Properties

Label 1150.4.b.r.599.10
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 214x^{8} + 15751x^{6} + 460323x^{4} + 4609305x^{2} + 8503056 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.10
Root \(9.27140i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.r.599.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +8.27140i q^{3} -4.00000 q^{4} -16.5428 q^{6} +22.8621i q^{7} -8.00000i q^{8} -41.4161 q^{9} -0.987996 q^{11} -33.0856i q^{12} +4.22276i q^{13} -45.7241 q^{14} +16.0000 q^{16} +73.8741i q^{17} -82.8322i q^{18} -71.1586 q^{19} -189.101 q^{21} -1.97599i q^{22} -23.0000i q^{23} +66.1712 q^{24} -8.44552 q^{26} -119.241i q^{27} -91.4483i q^{28} -27.8984 q^{29} -136.861 q^{31} +32.0000i q^{32} -8.17211i q^{33} -147.748 q^{34} +165.664 q^{36} -201.718i q^{37} -142.317i q^{38} -34.9281 q^{39} -204.140 q^{41} -378.203i q^{42} +54.1024i q^{43} +3.95198 q^{44} +46.0000 q^{46} -41.4490i q^{47} +132.342i q^{48} -179.674 q^{49} -611.042 q^{51} -16.8910i q^{52} -428.612i q^{53} +238.483 q^{54} +182.897 q^{56} -588.581i q^{57} -55.7969i q^{58} +164.858 q^{59} +188.248 q^{61} -273.722i q^{62} -946.857i q^{63} -64.0000 q^{64} +16.3442 q^{66} +932.167i q^{67} -295.496i q^{68} +190.242 q^{69} -263.336 q^{71} +331.329i q^{72} -900.401i q^{73} +403.437 q^{74} +284.634 q^{76} -22.5876i q^{77} -69.8563i q^{78} +956.182 q^{79} -131.942 q^{81} -408.279i q^{82} -194.877i q^{83} +756.405 q^{84} -108.205 q^{86} -230.759i q^{87} +7.90397i q^{88} +213.751 q^{89} -96.5410 q^{91} +92.0000i q^{92} -1132.03i q^{93} +82.8981 q^{94} -264.685 q^{96} +628.762i q^{97} -359.348i q^{98} +40.9189 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 40 q^{4} + 20 q^{6} - 168 q^{9} - 52 q^{11} + 12 q^{14} + 160 q^{16} - 148 q^{19} - 176 q^{21} - 80 q^{24} - 244 q^{26} - 74 q^{29} + 440 q^{31} - 924 q^{34} + 672 q^{36} - 390 q^{39} + 224 q^{41}+ \cdots - 4794 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 8.27140i 1.59183i 0.605407 + 0.795916i \(0.293010\pi\)
−0.605407 + 0.795916i \(0.706990\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −16.5428 −1.12560
\(7\) 22.8621i 1.23444i 0.786792 + 0.617218i \(0.211740\pi\)
−0.786792 + 0.617218i \(0.788260\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) −41.4161 −1.53393
\(10\) 0 0
\(11\) −0.987996 −0.0270811 −0.0135405 0.999908i \(-0.504310\pi\)
−0.0135405 + 0.999908i \(0.504310\pi\)
\(12\) − 33.0856i − 0.795916i
\(13\) 4.22276i 0.0900910i 0.998985 + 0.0450455i \(0.0143433\pi\)
−0.998985 + 0.0450455i \(0.985657\pi\)
\(14\) −45.7241 −0.872878
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 73.8741i 1.05395i 0.849882 + 0.526973i \(0.176673\pi\)
−0.849882 + 0.526973i \(0.823327\pi\)
\(18\) − 82.8322i − 1.08465i
\(19\) −71.1586 −0.859205 −0.429602 0.903018i \(-0.641346\pi\)
−0.429602 + 0.903018i \(0.641346\pi\)
\(20\) 0 0
\(21\) −189.101 −1.96501
\(22\) − 1.97599i − 0.0191492i
\(23\) − 23.0000i − 0.208514i
\(24\) 66.1712 0.562798
\(25\) 0 0
\(26\) −8.44552 −0.0637039
\(27\) − 119.241i − 0.849926i
\(28\) − 91.4483i − 0.617218i
\(29\) −27.8984 −0.178642 −0.0893209 0.996003i \(-0.528470\pi\)
−0.0893209 + 0.996003i \(0.528470\pi\)
\(30\) 0 0
\(31\) −136.861 −0.792935 −0.396468 0.918049i \(-0.629764\pi\)
−0.396468 + 0.918049i \(0.629764\pi\)
\(32\) 32.0000i 0.176777i
\(33\) − 8.17211i − 0.0431085i
\(34\) −147.748 −0.745253
\(35\) 0 0
\(36\) 165.664 0.766965
\(37\) − 201.718i − 0.896278i −0.893964 0.448139i \(-0.852087\pi\)
0.893964 0.448139i \(-0.147913\pi\)
\(38\) − 142.317i − 0.607550i
\(39\) −34.9281 −0.143410
\(40\) 0 0
\(41\) −204.140 −0.777592 −0.388796 0.921324i \(-0.627109\pi\)
−0.388796 + 0.921324i \(0.627109\pi\)
\(42\) − 378.203i − 1.38947i
\(43\) 54.1024i 0.191873i 0.995387 + 0.0959365i \(0.0305846\pi\)
−0.995387 + 0.0959365i \(0.969415\pi\)
\(44\) 3.95198 0.0135405
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) − 41.4490i − 0.128638i −0.997929 0.0643188i \(-0.979513\pi\)
0.997929 0.0643188i \(-0.0204874\pi\)
\(48\) 132.342i 0.397958i
\(49\) −179.674 −0.523831
\(50\) 0 0
\(51\) −611.042 −1.67771
\(52\) − 16.8910i − 0.0450455i
\(53\) − 428.612i − 1.11084i −0.831571 0.555418i \(-0.812558\pi\)
0.831571 0.555418i \(-0.187442\pi\)
\(54\) 238.483 0.600988
\(55\) 0 0
\(56\) 182.897 0.436439
\(57\) − 588.581i − 1.36771i
\(58\) − 55.7969i − 0.126319i
\(59\) 164.858 0.363774 0.181887 0.983319i \(-0.441779\pi\)
0.181887 + 0.983319i \(0.441779\pi\)
\(60\) 0 0
\(61\) 188.248 0.395125 0.197563 0.980290i \(-0.436697\pi\)
0.197563 + 0.980290i \(0.436697\pi\)
\(62\) − 273.722i − 0.560690i
\(63\) − 946.857i − 1.89354i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 16.3442 0.0304823
\(67\) 932.167i 1.69974i 0.526995 + 0.849868i \(0.323318\pi\)
−0.526995 + 0.849868i \(0.676682\pi\)
\(68\) − 295.496i − 0.526973i
\(69\) 190.242 0.331920
\(70\) 0 0
\(71\) −263.336 −0.440173 −0.220086 0.975480i \(-0.570634\pi\)
