Properties

Label 1152.2.c.a
Level $1152$
Weight $2$
Character orbit 1152.c
Analytic conductor $9.199$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{5} + ( -2 \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{7} +O(q^{10})\) \( q + ( -\zeta_{8} + 2 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{5} + ( -2 \zeta_{8} + 2 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{7} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{11} + ( -2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{13} + ( \zeta_{8} - 4 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{17} + ( -4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{19} + ( -4 - 2 \zeta_{8} + 2 \zeta_{8}^{3} ) q^{23} + ( -1 + 4 \zeta_{8} - 4 \zeta_{8}^{3} ) q^{25} + ( \zeta_{8} + 2 \zeta_{8}^{2} + \zeta_{8}^{3} ) q^{29} + ( -2 \zeta_{8} - 6 \zeta_{8}^{2} - 2 \zeta_{8}^{3} ) q^{31} + ( -8 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{35} + ( -2 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{37} + ( -\zeta_{8} - 4 \zeta_{8}^{2} - \zeta_{8}^{3} ) q^{41} + ( -4 \zeta_{8} + 4 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{43} + ( -4 + 6 \zeta_{8} - 6 \zeta_{8}^{3} ) q^{47} + ( -5 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{49} + ( 5 \zeta_{8} + 2 \zeta_{8}^{2} + 5 \zeta_{8}^{3} ) q^{53} + ( -4 \zeta_{8} + 4 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{55} + ( -8 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{59} + ( 2 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{61} + ( -4 \zeta_{8} + 4 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{65} -12 \zeta_{8}^{2} q^{67} + ( -4 - 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{71} + 4 q^{73} + ( -4 \zeta_{8} + 8 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{77} + ( -6 \zeta_{8} - 2 \zeta_{8}^{2} - 6 \zeta_{8}^{3} ) q^{79} + ( 8 + 2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{83} + ( 10 - 6 \zeta_{8} + 6 \zeta_{8}^{3} ) q^{85} + ( 3 \zeta_{8} - 8 \zeta_{8}^{2} + 3 \zeta_{8}^{3} ) q^{89} + ( -4 \zeta_{8} + 8 \zeta_{8}^{2} - 4 \zeta_{8}^{3} ) q^{91} + ( -8 + 8 \zeta_{8} - 8 \zeta_{8}^{3} ) q^{95} + ( 8 - 4 \zeta_{8} + 4 \zeta_{8}^{3} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + O(q^{10}) \) \( 4 q - 16 q^{23} - 4 q^{25} - 32 q^{35} - 8 q^{37} - 16 q^{47} - 20 q^{49} - 32 q^{59} + 8 q^{61} - 16 q^{71} + 16 q^{73} + 32 q^{83} + 40 q^{85} - 32 q^{95} + 32 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1151.1
−0.707107 + 0.707107i
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 0.707107i
0 0 0 3.41421i 0 4.82843i 0 0 0
1151.2 0 0 0 0.585786i 0 0.828427i 0 0 0
1151.3 0 0 0 0.585786i 0 0.828427i 0 0 0
1151.4 0 0 0 3.41421i 0 4.82843i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.2.c.a 4
3.b odd 2 1 1152.2.c.d yes 4
4.b odd 2 1 1152.2.c.d yes 4
8.b even 2 1 1152.2.c.b yes 4
8.d odd 2 1 1152.2.c.c yes 4
12.b even 2 1 inner 1152.2.c.a 4
16.e even 4 1 2304.2.f.b 4
16.e even 4 1 2304.2.f.h 4
16.f odd 4 1 2304.2.f.a 4
16.f odd 4 1 2304.2.f.g 4
24.f even 2 1 1152.2.c.b yes 4
24.h odd 2 1 1152.2.c.c yes 4
48.i odd 4 1 2304.2.f.a 4
48.i odd 4 1 2304.2.f.g 4
48.k even 4 1 2304.2.f.b 4
48.k even 4 1 2304.2.f.h 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.2.c.a 4 1.a even 1 1 trivial
1152.2.c.a 4 12.b even 2 1 inner
1152.2.c.b yes 4 8.b even 2 1
1152.2.c.b yes 4 24.f even 2 1
1152.2.c.c yes 4 8.d odd 2 1
1152.2.c.c yes 4 24.h odd 2 1
1152.2.c.d yes 4 3.b odd 2 1
1152.2.c.d yes 4 4.b odd 2 1
2304.2.f.a 4 16.f odd 4 1
2304.2.f.a 4 48.i odd 4 1
2304.2.f.b 4 16.e even 4 1
2304.2.f.b 4 48.k even 4 1
2304.2.f.g 4 16.f odd 4 1
2304.2.f.g 4 48.i odd 4 1
2304.2.f.h 4 16.e even 4 1
2304.2.f.h 4 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1152, [\chi])\):

\( T_{23}^{2} + 8 T_{23} + 8 \)
\( T_{37}^{2} + 4 T_{37} - 28 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( 4 + 12 T^{2} + T^{4} \)
$7$ \( 16 + 24 T^{2} + T^{4} \)
$11$ \( ( -8 + T^{2} )^{2} \)
$13$ \( ( -8 + T^{2} )^{2} \)
$17$ \( 196 + 36 T^{2} + T^{4} \)
$19$ \( ( 32 + T^{2} )^{2} \)
$23$ \( ( 8 + 8 T + T^{2} )^{2} \)
$29$ \( 4 + 12 T^{2} + T^{4} \)
$31$ \( 784 + 88 T^{2} + T^{4} \)
$37$ \( ( -28 + 4 T + T^{2} )^{2} \)
$41$ \( 196 + 36 T^{2} + T^{4} \)
$43$ \( 256 + 96 T^{2} + T^{4} \)
$47$ \( ( -56 + 8 T + T^{2} )^{2} \)
$53$ \( 2116 + 108 T^{2} + T^{4} \)
$59$ \( ( 32 + 16 T + T^{2} )^{2} \)
$61$ \( ( -28 - 4 T + T^{2} )^{2} \)
$67$ \( ( 144 + T^{2} )^{2} \)
$71$ \( ( -56 + 8 T + T^{2} )^{2} \)
$73$ \( ( -4 + T )^{4} \)
$79$ \( 4624 + 152 T^{2} + T^{4} \)
$83$ \( ( 56 - 16 T + T^{2} )^{2} \)
$89$ \( 2116 + 164 T^{2} + T^{4} \)
$97$ \( ( 32 - 16 T + T^{2} )^{2} \)
show more
show less