Properties

Label 1152.2.a.r.1.1
Level $1152$
Weight $2$
Character 1152.1
Self dual yes
Analytic conductor $9.199$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1152.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.19876631285\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1152.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{5} +4.00000 q^{7} +O(q^{10})\) \(q+2.00000 q^{5} +4.00000 q^{7} +2.00000 q^{11} -2.00000 q^{13} +2.00000 q^{17} +2.00000 q^{19} +4.00000 q^{23} -1.00000 q^{25} -6.00000 q^{29} +8.00000 q^{35} -10.0000 q^{37} +6.00000 q^{41} +6.00000 q^{43} -8.00000 q^{47} +9.00000 q^{49} -6.00000 q^{53} +4.00000 q^{55} -14.0000 q^{59} -2.00000 q^{61} -4.00000 q^{65} +10.0000 q^{67} +12.0000 q^{71} +14.0000 q^{73} +8.00000 q^{77} +8.00000 q^{79} +6.00000 q^{83} +4.00000 q^{85} +2.00000 q^{89} -8.00000 q^{91} +4.00000 q^{95} -2.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.00000 1.35225
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14.0000 −1.82264 −0.911322 0.411693i \(-0.864937\pi\)
−0.911322 + 0.411693i \(0.864937\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 14.0000 1.63858 0.819288 0.573382i \(-0.194369\pi\)
0.819288 + 0.573382i \(0.194369\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.00000 0.911685
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 4.00000 0.433861
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 4.00000 0.394132 0.197066 0.980390i \(-0.436859\pi\)
0.197066 + 0.980390i \(0.436859\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 8.00000 0.746004
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 8.00000 0.733359
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) 8.00000 0.693688
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.00000 −0.334497
\(144\) 0 0
\(145\) −12.0000 −0.996546
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000 1.47462 0.737309 0.675556i \(-0.236096\pi\)
0.737309 + 0.675556i \(0.236096\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −18.0000 −1.43656 −0.718278 0.695756i \(-0.755069\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) 0 0
\(163\) 2.00000 0.156652 0.0783260 0.996928i \(-0.475042\pi\)
0.0783260 + 0.996928i \(0.475042\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −20.0000 −1.54765 −0.773823 0.633402i \(-0.781658\pi\)
−0.773823 + 0.633402i \(0.781658\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) −4.00000 −0.302372
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.00000 0.448461 0.224231 0.974536i \(-0.428013\pi\)
0.224231 + 0.974536i \(0.428013\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −20.0000 −1.47043
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −16.0000 −1.15772 −0.578860 0.815427i \(-0.696502\pi\)
−0.578860 + 0.815427i \(0.696502\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.0000 −0.997459 −0.498729 0.866758i \(-0.666200\pi\)
−0.498729 + 0.866758i \(0.666200\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −24.0000 −1.68447
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −22.0000 −1.51454 −0.757271 0.653101i \(-0.773468\pi\)
−0.757271 + 0.653101i \(0.773468\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.0000 1.17922 0.589610 0.807688i \(-0.299282\pi\)
0.589610 + 0.807688i \(0.299282\pi\)
\(234\) 0 0
\(235\) −16.0000 −1.04372
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −2.00000 −0.128831 −0.0644157 0.997923i \(-0.520518\pi\)
−0.0644157 + 0.997923i \(0.520518\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.0000 1.14998
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) 0 0
\(253\) 8.00000 0.502956
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 0 0