−0.220086 + 0.975480i \(0.570634\pi\)
\(72\) 331.329i 0.542326i
\(73\) − 900.401i − 1.44362i −0.692094 0.721808i \(-0.743311\pi\)
0.692094 0.721808i \(-0.256689\pi\)
\(74\) 403.437 0.633764
\(75\) 0 0
\(76\) 284.634 0.429602
\(77\) − 22.5876i − 0.0334299i
\(78\) − 69.8563i − 0.101406i
\(79\) 956.182 1.36176 0.680879 0.732396i \(-0.261598\pi\)
0.680879 + 0.732396i \(0.261598\pi\)
\(80\) 0 0
\(81\) −131.942 −0.180990
\(82\) − 408.279i − 0.549841i
\(83\) − 194.877i − 0.257717i −0.991663 0.128858i \(-0.958869\pi\)
0.991663 0.128858i \(-0.0411313\pi\)
\(84\) 756.405 0.982507
\(85\) 0 0
\(86\) −108.205 −0.135675
\(87\) − 230.759i − 0.284368i
\(88\) 7.90397i 0.00957461i
\(89\) 213.751 0.254580 0.127290 0.991866i \(-0.459372\pi\)
0.127290 + 0.991866i \(0.459372\pi\)
\(90\) 0 0
\(91\) −96.5410 −0.111211
\(92\) 92.0000i 0.104257i
\(93\) − 1132.03i − 1.26222i
\(94\) 82.8981 0.0909605
\(95\) 0 0
\(96\) −264.685 −0.281399
\(97\) 628.762i 0.658156i 0.944303 + 0.329078i \(0.106738\pi\)
−0.944303 + 0.329078i \(0.893262\pi\)
\(98\) − 359.348i − 0.370404i
\(99\) 40.9189 0.0415405
\(100\) 0 0
\(101\) −51.1371 −0.0503796 −0.0251898 0.999683i \(-0.508019\pi\)
−0.0251898 + 0.999683i \(0.508019\pi\)
\(102\) − 1222.08i − 1.18632i
\(103\) − 363.089i − 0.347342i −0.984804 0.173671i \(-0.944437\pi\)
0.984804 0.173671i \(-0.0555630\pi\)
\(104\) 33.7821 0.0318520
\(105\) 0 0
\(106\) 857.223 0.785480
\(107\) 1514.53i 1.36837i 0.729310 + 0.684184i \(0.239841\pi\)
−0.729310 + 0.684184i \(0.760159\pi\)
\(108\) 476.965i 0.424963i
\(109\) −811.356 −0.712971 −0.356485 0.934301i \(-0.616025\pi\)
−0.356485 + 0.934301i \(0.616025\pi\)
\(110\) 0 0
\(111\) 1668.49 1.42672
\(112\) 365.793i 0.308609i
\(113\) − 12.4496i − 0.0103642i −0.999987 0.00518211i \(-0.998350\pi\)
0.999987 0.00518211i \(-0.00164952\pi\)
\(114\) 1177.16 0.967117
\(115\) 0 0
\(116\) 111.594 0.0893209
\(117\) − 174.890i − 0.138193i
\(118\) 329.716i 0.257227i
\(119\) −1688.91 −1.30103
\(120\) 0 0
\(121\) −1330.02 −0.999267
\(122\) 376.495i 0.279396i
\(123\) − 1688.52i − 1.23780i
\(124\) 547.445 0.396468
\(125\) 0 0
\(126\) 1893.71 1.33893
\(127\) − 632.599i − 0.442000i −0.975274 0.221000i \(-0.929068\pi\)
0.975274 0.221000i \(-0.0709322\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −447.503 −0.305430
\(130\) 0 0
\(131\) 2243.16 1.49607 0.748036 0.663658i \(-0.230997\pi\)
0.748036 + 0.663658i \(0.230997\pi\)
\(132\) 32.6884i 0.0215543i
\(133\) − 1626.83i − 1.06063i
\(134\) −1864.33 −1.20190
\(135\) 0 0
\(136\) 590.993 0.372626
\(137\) 1252.77i 0.781252i 0.920550 + 0.390626i \(0.127741\pi\)
−0.920550 + 0.390626i \(0.872259\pi\)
\(138\) 380.484i 0.234703i
\(139\) −2815.19 −1.71785 −0.858925 0.512101i \(-0.828867\pi\)
−0.858925 + 0.512101i \(0.828867\pi\)
\(140\) 0 0
\(141\) 342.842 0.204769
\(142\) − 526.673i − 0.311249i
\(143\) − 4.17207i − 0.00243976i
\(144\) −662.657 −0.383482
\(145\) 0 0
\(146\) 1800.80 1.02079
\(147\) − 1486.16i − 0.833851i
\(148\) 806.873i 0.448139i
\(149\) −2406.46 −1.32312 −0.661560 0.749892i \(-0.730105\pi\)
−0.661560 + 0.749892i \(0.730105\pi\)
\(150\) 0 0
\(151\) 2185.59 1.17788 0.588942 0.808175i \(-0.299545\pi\)
0.588942 + 0.808175i \(0.299545\pi\)
\(152\) 569.268i 0.303775i
\(153\) − 3059.58i − 1.61668i
\(154\) 45.1753 0.0236385
\(155\) 0 0
\(156\) 139.713 0.0717048
\(157\) 1074.18i 0.546044i 0.962008 + 0.273022i \(0.0880232\pi\)
−0.962008 + 0.273022i \(0.911977\pi\)
\(158\) 1912.36i 0.962908i
\(159\) 3545.22 1.76827
\(160\) 0 0
\(161\) 525.828 0.257398
\(162\) − 263.884i − 0.127979i
\(163\) − 2706.30i − 1.30045i −0.759741 0.650226i \(-0.774674\pi\)
0.759741 0.650226i \(-0.225326\pi\)
\(164\) 816.559 0.388796
\(165\) 0 0
\(166\) 389.754 0.182233
\(167\) 455.547i 0.211086i 0.994415 + 0.105543i \(0.0336580\pi\)
−0.994415 + 0.105543i \(0.966342\pi\)
\(168\) 1512.81i 0.694737i
\(169\) 2179.17 0.991884
\(170\) 0 0
\(171\) 2947.11 1.31796
\(172\) − 216.410i − 0.0959365i
\(173\) 1342.64i 0.590051i 0.955489 + 0.295026i \(0.0953282\pi\)
−0.955489 + 0.295026i \(0.904672\pi\)
\(174\) 461.518 0.201078
\(175\) 0 0
\(176\) −15.8079 −0.00677027
\(177\) 1363.61i 0.579068i
\(178\) 427.503i 0.180015i
\(179\) 4655.64 1.94401 0.972007 0.234951i \(-0.0754929\pi\)
0.972007 + 0.234951i \(0.0754929\pi\)
\(180\) 0 0
\(181\) −176.320 −0.0724074 −0.0362037 0.999344i \(-0.511527\pi\)
−0.0362037 + 0.999344i \(0.511527\pi\)
\(182\) − 193.082i − 0.0786384i
\(183\) 1557.07i 0.628973i
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) 2264.07 0.892524
\(187\) − 72.9873i − 0.0285420i
\(188\) 165.796i 0.0643188i
\(189\) 2726.10 1.04918
\(190\) 0 0
\(191\) 1672.03 0.633422 0.316711 0.948522i \(-0.397421\pi\)
0.316711 + 0.948522i \(0.397421\pi\)
\(192\) − 529.370i − 0.198979i
\(193\) 2954.45i 1.10189i 0.834540 + 0.550947i \(0.185733\pi\)
−0.834540 + 0.550947i \(0.814267\pi\)
\(194\) −1257.52 −0.465386
\(195\) 0 0
\(196\) 718.696 0.261915
