Properties

Label 1152.1.n.b
Level $1152$
Weight $1$
Character orbit 1152.n
Analytic conductor $0.575$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1152.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.20155392.5

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{3} + \zeta_{6}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{3} + \zeta_{6}^{2} q^{9} + \zeta_{6} q^{11} + ( -\zeta_{6} - \zeta_{6}^{2} ) q^{17} + ( \zeta_{6} + \zeta_{6}^{2} ) q^{19} + \zeta_{6} q^{25} - q^{27} + \zeta_{6}^{2} q^{33} + ( -1 - \zeta_{6} ) q^{41} + ( 1 - \zeta_{6}^{2} ) q^{43} -\zeta_{6}^{2} q^{49} + ( 1 - \zeta_{6}^{2} ) q^{51} + ( -1 + \zeta_{6}^{2} ) q^{57} + \zeta_{6}^{2} q^{59} + ( -1 - \zeta_{6} ) q^{67} + q^{73} + \zeta_{6}^{2} q^{75} -\zeta_{6} q^{81} -2 \zeta_{6} q^{83} + \zeta_{6} q^{97} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{3} - q^{9} + O(q^{10}) \) \( 2q + q^{3} - q^{9} + q^{11} + q^{25} - 2q^{27} - q^{33} - 3q^{41} + 3q^{43} + q^{49} + 3q^{51} - 3q^{57} - q^{59} - 3q^{67} + 2q^{73} - q^{75} - q^{81} - 2q^{83} + q^{97} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-\zeta_{6}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
65.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 0.866025i 0 0 0 0 0 −0.500000 0.866025i 0
833.1 0 0.500000 + 0.866025i 0 0 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
36.h even 6 1 inner
72.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.1.n.b yes 2
3.b odd 2 1 3456.1.n.a 2
4.b odd 2 1 1152.1.n.a 2
8.b even 2 1 1152.1.n.a 2
8.d odd 2 1 CM 1152.1.n.b yes 2
9.c even 3 1 3456.1.n.b 2
9.d odd 6 1 1152.1.n.a 2
12.b even 2 1 3456.1.n.b 2
16.e even 4 2 2304.1.q.c 4
16.f odd 4 2 2304.1.q.c 4
24.f even 2 1 3456.1.n.a 2
24.h odd 2 1 3456.1.n.b 2
36.f odd 6 1 3456.1.n.a 2
36.h even 6 1 inner 1152.1.n.b yes 2
72.j odd 6 1 inner 1152.1.n.b yes 2
72.l even 6 1 1152.1.n.a 2
72.n even 6 1 3456.1.n.a 2
72.p odd 6 1 3456.1.n.b 2
144.u even 12 2 2304.1.q.c 4
144.w odd 12 2 2304.1.q.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.1.n.a 2 4.b odd 2 1
1152.1.n.a 2 8.b even 2 1
1152.1.n.a 2 9.d odd 6 1
1152.1.n.a 2 72.l even 6 1
1152.1.n.b yes 2 1.a even 1 1 trivial
1152.1.n.b yes 2 8.d odd 2 1 CM
1152.1.n.b yes 2 36.h even 6 1 inner
1152.1.n.b yes 2 72.j odd 6 1 inner
2304.1.q.c 4 16.e even 4 2
2304.1.q.c 4 16.f odd 4 2
2304.1.q.c 4 144.u even 12 2
2304.1.q.c 4 144.w odd 12 2
3456.1.n.a 2 3.b odd 2 1
3456.1.n.a 2 24.f even 2 1
3456.1.n.a 2 36.f odd 6 1
3456.1.n.a 2 72.n even 6 1
3456.1.n.b 2 9.c even 3 1
3456.1.n.b 2 12.b even 2 1
3456.1.n.b 2 24.h odd 2 1
3456.1.n.b 2 72.p odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11}^{2} - T_{11} + 1 \) acting on \(S_{1}^{\mathrm{new}}(1152, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( T^{2} \)
$17$ \( 3 + T^{2} \)
$19$ \( 3 + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( T^{2} \)
$37$ \( T^{2} \)
$41$ \( 3 + 3 T + T^{2} \)
$43$ \( 3 - 3 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( 1 + T + T^{2} \)
$61$ \( T^{2} \)
$67$ \( 3 + 3 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( -1 + T )^{2} \)
$79$ \( T^{2} \)
$83$ \( 4 + 2 T + T^{2} \)
$89$ \( T^{2} \)
$97$ \( 1 - T + T^{2} \)
show more
show less