Properties

Label 1150.4.b.p.599.8
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 77x^{8} + 1924x^{6} + 16594x^{4} + 33128x^{2} + 10201 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.8
Root \(-5.76842i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.p.599.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +1.80744i q^{3} -4.00000 q^{4} -3.61488 q^{6} -9.19471i q^{7} -8.00000i q^{8} +23.7332 q^{9} +43.1821 q^{11} -7.22976i q^{12} +25.6824i q^{13} +18.3894 q^{14} +16.0000 q^{16} -22.9669i q^{17} +47.4663i q^{18} -101.823 q^{19} +16.6189 q^{21} +86.3643i q^{22} -23.0000i q^{23} +14.4595 q^{24} -51.3647 q^{26} +91.6972i q^{27} +36.7788i q^{28} +146.682 q^{29} +23.9712 q^{31} +32.0000i q^{32} +78.0491i q^{33} +45.9339 q^{34} -94.9326 q^{36} -294.572i q^{37} -203.646i q^{38} -46.4193 q^{39} -127.823 q^{41} +33.2378i q^{42} -502.072i q^{43} -172.729 q^{44} +46.0000 q^{46} -607.879i q^{47} +28.9190i q^{48} +258.457 q^{49} +41.5114 q^{51} -102.729i q^{52} +674.254i q^{53} -183.394 q^{54} -73.5577 q^{56} -184.039i q^{57} +293.365i q^{58} -14.8056 q^{59} -478.549 q^{61} +47.9424i q^{62} -218.220i q^{63} -64.0000 q^{64} -156.098 q^{66} -458.422i q^{67} +91.8678i q^{68} +41.5711 q^{69} +1012.83 q^{71} -189.865i q^{72} -750.521i q^{73} +589.144 q^{74} +407.292 q^{76} -397.047i q^{77} -92.8387i q^{78} +641.648 q^{79} +475.058 q^{81} -255.645i q^{82} +900.187i q^{83} -66.4756 q^{84} +1004.14 q^{86} +265.120i q^{87} -345.457i q^{88} +923.770 q^{89} +236.142 q^{91} +92.0000i q^{92} +43.3265i q^{93} +1215.76 q^{94} -57.8381 q^{96} -168.230i q^{97} +516.915i q^{98} +1024.85 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 40 q^{4} - 48 q^{6} - 22 q^{9} - 108 q^{11} - 96 q^{14} + 160 q^{16} + 100 q^{19} - 316 q^{21} + 192 q^{24} - 144 q^{26} + 208 q^{29} - 684 q^{31} + 528 q^{34} + 88 q^{36} - 386 q^{39} + 4 q^{41}+ \cdots + 3480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 1.80744i 0.347842i 0.984760 + 0.173921i \(0.0556437\pi\)
−0.984760 + 0.173921i \(0.944356\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −3.61488 −0.245961
\(7\) − 9.19471i − 0.496468i −0.968700 0.248234i \(-0.920150\pi\)
0.968700 0.248234i \(-0.0798501\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 23.7332 0.879006
\(10\) 0 0
\(11\) 43.1821 1.18363 0.591814 0.806075i \(-0.298412\pi\)
0.591814 + 0.806075i \(0.298412\pi\)
\(12\) − 7.22976i − 0.173921i
\(13\) 25.6824i 0.547924i 0.961741 + 0.273962i \(0.0883342\pi\)
−0.961741 + 0.273962i \(0.911666\pi\)
\(14\) 18.3894 0.351056
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 22.9669i − 0.327665i −0.986488 0.163832i \(-0.947614\pi\)
0.986488 0.163832i \(-0.0523856\pi\)
\(18\) 47.4663i 0.621551i
\(19\) −101.823 −1.22946 −0.614732 0.788736i \(-0.710736\pi\)
−0.614732 + 0.788736i \(0.710736\pi\)