\(197\) 1817.35i 0.657264i 0.944458 + 0.328632i \(0.106588\pi\)
−0.944458 + 0.328632i \(0.893412\pi\)
\(198\) 81.8379i 0.0293735i
\(199\) −4780.99 −1.70309 −0.851546 0.524280i \(-0.824334\pi\)
−0.851546 + 0.524280i \(0.824334\pi\)
\(200\) 0 0
\(201\) −7710.33 −2.70569
\(202\) − 102.274i − 0.0356237i
\(203\) − 637.816i − 0.220522i
\(204\) 2444.17 0.838853
\(205\) 0 0
\(206\) 726.179 0.245608
\(207\) 952.570i 0.319846i
\(208\) 67.5641i 0.0225227i
\(209\) 70.3044 0.0232682
\(210\) 0 0
\(211\) 3201.72 1.04462 0.522312 0.852755i \(-0.325070\pi\)
0.522312 + 0.852755i \(0.325070\pi\)
\(212\) 1714.45i 0.555418i
\(213\) − 2178.16i − 0.700681i
\(214\) −3029.06 −0.967582
\(215\) 0 0
\(216\) −953.930 −0.300494
\(217\) − 3128.93i − 0.978828i
\(218\) − 1622.71i − 0.504147i
\(219\) 7447.58 2.29799
\(220\) 0 0
\(221\) −311.952 −0.0949511
\(222\) 3336.99i 1.00885i
\(223\) 1897.23i 0.569721i 0.958569 + 0.284860i \(0.0919473\pi\)
−0.958569 + 0.284860i \(0.908053\pi\)
\(224\) −731.586 −0.218219
\(225\) 0 0
\(226\) 24.8991 0.00732861
\(227\) 4468.42i 1.30652i 0.757135 + 0.653258i \(0.226598\pi\)
−0.757135 + 0.653258i \(0.773402\pi\)
\(228\) 2354.32i 0.683855i
\(229\) 5345.88 1.54264 0.771322 0.636445i \(-0.219596\pi\)
0.771322 + 0.636445i \(0.219596\pi\)
\(230\) 0 0
\(231\) 186.831 0.0532147
\(232\) 223.187i 0.0631594i
\(233\) 4480.46i 1.25976i 0.776691 + 0.629882i \(0.216897\pi\)
−0.776691 + 0.629882i \(0.783103\pi\)
\(234\) 349.780 0.0977173
\(235\) 0 0
\(236\) −659.432 −0.181887
\(237\) 7908.97i 2.16769i
\(238\) − 3377.83i − 0.919967i
\(239\) −779.836 −0.211060 −0.105530 0.994416i \(-0.533654\pi\)
−0.105530 + 0.994416i \(0.533654\pi\)
\(240\) 0 0
\(241\) −4204.89 −1.12390 −0.561952 0.827170i \(-0.689950\pi\)
−0.561952 + 0.827170i \(0.689950\pi\)
\(242\) − 2660.05i − 0.706588i
\(243\) − 4310.86i − 1.13803i
\(244\) −752.991 −0.197563
\(245\) 0 0
\(246\) 3377.04 0.875254
\(247\) − 300.485i − 0.0774066i
\(248\) 1094.89i 0.280345i
\(249\) 1611.90 0.410242
\(250\) 0 0
\(251\) 2761.48 0.694433 0.347217 0.937785i \(-0.387127\pi\)
0.347217 + 0.937785i \(0.387127\pi\)
\(252\) 3787.43i 0.946768i
\(253\) 22.7239i 0.00564680i
\(254\) 1265.20 0.312542
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 586.469i − 0.142346i −0.997464 0.0711730i \(-0.977326\pi\)
0.997464 0.0711730i \(-0.0226742\pi\)
\(258\) − 895.006i − 0.215971i
\(259\) 4611.70 1.10640
\(260\) 0 0
\(261\) 1155.44 0.274024
\(262\) 4486.31i 1.05788i
\(263\) − 5970.38i − 1.39981i −0.714238 0.699903i \(-0.753226\pi\)
0.714238 0.699903i \(-0.246774\pi\)
\(264\) −65.3769 −0.0152412
\(265\) 0 0
\(266\) 3253.66 0.749981
\(267\) 1768.02i 0.405248i
\(268\) − 3728.67i − 0.849868i
\(269\) −3914.34 −0.887217 −0.443608 0.896221i \(-0.646302\pi\)
−0.443608 + 0.896221i \(0.646302\pi\)
\(270\) 0 0
\(271\) 78.0865 0.0175034 0.00875170 0.999962i \(-0.497214\pi\)
0.00875170 + 0.999962i \(0.497214\pi\)
\(272\) 1181.99i 0.263487i
\(273\) − 798.529i − 0.177030i
\(274\) −2505.54 −0.552428
\(275\) 0 0
\(276\) −760.969 −0.165960
\(277\) − 76.0512i − 0.0164963i −0.999966 0.00824815i \(-0.997375\pi\)
0.999966 0.00824815i \(-0.00262550\pi\)
\(278\) − 5630.38i − 1.21470i
\(279\) 5668.26 1.21631
\(280\) 0 0
\(281\) −3852.67 −0.817905 −0.408952 0.912556i \(-0.634106\pi\)
−0.408952 + 0.912556i \(0.634106\pi\)
\(282\) 685.683i 0.144794i
\(283\) 1550.13i 0.325603i 0.986659 + 0.162802i \(0.0520531\pi\)
−0.986659 + 0.162802i \(0.947947\pi\)
\(284\) 1053.35 0.220086
\(285\) 0 0
\(286\) 8.34414 0.00172517
\(287\) − 4667.06i − 0.959887i
\(288\) − 1325.31i − 0.271163i
\(289\) −544.378 −0.110804
\(290\) 0 0
\(291\) −5200.74 −1.04767
\(292\) 3601.60i 0.721808i
\(293\) − 4236.01i − 0.844608i −0.906454 0.422304i \(-0.861221\pi\)
0.906454 0.422304i \(-0.138779\pi\)
\(294\) 2972.31 0.589622
\(295\) 0 0
\(296\) −1613.75 −0.316882
\(297\) 117.810i 0.0230169i
\(298\) − 4812.92i − 0.935587i
\(299\) 97.1234 0.0187853
\(300\) 0 0
\(301\) −1236.89 −0.236855
\(302\) 4371.17i 0.832890i
\(303\) − 422.976i − 0.0801958i
\(304\) −1138.54 −0.214801
\(305\) 0 0
\(306\) 6119.15 1.14317
\(307\) − 10078.1i − 1.87357i −0.349903 0.936786i \(-0.613785\pi\)
0.349903 0.936786i \(-0.386215\pi\)
\(308\) 90.3505i 0.0167149i
\(309\) 3003.26 0.552911
\(310\) 0 0
\(311\) −2652.97 −0.483717 −0.241859 0.970312i \(-0.577757\pi\)
−0.241859 + 0.970312i \(0.577757\pi\)
\(312\) 279.425i 0.0507030i
\(313\) − 6710.68i − 1.21185i −0.795521 0.605926i \(-0.792803\pi\)
0.795521 0.605926i \(-0.207197\pi\)
\(314\) −2148.36 −0.386111
\(315\) 0 0
\(316\) −3824.73 −0.680879
\(317\) − 3677.89i − 0.651642i −0.945431 0.325821i \(-0.894359\pi\)
0.945431 0.325821i \(-0.105641\pi\)
\(318\) 7090.44i 1.25035i
\(319\) 27.5635 0.00483781
\(320\) 0 0
\(321\) −12527.3 −2.17821
\(322\) 1051.66i 0.182008i
\(323\) − 5256.77i − 0.905556i
\(324\) 527.768 0.0904952
\(325\) 0 0
\(326\) 5412.60 0.919558
\(327\) − 6711.05i − 1.13493i
\(328\) 1633.12i 0.274920i
