$ $$72 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$200 + T^{2}$$
$61$ $$T^{2}$$
$67$ $$72 + T^{2}$$
$71$ $$T^{2}$$
$73$ $$( 2 + T )^{2}$$
$79$ $$T^{2}$$
$83$ $$8 + T^{2}$$
$89$ $$( -18 + T )^{2}$$
$97$ $$( 10 + T )^{2}$$