\(259\) −40.0000 −2.48548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000 0.609711 0.304855 0.952399i \(-0.401392\pi\)
0.304855 + 0.952399i \(0.401392\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00000 −0.120605
\(276\) 0 0
\(277\) 6.00000 0.360505 0.180253 0.983620i \(-0.442309\pi\)
0.180253 + 0.983620i \(0.442309\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 6.00000 0.356663 0.178331 0.983970i \(-0.442930\pi\)
0.178331 + 0.983970i \(0.442930\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.0000 1.41668
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 0 0
\(295\) −28.0000 −1.63022
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 24.0000 1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) 18.0000 1.02731 0.513657 0.857996i \(-0.328290\pi\)
0.513657 + 0.857996i \(0.328290\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −28.0000 −1.58773 −0.793867 0.608091i \(-0.791935\pi\)
−0.793867 + 0.608091i \(0.791935\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.00000 0.222566
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) 14.0000 0.769510 0.384755 0.923019i \(-0.374286\pi\)
0.384755 + 0.923019i \(0.374286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 20.0000 1.09272
\(336\) 0 0
\(337\) −14.0000 −0.762629 −0.381314 0.924445i \(-0.624528\pi\)
−0.381314 + 0.924445i \(0.624528\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000 0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −18.0000 −0.958043 −0.479022 0.877803i \(-0.659008\pi\)
−0.479022 + 0.877803i \(0.659008\pi\)
\(354\) 0 0
\(355\) 24.0000 1.27379
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −4.00000 −0.211112 −0.105556 0.994413i \(-0.533662\pi\)
−0.105556 + 0.994413i \(0.533662\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 28.0000 1.46559
\(366\) 0 0
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 16.0000 0.815436
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.0000 0.805047
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) 10.0000 0.494468 0.247234 0.968956i \(-0.420478\pi\)
0.247234 + 0.968956i \(0.420478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −56.0000 −2.75558
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −26.0000 −1.27018 −0.635092 0.772437i \(-0.719038\pi\)
−0.635092 + 0.772437i \(0.719038\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) −8.00000 −0.387147
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.0000 1.92673 0.963366 0.268190i \(-0.0864254\pi\)
0.963366 + 0.268190i \(0.0864254\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 8.00000 0.382692
\(438\) 0 0
\(439\) −36.0000 −1.71819 −0.859093 0.511819i \(-0.828972\pi\)
−0.859093 + 0.511819i \(0.828972\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 0 0
\(445\) 4.00000 0.189618
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 12.0000 0.565058
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −16.0000 −0.750092
\(456\) 0 0
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.0000 0.647843 0.323921 0.946084i \(-0.394999\pi\)
0.323921 + 0.946084i \(0.394999\pi\)
\(468\) 0 0
\(469\) 40.0000 1.84703
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) −2.00000 −0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 20.0000 0.911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.00000 −0.181631
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 10.0000 0.451294 0.225647 0.974209i \(-0.427550\pi\)
0.225647 + 0.974209i \(0.427550\pi\)
\(492\) 0 0
\(493\) −12.0000 −0.540453
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48.0000 2.15309
\(498\) 0 0
\(499\) −22.0000 −0.984855 −0.492428 0.870353i \(-0.663890\pi\)