\(329\) 947.611 0.158795
\(330\) 0 0
\(331\) −9806.39 −1.62842 −0.814212 0.580568i \(-0.802831\pi\)
−0.814212 + 0.580568i \(0.802831\pi\)
\(332\) 779.507i 0.128858i
\(333\) 8354.38i 1.37483i
\(334\) −911.094 −0.149260
\(335\) 0 0
\(336\) −3025.62 −0.491253
\(337\) − 7143.41i − 1.15468i −0.816505 0.577339i \(-0.804091\pi\)
0.816505 0.577339i \(-0.195909\pi\)
\(338\) 4358.34i 0.701368i
\(339\) 102.975 0.0164981
\(340\) 0 0
\(341\) 135.218 0.0214736
\(342\) 5894.22i 0.931938i
\(343\) 3733.97i 0.587800i
\(344\) 432.819 0.0678374
\(345\) 0 0
\(346\) −2685.28 −0.417229
\(347\) − 5160.20i − 0.798312i −0.916883 0.399156i \(-0.869303\pi\)
0.916883 0.399156i \(-0.130697\pi\)
\(348\) 923.037i 0.142184i
\(349\) −8712.04 −1.33623 −0.668115 0.744058i \(-0.732899\pi\)
−0.668115 + 0.744058i \(0.732899\pi\)
\(350\) 0 0
\(351\) 503.527 0.0765706
\(352\) − 31.6159i − 0.00478731i
\(353\) 7117.30i 1.07313i 0.843858 + 0.536566i \(0.180279\pi\)
−0.843858 + 0.536566i \(0.819721\pi\)
\(354\) −2727.21 −0.409463
\(355\) 0 0
\(356\) −855.005 −0.127290
\(357\) − 13969.7i − 2.07102i
\(358\) 9311.27i 1.37463i
\(359\) −3548.73 −0.521712 −0.260856 0.965378i \(-0.584005\pi\)
−0.260856 + 0.965378i \(0.584005\pi\)
\(360\) 0 0
\(361\) −1795.46 −0.261767
\(362\) − 352.639i − 0.0511998i
\(363\) − 11001.2i − 1.59066i
\(364\) 386.164 0.0556057
\(365\) 0 0
\(366\) −3114.15 −0.444751
\(367\) 80.0110i 0.0113802i 0.999984 + 0.00569011i \(0.00181123\pi\)
−0.999984 + 0.00569011i \(0.998189\pi\)
\(368\) − 368.000i − 0.0521286i
\(369\) 8454.67 1.19277
\(370\) 0 0
\(371\) 9798.95 1.37126
\(372\) 4528.14i 0.631110i
\(373\) − 3211.09i − 0.445747i −0.974847 0.222874i \(-0.928456\pi\)
0.974847 0.222874i \(-0.0715437\pi\)
\(374\) 145.975 0.0201823
\(375\) 0 0
\(376\) −331.592 −0.0454802
\(377\) − 117.808i − 0.0160940i
\(378\) 5452.20i 0.741881i
\(379\) 8177.57 1.10832 0.554160 0.832410i \(-0.313039\pi\)
0.554160 + 0.832410i \(0.313039\pi\)
\(380\) 0 0
\(381\) 5232.48 0.703591
\(382\) 3344.05i 0.447897i
\(383\) − 12926.5i − 1.72458i −0.506413 0.862291i \(-0.669029\pi\)
0.506413 0.862291i \(-0.330971\pi\)
\(384\) 1058.74 0.140699
\(385\) 0 0
\(386\) −5908.89 −0.779157
\(387\) − 2240.71i − 0.294320i
\(388\) − 2515.05i − 0.329078i
\(389\) −4734.66 −0.617113 −0.308556 0.951206i \(-0.599846\pi\)
−0.308556 + 0.951206i \(0.599846\pi\)
\(390\) 0 0
\(391\) 1699.10 0.219763
\(392\) 1437.39i 0.185202i
\(393\) 18554.0i 2.38150i
\(394\) −3634.71 −0.464756
\(395\) 0 0
\(396\) −163.676 −0.0207702
\(397\) − 9938.80i − 1.25646i −0.778028 0.628229i \(-0.783780\pi\)
0.778028 0.628229i \(-0.216220\pi\)
\(398\) − 9561.98i − 1.20427i
\(399\) 13456.2 1.68835
\(400\) 0 0
\(401\) −335.296 −0.0417553 −0.0208777 0.999782i \(-0.506646\pi\)
−0.0208777 + 0.999782i \(0.506646\pi\)
\(402\) − 15420.7i − 1.91322i
\(403\) − 577.932i − 0.0714363i
\(404\) 204.549 0.0251898
\(405\) 0 0
\(406\) 1275.63 0.155932
\(407\) 199.297i 0.0242722i
\(408\) 4888.34i 0.593159i
\(409\) −6560.85 −0.793186 −0.396593 0.917995i \(-0.629808\pi\)
−0.396593 + 0.917995i \(0.629808\pi\)
\(410\) 0 0
\(411\) −10362.2 −1.24362
\(412\) 1452.36i 0.173671i
\(413\) 3769.00i 0.449056i
\(414\) −1905.14 −0.226166
\(415\) 0 0
\(416\) −135.128 −0.0159260
\(417\) − 23285.6i − 2.73453i
\(418\) 140.609i 0.0164531i
\(419\) −7116.69 −0.829768 −0.414884 0.909874i \(-0.636178\pi\)
−0.414884 + 0.909874i \(0.636178\pi\)
\(420\) 0 0
\(421\) 9799.43 1.13443 0.567215 0.823570i \(-0.308021\pi\)
0.567215 + 0.823570i \(0.308021\pi\)
\(422\) 6403.44i 0.738660i
\(423\) 1716.66i 0.197321i
\(424\) −3428.89 −0.392740
\(425\) 0 0
\(426\) 4356.32 0.495456
\(427\) 4303.73i 0.487757i
\(428\) − 6058.13i − 0.684184i
\(429\) 34.5089 0.00388369
\(430\) 0 0
\(431\) −10523.3 −1.17608 −0.588039 0.808832i \(-0.700100\pi\)
−0.588039 + 0.808832i \(0.700100\pi\)
\(432\) − 1907.86i − 0.212481i
\(433\) 4770.97i 0.529511i 0.964316 + 0.264755i \(0.0852912\pi\)
−0.964316 + 0.264755i \(0.914709\pi\)
\(434\) 6257.86 0.692136
\(435\) 0 0
\(436\) 3245.42 0.356485
\(437\) 1636.65i 0.179157i
\(438\) 14895.2i 1.62493i
\(439\) −10231.2 −1.11232 −0.556159 0.831076i \(-0.687726\pi\)
−0.556159 + 0.831076i \(0.687726\pi\)
\(440\) 0 0
\(441\) 7441.40 0.803520
\(442\) − 623.905i − 0.0671405i
\(443\) − 10508.1i − 1.12699i −0.826121 0.563493i \(-0.809457\pi\)
0.826121 0.563493i \(-0.190543\pi\)
\(444\) −6673.97 −0.713362
\(445\) 0 0
\(446\) −3794.46 −0.402854
\(447\) − 19904.8i − 2.10618i
\(448\) − 1463.17i − 0.154304i
\(449\) −7230.71 −0.759996 −0.379998 0.924987i \(-0.624075\pi\)
−0.379998 + 0.924987i \(0.624075\pi\)
\(450\) 0 0
\(451\) 201.689 0.0210580
\(452\) 49.7983i 0.00518211i
\(453\) 18077.9i 1.87499i
\(454\) −8936.83 −0.923847
\(455\) 0 0
\(456\) −4708.65 −0.483558
\(457\) 2418.74i 0.247580i 0.992308 + 0.123790i \(0.0395049\pi\)
−0.992308 + 0.123790i \(0.960495\pi\)
\(458\) 10691.8i 1.09081i
\(459\) 8808.84 0.895776
\(460\) 0 0