\(20\) 0 0
\(21\) 16.6189 0.172692
\(22\) 86.3643i 0.836951i
\(23\) − 23.0000i − 0.208514i
\(24\) 14.4595 0.122981
\(25\) 0 0
\(26\) −51.3647 −0.387440
\(27\) 91.6972i 0.653597i
\(28\) 36.7788i 0.248234i
\(29\) 146.682 0.939250 0.469625 0.882866i \(-0.344389\pi\)
0.469625 + 0.882866i \(0.344389\pi\)
\(30\) 0 0
\(31\) 23.9712 0.138882 0.0694412 0.997586i \(-0.477878\pi\)
0.0694412 + 0.997586i \(0.477878\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 78.0491i 0.411715i
\(34\) 45.9339 0.231694
\(35\) 0 0
\(36\) −94.9326 −0.439503
\(37\) − 294.572i − 1.30885i −0.756129 0.654423i \(-0.772912\pi\)
0.756129 0.654423i \(-0.227088\pi\)
\(38\) − 203.646i − 0.869362i
\(39\) −46.4193 −0.190591
\(40\) 0 0
\(41\) −127.823 −0.486891 −0.243445 0.969915i \(-0.578278\pi\)
−0.243445 + 0.969915i \(0.578278\pi\)
\(42\) 33.2378i 0.122112i
\(43\) − 502.072i − 1.78059i −0.455388 0.890293i \(-0.650499\pi\)
0.455388 0.890293i \(-0.349501\pi\)
\(44\) −172.729 −0.591814
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) − 607.879i − 1.88656i −0.332002 0.943279i \(-0.607724\pi\)
0.332002 0.943279i \(-0.392276\pi\)
\(48\) 28.9190i 0.0869605i
\(49\) 258.457 0.753520
\(50\) 0 0
\(51\) 41.5114 0.113976
\(52\) − 102.729i − 0.273962i
\(53\) 674.254i 1.74747i 0.486401 + 0.873735i \(0.338309\pi\)
−0.486401 + 0.873735i \(0.661691\pi\)
\(54\) −183.394 −0.462163
\(55\) 0 0
\(56\) −73.5577 −0.175528
\(57\) − 184.039i − 0.427659i
\(58\) 293.365i 0.664150i
\(59\) −14.8056 −0.0326700 −0.0163350 0.999867i \(-0.505200\pi\)
−0.0163350 + 0.999867i \(0.505200\pi\)
\(60\) 0 0
\(61\) −478.549 −1.00446 −0.502229 0.864735i \(-0.667487\pi\)
−0.502229 + 0.864735i \(0.667487\pi\)
\(62\) 47.9424i 0.0982047i
\(63\) − 218.220i − 0.436398i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −156.098 −0.291127
\(67\) − 458.422i − 0.835898i −0.908471 0.417949i \(-0.862749\pi\)
0.908471 0.417949i \(-0.137251\pi\)
\(68\) 91.8678i 0.163832i
\(69\) 41.5711 0.0725301
\(70\) 0 0
\(71\) 1012.83 1.69296 0.846481 0.532419i \(-0.178717\pi\)
0.846481 + 0.532419i \(0.178717\pi\)
\(72\) − 189.865i − 0.310776i
\(73\) − 750.521i − 1.20331i −0.798755 0.601657i \(-0.794508\pi\)
0.798755 0.601657i \(-0.205492\pi\)
\(74\) 589.144 0.925494
\(75\) 0 0
\(76\) 407.292 0.614732
\(77\) − 397.047i − 0.587633i
\(78\) − 92.8387i − 0.134768i
\(79\) 641.648 0.913811 0.456905 0.889515i \(-0.348958\pi\)
0.456905 + 0.889515i \(0.348958\pi\)
\(80\) 0 0
\(81\) 475.058 0.651657
\(82\) − 255.645i − 0.344284i
\(83\) 900.187i 1.19046i 0.803554 + 0.595231i \(0.202940\pi\)
−0.803554 + 0.595231i \(0.797060\pi\)
\(84\) −66.4756 −0.0863462
\(85\) 0 0
\(86\) 1004.14 1.25906
\(87\) 265.120i 0.326711i
\(88\) − 345.457i − 0.418476i
\(89\) 923.770 1.10022 0.550109 0.835093i \(-0.314586\pi\)
0.550109 + 0.835093i \(0.314586\pi\)