−0.492428 + 0.870353i \(0.663890\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 20.0000 0.891756 0.445878 0.895094i \(-0.352892\pi\)
0.445878 + 0.895094i \(0.352892\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.0000 −0.620539 −0.310270 0.950649i \(-0.600419\pi\)
−0.310270 + 0.950649i \(0.600419\pi\)
\(510\) 0 0
\(511\) 56.0000 2.47729
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 22.0000 0.963837 0.481919 0.876216i \(-0.339940\pi\)
0.481919 + 0.876216i \(0.339940\pi\)
\(522\) 0 0
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.0000 0.514024
\(546\) 0 0
\(547\) −38.0000 −1.62476 −0.812381 0.583127i \(-0.801829\pi\)
−0.812381 + 0.583127i \(0.801829\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −12.0000 −0.511217
\(552\) 0 0
\(553\) 32.0000 1.36078
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) −12.0000 −0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) −4.00000 −0.168281
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 38.0000 1.59025 0.795125 0.606445i \(-0.207405\pi\)
0.795125 + 0.606445i \(0.207405\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 34.0000 1.40333 0.701665 0.712507i \(-0.252440\pi\)
0.701665 + 0.712507i \(0.252440\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 16.0000 0.655936
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) 16.0000 0.649420 0.324710 0.945814i \(-0.394733\pi\)
0.324710 + 0.945814i \(0.394733\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 2.00000 0.0805170 0.0402585 0.999189i \(-0.487182\pi\)
0.0402585 + 0.999189i \(0.487182\pi\)
\(618\) 0 0
\(619\) 46.0000 1.84890 0.924448 0.381308i \(-0.124526\pi\)
0.924448 + 0.381308i \(0.124526\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.00000 0.320513
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.0000 −0.797452
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −32.0000 −1.26988
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 0 0
\(643\) 42.0000 1.65632 0.828159 0.560493i \(-0.189388\pi\)
0.828159 + 0.560493i \(0.189388\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 0 0
\(649\) −28.0000 −1.09910
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) 12.0000 0.468879
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) −34.0000 −1.32245 −0.661223 0.750189i \(-0.729962\pi\)
−0.661223 + 0.750189i \(0.729962\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) −24.0000 −0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.0000 −0.845529 −0.422764 0.906240i \(-0.638940\pi\)
−0.422764 + 0.906240i \(0.638940\pi\)
\(678\) 0 0
\(679\) −8.00000 −0.307012
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.0000 1.60709 0.803543 0.595247i \(-0.202946\pi\)
0.803543 + 0.595247i \(0.202946\pi\)
\(684\) 0 0
\(685\) −20.0000 −0.764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −6.00000 −0.228251 −0.114125 0.993466i \(-0.536407\pi\)
−0.114125 + 0.993466i \(0.536407\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) −20.0000 −0.754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −24.0000 −0.902613
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.0000 0.443836
\(732\) 0 0
\(733\) 6.00000 0.221615 0.110808 0.993842i \(-0.464656\pi\)
0.110808 + 0.993842i \(0.464656\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.0000 0.736709
\(738\) 0 0
\(739\) 18.0000 0.662141 0.331070 0.943606i \(-0.392590\pi\)
0.331070 + 0.943606i \(0.392590\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 44.0000 1.61420 0.807102 0.590412i \(-0.201035\pi\)
0.807102 + 0.590412i \(0.201035\pi\)
\(744\) 0 0
\(745\) 36.0000 1.31894
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 8.00000 0.292314
\(750\) 0 0
\(751\) −8.00000 −0.291924 −0.145962 0.989290i \(-0.546628\pi\)