\(461\) −11342.8 −1.14596 −0.572979 0.819570i \(-0.694212\pi\)
−0.572979 + 0.819570i \(0.694212\pi\)
\(462\) 373.663i 0.0376285i
\(463\) 11785.9i 1.18302i 0.806299 + 0.591508i \(0.201467\pi\)
−0.806299 + 0.591508i \(0.798533\pi\)
\(464\) −446.375 −0.0446604
\(465\) 0 0
\(466\) −8960.93 −0.890787
\(467\) 16294.5i 1.61461i 0.590137 + 0.807303i \(0.299074\pi\)
−0.590137 + 0.807303i \(0.700926\pi\)
\(468\) 699.561i 0.0690966i
\(469\) −21311.3 −2.09821
\(470\) 0 0
\(471\) −8884.97 −0.869210
\(472\) − 1318.86i − 0.128614i
\(473\) − 53.4530i − 0.00519613i
\(474\) −15817.9 −1.53279
\(475\) 0 0
\(476\) 6755.66 0.650515
\(477\) 17751.4i 1.70394i
\(478\) − 1559.67i − 0.149242i
\(479\) 785.274 0.0749062 0.0374531 0.999298i \(-0.488076\pi\)
0.0374531 + 0.999298i \(0.488076\pi\)
\(480\) 0 0
\(481\) 851.808 0.0807466
\(482\) − 8409.79i − 0.794721i
\(483\) 4349.33i 0.409734i
\(484\) 5320.10 0.499633
\(485\) 0 0
\(486\) 8621.72 0.804710
\(487\) 8714.29i 0.810846i 0.914129 + 0.405423i \(0.132876\pi\)
−0.914129 + 0.405423i \(0.867124\pi\)
\(488\) − 1505.98i − 0.139698i
\(489\) 22384.9 2.07010
\(490\) 0 0
\(491\) −10943.1 −1.00582 −0.502909 0.864339i \(-0.667737\pi\)
−0.502909 + 0.864339i \(0.667737\pi\)
\(492\) 6754.09i 0.618898i
\(493\) − 2060.97i − 0.188279i
\(494\) 600.971 0.0547347
\(495\) 0 0
\(496\) −2189.78 −0.198234
\(497\) − 6020.41i − 0.543365i
\(498\) 3223.81i 0.290085i
\(499\) 5601.85 0.502552 0.251276 0.967916i \(-0.419150\pi\)
0.251276 + 0.967916i \(0.419150\pi\)
\(500\) 0 0
\(501\) −3768.01 −0.336013
\(502\) 5522.95i 0.491039i
\(503\) − 21689.8i − 1.92266i −0.275395 0.961331i \(-0.588809\pi\)
0.275395 0.961331i \(-0.411191\pi\)
\(504\) −7574.86 −0.669466
\(505\) 0 0
\(506\) −45.4478 −0.00399289
\(507\) 18024.8i 1.57891i
\(508\) 2530.39i 0.221000i
\(509\) −13826.0 −1.20399 −0.601993 0.798501i \(-0.705627\pi\)
−0.601993 + 0.798501i \(0.705627\pi\)
\(510\) 0 0
\(511\) 20585.0 1.78205
\(512\) 512.000i 0.0441942i
\(513\) 8485.04i 0.730260i
\(514\) 1172.94 0.100654
\(515\) 0 0
\(516\) 1790.01 0.152715
\(517\) 40.9515i 0.00348364i
\(518\) 9223.40i 0.782341i
\(519\) −11105.5 −0.939263
\(520\) 0 0
\(521\) −11971.1 −1.00664 −0.503322 0.864099i \(-0.667889\pi\)
−0.503322 + 0.864099i \(0.667889\pi\)
\(522\) 2310.89i 0.193764i
\(523\) 9668.82i 0.808390i 0.914673 + 0.404195i \(0.132448\pi\)
−0.914673 + 0.404195i \(0.867552\pi\)
\(524\) −8972.62 −0.748036
\(525\) 0 0
\(526\) 11940.8 0.989813
\(527\) − 10110.5i − 0.835712i
\(528\) − 130.754i − 0.0107771i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −6827.78 −0.558004
\(532\) 6507.33i 0.530317i
\(533\) − 862.033i − 0.0700540i
\(534\) −3536.05 −0.286554
\(535\) 0 0
\(536\) 7457.34 0.600948
\(537\) 38508.6i 3.09454i
\(538\) − 7828.67i − 0.627357i
\(539\) 177.517 0.0141859
\(540\) 0 0
\(541\) 6793.28 0.539863 0.269932 0.962880i \(-0.412999\pi\)
0.269932 + 0.962880i \(0.412999\pi\)
\(542\) 156.173i 0.0123768i
\(543\) − 1458.41i − 0.115260i
\(544\) −2363.97 −0.186313
\(545\) 0 0
\(546\) 1597.06 0.125179
\(547\) − 5584.91i − 0.436551i −0.975887 0.218276i \(-0.929957\pi\)
0.975887 0.218276i \(-0.0700432\pi\)
\(548\) − 5011.08i − 0.390626i
\(549\) −7796.49 −0.606095
\(550\) 0 0
\(551\) 1985.21 0.153490
\(552\) − 1521.94i − 0.117351i
\(553\) 21860.3i 1.68100i
\(554\) 152.102 0.0116646
\(555\) 0 0
\(556\) 11260.8 0.858925
\(557\) 4172.24i 0.317385i 0.987328 + 0.158693i \(0.0507279\pi\)
−0.987328 + 0.158693i \(0.949272\pi\)
\(558\) 11336.5i 0.860059i
\(559\) −228.461 −0.0172860
\(560\) 0 0
\(561\) 603.707 0.0454341
\(562\) − 7705.34i − 0.578346i
\(563\) − 7734.17i − 0.578963i −0.957184 0.289482i \(-0.906517\pi\)
0.957184 0.289482i \(-0.0934829\pi\)
\(564\) −1371.37 −0.102385
\(565\) 0 0
\(566\) −3100.26 −0.230236
\(567\) − 3016.47i − 0.223421i
\(568\) 2106.69i 0.155625i
\(569\) −1392.55 −0.102599 −0.0512995 0.998683i \(-0.516336\pi\)
−0.0512995 + 0.998683i \(0.516336\pi\)
\(570\) 0 0
\(571\) 16996.1 1.24565 0.622823 0.782363i \(-0.285986\pi\)
0.622823 + 0.782363i \(0.285986\pi\)
\(572\) 16.6883i 0.00121988i
\(573\) 13830.0i 1.00830i
\(574\) 9334.11 0.678743
\(575\) 0 0
\(576\) 2650.63 0.191741
\(577\) − 6849.23i − 0.494172i −0.968994 0.247086i \(-0.920527\pi\)
0.968994 0.247086i \(-0.0794730\pi\)
\(578\) − 1088.76i − 0.0783500i
\(579\) −24437.4 −1.75403
\(580\) 0 0
\(581\) 4455.29 0.318135
\(582\) − 10401.5i − 0.740817i
\(583\) 423.467i 0.0300827i
\(584\) −7203.21 −0.510395
\(585\) 0 0
\(586\) 8472.01 0.597228
\(587\) 6701.08i 0.471181i 0.971852 + 0.235590i \(0.0757024\pi\)
−0.971852 + 0.235590i \(0.924298\pi\)
\(588\) 5944.62i 0.416925i
\(589\) 9738.85 0.681294
\(590\) 0 0
\(591\) −15032.1 −1.04625
\(592\) − 3227.49i − 0.224070i
\(593\) − 9898.21i − 0.685448i −0.939436 0.342724i \(-0.888650\pi\)
0.939436 0.342724i \(-0.111350\pi\)
\(594\) −235.620 −0.0162754
\(595\) 0 0
\(596\) 9625.84 0.661560
\(597\) − 39545.5i − 2.71104i
\(598\) 194.247i 0.0132832i
