Properties

Label 1152.1.h.a
Level $1152$
Weight $1$
Character orbit 1152.h
Analytic conductor $0.575$
Analytic rank $0$
Dimension $4$
Projective image $D_{4}$
CM discriminant -4
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1152 = 2^{7} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1152.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.574922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Defining polynomial: \(x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.6912.1

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{5} +O(q^{10})\) \( q + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{5} + 2 \zeta_{8}^{2} q^{13} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{17} + q^{25} + ( \zeta_{8} - \zeta_{8}^{3} ) q^{29} + ( \zeta_{8} + \zeta_{8}^{3} ) q^{41} - q^{49} + ( -\zeta_{8} + \zeta_{8}^{3} ) q^{53} + ( -2 \zeta_{8} - 2 \zeta_{8}^{3} ) q^{65} -2 \zeta_{8}^{2} q^{85} + ( -\zeta_{8} - \zeta_{8}^{3} ) q^{89} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + O(q^{10}) \) \( 4q + 4q^{25} - 4q^{49} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1152\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(641\) \(901\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
449.1
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
0 0 0 −1.41421 0 0 0 0 0
449.2 0 0 0 −1.41421 0 0 0 0 0
449.3 0 0 0 1.41421 0 0 0 0 0
449.4 0 0 0 1.41421 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
3.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner
12.b even 2 1 inner
24.f even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1152.1.h.a 4
3.b odd 2 1 inner 1152.1.h.a 4
4.b odd 2 1 CM 1152.1.h.a 4
8.b even 2 1 inner 1152.1.h.a 4
8.d odd 2 1 inner 1152.1.h.a 4
12.b even 2 1 inner 1152.1.h.a 4
16.e even 4 1 2304.1.e.a 2
16.e even 4 1 2304.1.e.b 2
16.f odd 4 1 2304.1.e.a 2
16.f odd 4 1 2304.1.e.b 2
24.f even 2 1 inner 1152.1.h.a 4
24.h odd 2 1 inner 1152.1.h.a 4
48.i odd 4 1 2304.1.e.a 2
48.i odd 4 1 2304.1.e.b 2
48.k even 4 1 2304.1.e.a 2
48.k even 4 1 2304.1.e.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1152.1.h.a 4 1.a even 1 1 trivial
1152.1.h.a 4 3.b odd 2 1 inner
1152.1.h.a 4 4.b odd 2 1 CM
1152.1.h.a 4 8.b even 2 1 inner
1152.1.h.a 4 8.d odd 2 1 inner
1152.1.h.a 4 12.b even 2 1 inner
1152.1.h.a 4 24.f even 2 1 inner
1152.1.h.a 4 24.h odd 2 1 inner
2304.1.e.a 2 16.e even 4 1
2304.1.e.a 2 16.f odd 4 1
2304.1.e.a 2 48.i odd 4 1
2304.1.e.a 2 48.k even 4 1
2304.1.e.b 2 16.e even 4 1
2304.1.e.b 2 16.f odd 4 1
2304.1.e.b 2 48.i odd 4 1
2304.1.e.b 2 48.k even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1152, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( T^{4} \)
$5$ \( ( -2 + T^{2} )^{2} \)
$7$ \( T^{4} \)
$11$ \( T^{4} \)
$13$ \( ( 4 + T^{2} )^{2} \)
$17$ \( ( 2 + T^{2} )^{2} \)
$19$ \( T^{4} \)
$23$ \( T^{4} \)
$29$ \( ( -2 + T^{2} )^{2} \)
$31$ \( T^{4} \)
$37$ \( T^{4} \)
$41$ \( ( 2 + T^{2} )^{2} \)
$43$ \( T^{4} \)
$47$ \( T^{4} \)
$53$ \( ( -2 + T^{2} )^{2} \)
$59$ \( T^{4} \)
$61$ \( T^{4} \)
$67$ \( T^{4} \)
$71$ \( T^{4} \)
$73$ \( T^{4} \)
$79$ \( T^{4} \)
$83$ \( T^{4} \)
$89$ \( ( 2 + T^{2} )^{2} \)
$97$ \( T^{4} \)
show more
show less