−0.145962 + 0.989290i \(0.546628\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.00000 −0.291150
\(756\) 0 0
\(757\) 46.0000 1.67190 0.835949 0.548807i \(-0.184918\pi\)
0.835949 + 0.548807i \(0.184918\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −10.0000 −0.362500 −0.181250 0.983437i \(-0.558014\pi\)
−0.181250 + 0.983437i \(0.558014\pi\)
\(762\) 0 0
\(763\) 24.0000 0.868858
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.0000 1.01102
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −54.0000 −1.94225 −0.971123 0.238581i \(-0.923318\pi\)
−0.971123 + 0.238581i \(0.923318\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 0.429945
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −36.0000 −1.28490
\(786\) 0 0
\(787\) −22.0000 −0.784215 −0.392108 0.919919i \(-0.628254\pi\)
−0.392108 + 0.919919i \(0.628254\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.0000 0.637593 0.318796 0.947823i \(-0.396721\pi\)
0.318796 + 0.947823i \(0.396721\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 28.0000 0.988099
\(804\) 0 0
\(805\) 32.0000 1.12785
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −18.0000 −0.632065 −0.316033 0.948748i \(-0.602351\pi\)
−0.316033 + 0.948748i \(0.602351\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 4.00000 0.140114
\(816\) 0 0
\(817\) 12.0000 0.419827
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) 28.0000 0.976019 0.488009 0.872838i \(-0.337723\pi\)
0.488009 + 0.872838i \(0.337723\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −22.0000 −0.765015 −0.382507 0.923952i \(-0.624939\pi\)
−0.382507 + 0.923952i \(0.624939\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −40.0000 −1.38426
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −36.0000 −1.24286 −0.621429 0.783470i \(-0.713448\pi\)
−0.621429 + 0.783470i \(0.713448\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −18.0000 −0.619219
\(846\) 0 0
\(847\) −28.0000 −0.962091
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −40.0000 −1.37118
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 6.00000 0.204956 0.102478 0.994735i \(-0.467323\pi\)
0.102478 + 0.994735i \(0.467323\pi\)
\(858\) 0 0
\(859\) −50.0000 −1.70598 −0.852989 0.521929i \(-0.825213\pi\)
−0.852989 + 0.521929i \(0.825213\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −32.0000 −1.08929 −0.544646 0.838666i \(-0.683336\pi\)
−0.544646 + 0.838666i \(0.683336\pi\)
\(864\) 0 0
\(865\) 36.0000 1.22404
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −48.0000 −1.62270
\(876\) 0 0
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 46.0000 1.54978 0.774890 0.632096i \(-0.217805\pi\)
0.774890 + 0.632096i \(0.217805\pi\)
\(882\) 0 0
\(883\) 34.0000 1.14419 0.572096 0.820187i \(-0.306131\pi\)
0.572096 + 0.820187i \(0.306131\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 0 0
\(889\) −64.0000 −2.14649
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.00000 −0.132964
\(906\) 0 0
\(907\) 38.0000 1.26177 0.630885 0.775877i \(-0.282692\pi\)
0.630885 + 0.775877i \(0.282692\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −24.0000 −0.795155 −0.397578 0.917568i \(-0.630149\pi\)
−0.397578 + 0.917568i \(0.630149\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 24.0000 0.792550
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 10.0000 0.328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 8.00000 0.261628
\(936\) 0 0
\(937\) 46.0000 1.50275 0.751377 0.659873i \(-0.229390\pi\)
0.751377 + 0.659873i \(0.229390\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −38.0000 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 14.0000 0.454939 0.227469 0.973785i \(-0.426955\pi\)
0.227469 + 0.973785i \(0.426955\pi\)
\(948\) 0 0