\(599\) −13149.2 −0.896934 −0.448467 0.893799i \(-0.648030\pi\)
−0.448467 + 0.893799i \(0.648030\pi\)
\(600\) 0 0
\(601\) 27142.4 1.84220 0.921100 0.389326i \(-0.127292\pi\)
0.921100 + 0.389326i \(0.127292\pi\)
\(602\) − 2473.79i − 0.167482i
\(603\) − 38606.7i − 2.60728i
\(604\) −8742.34 −0.588942
\(605\) 0 0
\(606\) 845.952 0.0567070
\(607\) − 6708.40i − 0.448576i −0.974523 0.224288i \(-0.927994\pi\)
0.974523 0.224288i \(-0.0720056\pi\)
\(608\) − 2277.07i − 0.151887i
\(609\) 5275.63 0.351033
\(610\) 0 0
\(611\) 175.029 0.0115891
\(612\) 12238.3i 0.808340i
\(613\) 17755.6i 1.16989i 0.811074 + 0.584943i \(0.198883\pi\)
−0.811074 + 0.584943i \(0.801117\pi\)
\(614\) 20156.2 1.32482
\(615\) 0 0
\(616\) −180.701 −0.0118192
\(617\) 14555.4i 0.949722i 0.880061 + 0.474861i \(0.157502\pi\)
−0.880061 + 0.474861i \(0.842498\pi\)
\(618\) 6006.52i 0.390967i
\(619\) −29452.5 −1.91243 −0.956215 0.292665i \(-0.905458\pi\)
−0.956215 + 0.292665i \(0.905458\pi\)
\(620\) 0 0
\(621\) −2742.55 −0.177222
\(622\) − 5305.94i − 0.342040i
\(623\) 4886.80i 0.314262i
\(624\) −558.850 −0.0358524
\(625\) 0 0
\(626\) 13421.4 0.856909
\(627\) 581.516i 0.0370391i
\(628\) − 4296.72i − 0.273022i
\(629\) 14901.8 0.944629
\(630\) 0 0
\(631\) 9911.19 0.625290 0.312645 0.949870i \(-0.398785\pi\)
0.312645 + 0.949870i \(0.398785\pi\)
\(632\) − 7649.46i − 0.481454i
\(633\) 26482.7i 1.66286i
\(634\) 7355.77 0.460781
\(635\) 0 0
\(636\) −14180.9 −0.884133
\(637\) − 758.720i − 0.0471924i
\(638\) 55.1271i 0.00342085i
\(639\) 10906.4 0.675194
\(640\) 0 0
\(641\) −13548.5 −0.834844 −0.417422 0.908713i \(-0.637066\pi\)
−0.417422 + 0.908713i \(0.637066\pi\)
\(642\) − 25054.6i − 1.54023i
\(643\) − 2254.31i − 0.138260i −0.997608 0.0691302i \(-0.977978\pi\)
0.997608 0.0691302i \(-0.0220224\pi\)
\(644\) −2103.31 −0.128699
\(645\) 0 0
\(646\) 10513.5 0.640325
\(647\) − 17967.1i − 1.09175i −0.837868 0.545874i \(-0.816198\pi\)
0.837868 0.545874i \(-0.183802\pi\)
\(648\) 1055.54i 0.0639897i
\(649\) −162.879 −0.00985141
\(650\) 0 0
\(651\) 25880.6 1.55813
\(652\) 10825.2i 0.650226i
\(653\) − 365.239i − 0.0218881i −0.999940 0.0109440i \(-0.996516\pi\)
0.999940 0.0109440i \(-0.00348367\pi\)
\(654\) 13422.1 0.802517
\(655\) 0 0
\(656\) −3266.24 −0.194398
\(657\) 37291.1i 2.21440i
\(658\) 1895.22i 0.112285i
\(659\) −29229.1 −1.72778 −0.863889 0.503683i \(-0.831978\pi\)
−0.863889 + 0.503683i \(0.831978\pi\)
\(660\) 0 0
\(661\) −23681.1 −1.39348 −0.696740 0.717324i \(-0.745367\pi\)
−0.696740 + 0.717324i \(0.745367\pi\)
\(662\) − 19612.8i − 1.15147i
\(663\) − 2580.28i − 0.151146i
\(664\) −1559.01 −0.0911167
\(665\) 0 0
\(666\) −16708.8 −0.972150
\(667\) 641.664i 0.0372494i
\(668\) − 1822.19i − 0.105543i
\(669\) −15692.7 −0.906900
\(670\) 0 0
\(671\) −185.988 −0.0107004
\(672\) − 6051.24i − 0.347369i
\(673\) 16016.2i 0.917351i 0.888604 + 0.458676i \(0.151676\pi\)
−0.888604 + 0.458676i \(0.848324\pi\)
\(674\) 14286.8 0.816480
\(675\) 0 0
\(676\) −8716.67 −0.495942
\(677\) − 24082.5i − 1.36715i −0.729878 0.683577i \(-0.760423\pi\)
0.729878 0.683577i \(-0.239577\pi\)
\(678\) 205.951i 0.0116659i
\(679\) −14374.8 −0.812451
\(680\) 0 0
\(681\) −36960.1 −2.07975
\(682\) 270.437i 0.0151841i
\(683\) 24224.1i 1.35711i 0.734549 + 0.678556i \(0.237394\pi\)
−0.734549 + 0.678556i \(0.762606\pi\)
\(684\) −11788.4 −0.658980
\(685\) 0 0
\(686\) −7467.94 −0.415637
\(687\) 44217.9i 2.45563i
\(688\) 865.639i 0.0479683i
\(689\) 1809.92 0.100076
\(690\) 0 0
\(691\) 13948.7 0.767919 0.383960 0.923350i \(-0.374560\pi\)
0.383960 + 0.923350i \(0.374560\pi\)
\(692\) − 5370.55i − 0.295026i
\(693\) 935.491i 0.0512790i
\(694\) 10320.4 0.564492
\(695\) 0 0
\(696\) −1846.07 −0.100539
\(697\) − 15080.6i − 0.819540i
\(698\) − 17424.1i − 0.944858i
\(699\) −37059.7 −2.00533
\(700\) 0 0
\(701\) −33334.1 −1.79602 −0.898011 0.439973i \(-0.854988\pi\)
−0.898011 + 0.439973i \(0.854988\pi\)
\(702\) 1007.05i 0.0541436i
\(703\) 14354.0i 0.770087i
\(704\) 63.2317 0.00338514
\(705\) 0 0
\(706\) −14234.6 −0.758819
\(707\) − 1169.10i − 0.0621903i
\(708\) − 5454.43i − 0.289534i
\(709\) 7107.92 0.376507 0.188253 0.982120i \(-0.439717\pi\)
0.188253 + 0.982120i \(0.439717\pi\)
\(710\) 0 0
\(711\) −39601.3 −2.08884
\(712\) − 1710.01i − 0.0900075i
\(713\) 3147.81i 0.165338i
\(714\) 27939.4 1.46443
\(715\) 0 0
\(716\) −18622.5 −0.972007
\(717\) − 6450.34i − 0.335972i
\(718\) − 7097.45i − 0.368906i
\(719\) 13003.1 0.674456 0.337228 0.941423i \(-0.390511\pi\)
0.337228 + 0.941423i \(0.390511\pi\)
\(720\) 0 0
\(721\) 8300.98 0.428772
\(722\) − 3590.92i − 0.185097i
\(723\) − 34780.4i − 1.78907i
\(724\) 705.279 0.0362037
\(725\) 0 0
\(726\) 22002.3 1.12477
\(727\) 5524.86i 0.281851i 0.990020 + 0.140926i \(0.0450078\pi\)
−0.990020 + 0.140926i \(0.954992\pi\)
\(728\) 772.328i 0.0393192i
\(729\) 32094.4 1.63057
\(730\) 0 0
\(731\) −3996.77 −0.202224
\(732\) − 6228.29i − 0.314487i