\(90\) 0 0
\(91\) 236.142 0.272026
\(92\) 92.0000i 0.104257i
\(93\) 43.3265i 0.0483091i
\(94\) 1215.76 1.33400
\(95\) 0 0
\(96\) −57.8381 −0.0614904
\(97\) − 168.230i − 0.176095i −0.996116 0.0880473i \(-0.971937\pi\)
0.996116 0.0880473i \(-0.0280627\pi\)
\(98\) 516.915i 0.532819i
\(99\) 1024.85 1.04042
\(100\) 0 0
\(101\) −633.410 −0.624026 −0.312013 0.950078i \(-0.601003\pi\)
−0.312013 + 0.950078i \(0.601003\pi\)
\(102\) 83.0228i 0.0805929i
\(103\) 1300.63i 1.24422i 0.782929 + 0.622111i \(0.213725\pi\)
−0.782929 + 0.622111i \(0.786275\pi\)
\(104\) 205.459 0.193720
\(105\) 0 0
\(106\) −1348.51 −1.23565
\(107\) 495.620i 0.447789i 0.974613 + 0.223894i \(0.0718770\pi\)
−0.974613 + 0.223894i \(0.928123\pi\)
\(108\) − 366.789i − 0.326799i
\(109\) 198.210 0.174175 0.0870874 0.996201i \(-0.472244\pi\)
0.0870874 + 0.996201i \(0.472244\pi\)
\(110\) 0 0
\(111\) 532.421 0.455272
\(112\) − 147.115i − 0.124117i
\(113\) 868.555i 0.723069i 0.932359 + 0.361534i \(0.117747\pi\)
−0.932359 + 0.361534i \(0.882253\pi\)
\(114\) 368.078 0.302401
\(115\) 0 0
\(116\) −586.730 −0.469625
\(117\) 609.524i 0.481628i
\(118\) − 29.6113i − 0.0231012i
\(119\) −211.174 −0.162675
\(120\) 0 0
\(121\) 533.696 0.400974
\(122\) − 957.098i − 0.710259i
\(123\) − 231.032i − 0.169361i
\(124\) −95.8848 −0.0694412
\(125\) 0 0
\(126\) 436.439 0.308580
\(127\) − 2152.32i − 1.50384i −0.659257 0.751918i \(-0.729129\pi\)
0.659257 0.751918i \(-0.270871\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) 907.464 0.619363
\(130\) 0 0
\(131\) 1726.29 1.15135 0.575673 0.817680i \(-0.304740\pi\)
0.575673 + 0.817680i \(0.304740\pi\)
\(132\) − 312.196i − 0.205858i
\(133\) 936.233i 0.610389i
\(134\) 916.844 0.591069
\(135\) 0 0
\(136\) −183.736 −0.115847
\(137\) 1771.09i 1.10448i 0.833684 + 0.552242i \(0.186227\pi\)
−0.833684 + 0.552242i \(0.813773\pi\)
\(138\) 83.1423i 0.0512865i
\(139\) −2789.08 −1.70192 −0.850959 0.525232i \(-0.823979\pi\)
−0.850959 + 0.525232i \(0.823979\pi\)
\(140\) 0 0
\(141\) 1098.70 0.656224
\(142\) 2025.65i 1.19710i
\(143\) 1109.02i 0.648537i
\(144\) 379.731 0.219751
\(145\) 0 0
\(146\) 1501.04 0.850871
\(147\) 467.146i 0.262106i
\(148\) 1178.29i 0.654423i
\(149\) 2190.05 1.20413 0.602067 0.798445i \(-0.294344\pi\)
0.602067 + 0.798445i \(0.294344\pi\)
\(150\) 0 0
\(151\) −1569.59 −0.845902 −0.422951 0.906153i \(-0.639006\pi\)
−0.422951 + 0.906153i \(0.639006\pi\)
\(152\) 814.584i 0.434681i
\(153\) − 545.078i − 0.288019i
\(154\) 794.094 0.415519
\(155\) 0 0
\(156\) 185.677 0.0952954
\(157\) − 2633.86i − 1.33888i −0.742864 0.669442i \(-0.766533\pi\)
0.742864 0.669442i \(-0.233467\pi\)
\(158\) 1283.30i 0.646162i
\(159\) −1218.67 −0.607844
\(160\) 0 0
\(161\) −211.478 −0.103521
\(162\) 950.116i 0.460791i
\(163\) − 287.657i − 0.138227i −0.997609 0.0691135i \(-0.977983\pi\)