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −58.0000 −1.87880 −0.939402 0.342817i \(-0.888619\pi\)
−0.939402 + 0.342817i \(0.888619\pi\)
\(954\) 0 0
\(955\) −32.0000 −1.03550
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −40.0000 −1.29167
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.00000 −0.128765
\(966\) 0 0
\(967\) −28.0000 −0.900419 −0.450210 0.892923i \(-0.648651\pi\)
−0.450210 + 0.892923i \(0.648651\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −38.0000 −1.21948 −0.609739 0.792602i \(-0.708726\pi\)
−0.609739 + 0.792602i \(0.708726\pi\)
\(972\) 0 0
\(973\) −40.0000 −1.28234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −30.0000 −0.959785 −0.479893 0.877327i \(-0.659324\pi\)
−0.479893 + 0.877327i \(0.659324\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.0000 0.637901 0.318950 0.947771i \(-0.396670\pi\)
0.318950 + 0.947771i \(0.396670\pi\)
\(984\) 0 0
\(985\) −28.0000 −0.892154
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 8.00000 0.253617
\(996\) 0 0
\(997\) 54.0000 1.71020 0.855099 0.518465i \(-0.173497\pi\)
0.855099 + 0.518465i \(0.173497\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1152.2.a.r.1.1 1
3.2 odd 2 128.2.a.c.1.1 yes 1
4.3 odd 2 1152.2.a.m.1.1 1
8.3 odd 2 1152.2.a.c.1.1 1
8.5 even 2 1152.2.a.h.1.1 1
12.11 even 2 128.2.a.a.1.1 1
15.2 even 4 3200.2.c.f.2049.1 2
15.8 even 4 3200.2.c.f.2049.2 2
15.14 odd 2 3200.2.a.e.1.1 1
16.3 odd 4 2304.2.d.r.1153.1 2
16.5 even 4 2304.2.d.b.1153.2 2
16.11 odd 4 2304.2.d.r.1153.2 2
16.13 even 4 2304.2.d.b.1153.1 2
21.20 even 2 6272.2.a.b.1.1 1
24.5 odd 2 128.2.a.b.1.1 yes 1
24.11 even 2 128.2.a.d.1.1 yes 1
48.5 odd 4 256.2.b.a.129.1 2
48.11 even 4 256.2.b.c.129.2 2
48.29 odd 4 256.2.b.a.129.2 2
48.35 even 4 256.2.b.c.129.1 2
60.23 odd 4 3200.2.c.l.2049.1 2
60.47 odd 4 3200.2.c.l.2049.2 2
60.59 even 2 3200.2.a.x.1.1 1
84.83 odd 2 6272.2.a.h.1.1 1
96.5 odd 8 1024.2.e.m.769.1 4
96.11 even 8 1024.2.e.i.769.1 4
96.29 odd 8 1024.2.e.m.257.2 4
96.35 even 8 1024.2.e.i.257.1 4
96.53 odd 8 1024.2.e.m.769.2 4
96.59 even 8 1024.2.e.i.769.2 4
96.77 odd 8 1024.2.e.m.257.1 4
96.83 even 8 1024.2.e.i.257.2 4
120.29 odd 2 3200.2.a.u.1.1 1
120.53 even 4 3200.2.c.k.2049.1 2
120.59 even 2 3200.2.a.h.1.1 1
120.77 even 4 3200.2.c.k.2049.2 2
120.83 odd 4 3200.2.c.e.2049.2 2
120.107 odd 4 3200.2.c.e.2049.1 2
168.83 odd 2 6272.2.a.a.1.1 1
168.125 even 2 6272.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.2.a.a.1.1 1 12.11 even 2
128.2.a.b.1.1 yes 1 24.5 odd 2
128.2.a.c.1.1 yes 1 3.2 odd 2
128.2.a.d.1.1 yes 1 24.11 even 2
256.2.b.a.129.1 2 48.5 odd 4
256.2.b.a.129.2 2 48.29 odd 4
256.2.b.c.129.1 2 48.35 even 4
256.2.b.c.129.2 2 48.11 even 4
1024.2.e.i.257.1 4 96.35 even 8
1024.2.e.i.257.2 4 96.83 even 8
1024.2.e.i.769.1 4 96.11 even 8
1024.2.e.i.769.2 4 96.59 even 8
1024.2.e.m.257.1 4 96.77 odd 8
1024.2.e.m.257.2 4 96.29 odd 8
1024.2.e.m.769.1 4 96.5 odd 8
1024.2.e.m.769.2 4 96.53 odd 8
1152.2.a.c.1.1 1 8.3 odd 2
1152.2.a.h.1.1 1 8.5 even 2
1152.2.a.m.1.1 1 4.3 odd 2
1152.2.a.r.1.1 1 1.1 even 1 trivial
2304.2.d.b.1153.1 2 16.13 even 4
2304.2.d.b.1153.2 2 16.5 even 4
2304.2.d.r.1153.1 2 16.3 odd 4
2304.2.d.r.1153.2 2 16.11 odd 4
3200.2.a.e.1.1 1 15.14 odd 2
3200.2.a.h.1.1 1 120.59 even 2
3200.2.a.u.1.1 1 120.29 odd 2
3200.2.a.x.1.1 1 60.59 even 2
3200.2.c.e.2049.1 2 120.107 odd 4
3200.2.c.e.2049.2 2 120.83 odd 4
3200.2.c.f.2049.1 2 15.2 even 4
3200.2.c.f.2049.2 2 15.8 even 4
3200.2.c.k.2049.1 2 120.53 even 4
3200.2.c.k.2049.2 2 120.77 even 4
3200.2.c.l.2049.1 2 60.23 odd 4
3200.2.c.l.2049.2 2 60.47 odd 4
6272.2.a.a.1.1 1 168.83 odd 2
6272.2.a.b.1.1 1 21.20 even 2
6272.2.a.g.1.1 1 168.125 even 2
6272.2.a.h.1.1 1 84.83 odd 2