\(733\) − 22106.6i − 1.11395i −0.830529 0.556976i \(-0.811962\pi\)
0.830529 0.556976i \(-0.188038\pi\)
\(734\) −160.022 −0.00804703
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) − 920.977i − 0.0460307i
\(738\) 16909.3i 0.843416i
\(739\) 6619.82 0.329518 0.164759 0.986334i \(-0.447315\pi\)
0.164759 + 0.986334i \(0.447315\pi\)
\(740\) 0 0
\(741\) 2485.44 0.123218
\(742\) 19597.9i 0.969625i
\(743\) − 18894.1i − 0.932919i −0.884543 0.466460i \(-0.845529\pi\)
0.884543 0.466460i \(-0.154471\pi\)
\(744\) −9056.27 −0.446262
\(745\) 0 0
\(746\) 6422.17 0.315191
\(747\) 8071.03i 0.395320i
\(748\) 291.949i 0.0142710i
\(749\) −34625.3 −1.68916
\(750\) 0 0
\(751\) 4931.32 0.239609 0.119805 0.992797i \(-0.461773\pi\)
0.119805 + 0.992797i \(0.461773\pi\)
\(752\) − 663.185i − 0.0321594i
\(753\) 22841.3i 1.10542i
\(754\) 235.617 0.0113802
\(755\) 0 0
\(756\) −10904.4 −0.524589
\(757\) 6248.31i 0.299998i 0.988686 + 0.149999i \(0.0479271\pi\)
−0.988686 + 0.149999i \(0.952073\pi\)
\(758\) 16355.1i 0.783701i
\(759\) −187.959 −0.00898875
\(760\) 0 0
\(761\) −18867.0 −0.898723 −0.449361 0.893350i \(-0.648348\pi\)
−0.449361 + 0.893350i \(0.648348\pi\)
\(762\) 10465.0i 0.497514i
\(763\) − 18549.3i − 0.880117i
\(764\) −6688.11 −0.316711
\(765\) 0 0
\(766\) 25853.1 1.21946
\(767\) 696.156i 0.0327728i
\(768\) 2117.48i 0.0994895i
\(769\) 4752.05 0.222839 0.111420 0.993773i \(-0.464460\pi\)
0.111420 + 0.993773i \(0.464460\pi\)
\(770\) 0 0
\(771\) 4850.92 0.226591
\(772\) − 11817.8i − 0.550947i
\(773\) − 7050.12i − 0.328040i −0.986457 0.164020i \(-0.947554\pi\)
0.986457 0.164020i \(-0.0524462\pi\)
\(774\) 4481.42 0.208115
\(775\) 0 0
\(776\) 5030.10 0.232693
\(777\) 38145.2i 1.76120i
\(778\) − 9469.32i − 0.436364i
\(779\) 14526.3 0.668111
\(780\) 0 0
\(781\) 260.175 0.0119204
\(782\) 3398.21i 0.155396i
\(783\) 3326.64i 0.151832i
\(784\) −2874.78 −0.130958
\(785\) 0 0
\(786\) −37108.1 −1.68397
\(787\) 19524.7i 0.884345i 0.896930 + 0.442173i \(0.145792\pi\)
−0.896930 + 0.442173i \(0.854208\pi\)
\(788\) − 7269.41i − 0.328632i
\(789\) 49383.4 2.22826
\(790\) 0 0
\(791\) 284.623 0.0127940
\(792\) − 327.351i − 0.0146868i
\(793\) 794.925i 0.0355972i
\(794\) 19877.6 0.888450
\(795\) 0 0
\(796\) 19124.0 0.851546
\(797\) − 25078.7i − 1.11459i −0.830313 0.557297i \(-0.811838\pi\)
0.830313 0.557297i \(-0.188162\pi\)
\(798\) 26912.4i 1.19384i
\(799\) 3062.01 0.135577
\(800\) 0 0
\(801\) −8852.74 −0.390507
\(802\) − 670.592i − 0.0295255i
\(803\) 889.592i 0.0390947i
\(804\) 30841.3 1.35285
\(805\) 0 0
\(806\) 1155.86 0.0505131
\(807\) − 32377.0i − 1.41230i
\(808\) 409.097i 0.0178119i
\(809\) −11722.0 −0.509425 −0.254712 0.967017i \(-0.581981\pi\)
−0.254712 + 0.967017i \(0.581981\pi\)
\(810\) 0 0
\(811\) −3540.61 −0.153302 −0.0766509 0.997058i \(-0.524423\pi\)
−0.0766509 + 0.997058i \(0.524423\pi\)
\(812\) 2551.26i 0.110261i
\(813\) 645.885i 0.0278625i
\(814\) −398.594 −0.0171630
\(815\) 0 0
\(816\) −9776.67 −0.419427
\(817\) − 3849.85i − 0.164858i
\(818\) − 13121.7i − 0.560867i
\(819\) 3998.35 0.170591
\(820\) 0 0
\(821\) −43675.7 −1.85663 −0.928315 0.371794i \(-0.878743\pi\)
−0.928315 + 0.371794i \(0.878743\pi\)
\(822\) − 20724.3i − 0.879373i
\(823\) 28732.5i 1.21695i 0.793572 + 0.608476i \(0.208219\pi\)
−0.793572 + 0.608476i \(0.791781\pi\)
\(824\) −2904.72 −0.122804
\(825\) 0 0
\(826\) −7537.99 −0.317531
\(827\) 33810.2i 1.42164i 0.703373 + 0.710821i \(0.251676\pi\)
−0.703373 + 0.710821i \(0.748324\pi\)
\(828\) − 3810.28i − 0.159923i
\(829\) 34664.8 1.45230 0.726150 0.687536i \(-0.241308\pi\)
0.726150 + 0.687536i \(0.241308\pi\)
\(830\) 0 0
\(831\) 629.050 0.0262593
\(832\) − 270.257i − 0.0112614i
\(833\) − 13273.3i − 0.552090i
\(834\) 46571.1 1.93360
\(835\) 0 0
\(836\) −281.217 −0.0116341
\(837\) 16319.5i 0.673936i
\(838\) − 14233.4i − 0.586735i
\(839\) −11115.4 −0.457384 −0.228692 0.973499i \(-0.573445\pi\)
−0.228692 + 0.973499i \(0.573445\pi\)
\(840\) 0 0
\(841\) −23610.7 −0.968087
\(842\) 19598.9i 0.802163i
\(843\) − 31867.0i − 1.30197i
\(844\) −12806.9 −0.522312
\(845\) 0 0
\(846\) −3433.31 −0.139527
\(847\) − 30407.1i − 1.23353i
\(848\) − 6857.79i − 0.277709i
\(849\) −12821.8 −0.518306
\(850\) 0 0
\(851\) −4639.52 −0.186887
\(852\) 8712.64i 0.350341i
\(853\) − 23695.9i − 0.951153i −0.879674 0.475577i \(-0.842239\pi\)
0.879674 0.475577i \(-0.157761\pi\)
\(854\) −8607.46 −0.344896
\(855\) 0 0
\(856\) 12116.3 0.483791
\(857\) − 20605.9i − 0.821336i −0.911785 0.410668i \(-0.865295\pi\)
0.911785 0.410668i \(-0.134705\pi\)
\(858\) 69.0177i 0.00274618i
\(859\) 43187.1 1.71540 0.857698 0.514154i \(-0.171894\pi\)
0.857698 + 0.514154i \(0.171894\pi\)
\(860\) 0 0
\(861\) 38603.1 1.52798
\(862\) − 21046.6i − 0.831613i
\(863\) 47551.7i 1.87564i 0.347117 + 0.937822i \(0.387161\pi\)
−0.347117 + 0.937822i \(0.612839\pi\)
\(864\) 3815.72 0.150247
\(865\) 0 0
\(866\) −9541.94 −0.374421
\(867\) − 4502.77i − 0.176381i
\(868\) 12515.7i 0.489414i