0.997609 0.0691135i \(-0.0220171\pi\)
\(164\) 511.290 0.243445
\(165\) 0 0
\(166\) −1800.37 −0.841784
\(167\) − 1295.54i − 0.600310i −0.953890 0.300155i \(-0.902962\pi\)
0.953890 0.300155i \(-0.0970385\pi\)
\(168\) − 132.951i − 0.0610560i
\(169\) 1537.42 0.699780
\(170\) 0 0
\(171\) −2416.58 −1.08071
\(172\) 2008.29i 0.890293i
\(173\) − 1313.46i − 0.577230i −0.957445 0.288615i \(-0.906805\pi\)
0.957445 0.288615i \(-0.0931947\pi\)
\(174\) −530.240 −0.231019
\(175\) 0 0
\(176\) 690.914 0.295907
\(177\) − 26.7603i − 0.0113640i
\(178\) 1847.54i 0.777972i
\(179\) −1916.37 −0.800204 −0.400102 0.916471i \(-0.631025\pi\)
−0.400102 + 0.916471i \(0.631025\pi\)
\(180\) 0 0
\(181\) 4443.32 1.82469 0.912345 0.409421i \(-0.134269\pi\)
0.912345 + 0.409421i \(0.134269\pi\)
\(182\) 472.284i 0.192352i
\(183\) − 864.949i − 0.349393i
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −86.6530 −0.0341597
\(187\) − 991.762i − 0.387833i
\(188\) 2431.51i 0.943279i
\(189\) 843.129 0.324490
\(190\) 0 0
\(191\) 1903.54 0.721129 0.360564 0.932734i \(-0.382584\pi\)
0.360564 + 0.932734i \(0.382584\pi\)
\(192\) − 115.676i − 0.0434803i
\(193\) 3417.60i 1.27463i 0.770602 + 0.637317i \(0.219956\pi\)
−0.770602 + 0.637317i \(0.780044\pi\)
\(194\) 336.460 0.124518
\(195\) 0 0
\(196\) −1033.83 −0.376760
\(197\) − 1609.57i − 0.582117i −0.956705 0.291059i \(-0.905993\pi\)
0.956705 0.291059i \(-0.0940075\pi\)
\(198\) 2049.70i 0.735685i
\(199\) 4518.91 1.60973 0.804866 0.593456i \(-0.202237\pi\)
0.804866 + 0.593456i \(0.202237\pi\)
\(200\) 0 0
\(201\) 828.570 0.290760
\(202\) − 1266.82i − 0.441253i
\(203\) − 1348.70i − 0.466307i
\(204\) −166.046 −0.0569878
\(205\) 0 0
\(206\) −2601.26 −0.879798
\(207\) − 545.863i − 0.183285i
\(208\) 410.918i 0.136981i
\(209\) −4396.94 −1.45523
\(210\) 0 0
\(211\) 5408.64 1.76467 0.882337 0.470618i \(-0.155969\pi\)
0.882337 + 0.470618i \(0.155969\pi\)
\(212\) − 2697.02i − 0.873735i
\(213\) 1830.62i 0.588883i
\(214\) −991.240 −0.316634
\(215\) 0 0
\(216\) 733.577 0.231082
\(217\) − 220.408i − 0.0689506i
\(218\) 396.420i 0.123160i
\(219\) 1356.52 0.418563
\(220\) 0 0
\(221\) 589.846 0.179535
\(222\) 1064.84i 0.321926i
\(223\) 5812.74i 1.74552i 0.488154 + 0.872758i \(0.337671\pi\)
−0.488154 + 0.872758i \(0.662329\pi\)
\(224\) 294.231 0.0877639
\(225\) 0 0
\(226\) −1737.11 −0.511287
\(227\) − 2033.30i − 0.594514i −0.954798 0.297257i \(-0.903928\pi\)
0.954798 0.297257i \(-0.0960717\pi\)
\(228\) 736.156i 0.213830i
\(229\) 435.903 0.125787 0.0628936 0.998020i \(-0.479967\pi\)
0.0628936 + 0.998020i \(0.479967\pi\)
\(230\) 0 0
\(231\) 717.639 0.204403
\(232\) − 1173.46i − 0.332075i
\(233\) − 1582.05i − 0.444822i −0.974953 0.222411i \(-0.928607\pi\)
0.974953 0.222411i \(-0.0713927\pi\)
\(234\) −1219.05 −0.340562
\(235\) 0 0
\(236\) 59.2226 0.0163350