\(869\) −944.704 −0.0368779
\(870\) 0 0
\(871\) −3936.32 −0.153131
\(872\) 6490.85i 0.252073i
\(873\) − 26040.9i − 1.00956i
\(874\) −3273.29 −0.126683
\(875\) 0 0
\(876\) −29790.3 −1.14900
\(877\) 8116.63i 0.312519i 0.987716 + 0.156260i \(0.0499436\pi\)
−0.987716 + 0.156260i \(0.950056\pi\)
\(878\) − 20462.4i − 0.786528i
\(879\) 35037.7 1.34447
\(880\) 0 0
\(881\) 24256.1 0.927594 0.463797 0.885942i \(-0.346487\pi\)
0.463797 + 0.885942i \(0.346487\pi\)
\(882\) 14882.8i 0.568174i
\(883\) 46859.3i 1.78589i 0.450167 + 0.892945i \(0.351365\pi\)
−0.450167 + 0.892945i \(0.648635\pi\)
\(884\) 1247.81 0.0474755
\(885\) 0 0
\(886\) 21016.2 0.796899
\(887\) − 14372.4i − 0.544057i −0.962289 0.272028i \(-0.912306\pi\)
0.962289 0.272028i \(-0.0876945\pi\)
\(888\) − 13347.9i − 0.504423i
\(889\) 14462.5 0.545621
\(890\) 0 0
\(891\) 130.358 0.00490142
\(892\) − 7588.91i − 0.284860i
\(893\) 2949.45i 0.110526i
\(894\) 39809.6 1.48930
\(895\) 0 0
\(896\) 2926.34 0.109110
\(897\) 803.347i 0.0299030i
\(898\) − 14461.4i − 0.537398i
\(899\) 3818.21 0.141651
\(900\) 0 0
\(901\) 31663.3 1.17076
\(902\) 403.378i 0.0148903i
\(903\) − 10230.8i − 0.377033i
\(904\) −99.5965 −0.00366431
\(905\) 0 0
\(906\) −36155.7 −1.32582
\(907\) − 17332.1i − 0.634512i −0.948340 0.317256i \(-0.897239\pi\)
0.948340 0.317256i \(-0.102761\pi\)
\(908\) − 17873.7i − 0.653258i
\(909\) 2117.90 0.0772787
\(910\) 0 0
\(911\) 44304.9 1.61129 0.805646 0.592397i \(-0.201818\pi\)
0.805646 + 0.592397i \(0.201818\pi\)
\(912\) − 9417.30i − 0.341927i
\(913\) 192.537i 0.00697926i
\(914\) −4837.49 −0.175066
\(915\) 0 0
\(916\) −21383.5 −0.771322
\(917\) 51283.2i 1.84680i
\(918\) 17617.7i 0.633410i
\(919\) 4764.32 0.171013 0.0855063 0.996338i \(-0.472749\pi\)
0.0855063 + 0.996338i \(0.472749\pi\)
\(920\) 0 0
\(921\) 83359.9 2.98241
\(922\) − 22685.6i − 0.810315i
\(923\) − 1112.01i − 0.0396556i
\(924\) −747.325 −0.0266074
\(925\) 0 0
\(926\) −23571.8 −0.836519
\(927\) 15037.7i 0.532799i
\(928\) − 892.750i − 0.0315797i
\(929\) 23226.2 0.820267 0.410134 0.912025i \(-0.365482\pi\)
0.410134 + 0.912025i \(0.365482\pi\)
\(930\) 0 0
\(931\) 12785.3 0.450078
\(932\) − 17921.9i − 0.629882i
\(933\) − 21943.8i − 0.769996i
\(934\) −32589.1 −1.14170
\(935\) 0 0
\(936\) −1399.12 −0.0488587
\(937\) − 23752.5i − 0.828133i −0.910247 0.414066i \(-0.864108\pi\)
0.910247 0.414066i \(-0.135892\pi\)
\(938\) − 42622.5i − 1.48366i
\(939\) 55506.7 1.92907
\(940\) 0 0
\(941\) −23210.4 −0.804079 −0.402040 0.915622i \(-0.631699\pi\)
−0.402040 + 0.915622i \(0.631699\pi\)
\(942\) − 17769.9i − 0.614624i
\(943\) 4695.21i 0.162139i
\(944\) 2637.73 0.0909436
\(945\) 0 0
\(946\) 106.906 0.00367422
\(947\) − 7778.59i − 0.266917i −0.991054 0.133458i \(-0.957392\pi\)
0.991054 0.133458i \(-0.0426082\pi\)
\(948\) − 31635.9i − 1.08385i
\(949\) 3802.18 0.130057
\(950\) 0 0
\(951\) 30421.3 1.03731
\(952\) 13511.3i 0.459983i
\(953\) − 3979.52i − 0.135267i −0.997710 0.0676334i \(-0.978455\pi\)
0.997710 0.0676334i \(-0.0215448\pi\)
\(954\) −35502.8 −1.20487
\(955\) 0 0
\(956\) 3119.34 0.105530
\(957\) 227.989i 0.00770098i
\(958\) 1570.55i 0.0529667i
\(959\) −28640.9 −0.964405
\(960\) 0 0
\(961\) −11060.0 −0.371254
\(962\) 1703.62i 0.0570964i
\(963\) − 62726.0i − 2.09898i
\(964\) 16819.6 0.561952
\(965\) 0 0
\(966\) −8698.66 −0.289726
\(967\) 17325.9i 0.576178i 0.957604 + 0.288089i \(0.0930198\pi\)
−0.957604 + 0.288089i \(0.906980\pi\)
\(968\) 10640.2i 0.353294i
\(969\) 43480.9 1.44149
\(970\) 0 0
\(971\) 20183.0 0.667048 0.333524 0.942742i \(-0.391762\pi\)
0.333524 + 0.942742i \(0.391762\pi\)
\(972\) 17243.4i 0.569016i
\(973\) − 64361.0i − 2.12058i
\(974\) −17428.6 −0.573355
\(975\) 0 0
\(976\) 3011.96 0.0987814
\(977\) 47185.7i 1.54514i 0.634928 + 0.772571i \(0.281030\pi\)
−0.634928 + 0.772571i \(0.718970\pi\)
\(978\) 44769.8i 1.46378i
\(979\) −211.185 −0.00689430
\(980\) 0 0
\(981\) 33603.2 1.09365
\(982\) − 21886.3i − 0.711221i
\(983\) 7347.90i 0.238415i 0.992869 + 0.119207i \(0.0380353\pi\)
−0.992869 + 0.119207i \(0.961965\pi\)
\(984\) −13508.2 −0.437627
\(985\) 0 0
\(986\) 4121.94 0.133133
\(987\) 7838.07i 0.252775i
\(988\) 1201.94i 0.0387033i
\(989\) 1244.36 0.0400083
\(990\) 0 0
\(991\) 34327.0 1.10034 0.550168 0.835054i \(-0.314564\pi\)
0.550168 + 0.835054i \(0.314564\pi\)
\(992\) − 4379.56i − 0.140172i
\(993\) − 81112.6i − 2.59218i
\(994\) 12040.8 0.384217
\(995\) 0 0
\(996\) −6447.62 −0.205121
\(997\) 37611.0i 1.19474i 0.801967 + 0.597368i \(0.203787\pi\)
−0.801967 + 0.597368i \(0.796213\pi\)
\(998\) 11203.7i 0.355358i
\(999\) −24053.1 −0.761770
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.r.599.10 10
5.2 odd 4 1150.4.a.q.1.5 5
5.3 odd 4 1150.4.a.v.1.1 yes 5
5.4 even 2 inner 1150.4.b.r.599.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.q.1.5 5 5.2 odd 4
1150.4.a.v.1.1 yes 5 5.3 odd 4
1150.4.b.r.599.1 10 5.4 even 2 inner
1150.4.b.r.599.10 10 1.1 even 1 trivial