\(237\) 1159.74i 0.317862i
\(238\) − 422.349i − 0.115029i
\(239\) 1732.60 0.468923 0.234461 0.972125i \(-0.424667\pi\)
0.234461 + 0.972125i \(0.424667\pi\)
\(240\) 0 0
\(241\) −4441.73 −1.18721 −0.593604 0.804757i \(-0.702296\pi\)
−0.593604 + 0.804757i \(0.702296\pi\)
\(242\) 1067.39i 0.283531i
\(243\) 3334.46i 0.880271i
\(244\) 1914.20 0.502229
\(245\) 0 0
\(246\) 462.063 0.119756
\(247\) − 2615.06i − 0.673652i
\(248\) − 191.770i − 0.0491023i
\(249\) −1627.03 −0.414093
\(250\) 0 0
\(251\) 4714.54 1.18557 0.592787 0.805359i \(-0.298028\pi\)
0.592787 + 0.805359i \(0.298028\pi\)
\(252\) 872.878i 0.218199i
\(253\) − 993.189i − 0.246803i
\(254\) 4304.63 1.06337
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 4229.41i − 1.02655i −0.858224 0.513275i \(-0.828432\pi\)
0.858224 0.513275i \(-0.171568\pi\)
\(258\) 1814.93i 0.437956i
\(259\) −2708.50 −0.649800
\(260\) 0 0
\(261\) 3481.24 0.825606
\(262\) 3452.57i 0.814125i
\(263\) 4848.80i 1.13684i 0.822737 + 0.568422i \(0.192446\pi\)
−0.822737 + 0.568422i \(0.807554\pi\)
\(264\) 624.393 0.145563
\(265\) 0 0
\(266\) −1872.47 −0.431610
\(267\) 1669.66i 0.382702i
\(268\) 1833.69i 0.417949i
\(269\) −4603.64 −1.04345 −0.521726 0.853113i \(-0.674712\pi\)
−0.521726 + 0.853113i \(0.674712\pi\)
\(270\) 0 0
\(271\) −1521.31 −0.341008 −0.170504 0.985357i \(-0.554540\pi\)
−0.170504 + 0.985357i \(0.554540\pi\)
\(272\) − 367.471i − 0.0819162i
\(273\) 426.812i 0.0946222i
\(274\) −3542.18 −0.780988
\(275\) 0 0
\(276\) −166.285 −0.0362650
\(277\) 3293.74i 0.714446i 0.934019 + 0.357223i \(0.116276\pi\)
−0.934019 + 0.357223i \(0.883724\pi\)
\(278\) − 5578.16i − 1.20344i
\(279\) 568.912 0.122078
\(280\) 0 0
\(281\) 8857.86 1.88048 0.940242 0.340508i \(-0.110599\pi\)
0.940242 + 0.340508i \(0.110599\pi\)
\(282\) 2197.41i 0.464020i
\(283\) − 5470.44i − 1.14906i −0.818483 0.574530i \(-0.805185\pi\)
0.818483 0.574530i \(-0.194815\pi\)
\(284\) −4051.30 −0.846481
\(285\) 0 0
\(286\) −2218.04 −0.458585
\(287\) 1175.29i 0.241726i
\(288\) 759.461i 0.155388i
\(289\) 4385.52 0.892636
\(290\) 0 0
\(291\) 304.066 0.0612531
\(292\) 3002.09i 0.601657i
\(293\) 629.599i 0.125534i 0.998028 + 0.0627672i \(0.0199926\pi\)
−0.998028 + 0.0627672i \(0.980007\pi\)
\(294\) −934.292 −0.185337
\(295\) 0 0
\(296\) −2356.57 −0.462747
\(297\) 3959.68i 0.773616i
\(298\) 4380.10i 0.851452i
\(299\) 590.694 0.114250
\(300\) 0 0
\(301\) −4616.40 −0.884004
\(302\) − 3139.17i − 0.598143i
\(303\) − 1144.85i − 0.217062i
\(304\) −1629.17 −0.307366
\(305\) 0 0
\(306\) 1090.16 0.203660
\(307\) 791.929i 0.147224i 0.997287 + 0.0736120i \(0.0234526\pi\)
−0.997287 + 0.0736120i \(0.976547\pi\)
\(308\) 1588.19i 0.293816i
\(309\) −2350.81 −0.432793
\(310\) 0 0
\(311\) 2109.26 0.384582 0.192291 0.981338i \(-0.438408\pi\)
0.192291 + 0.981338i \(0.438408\pi\)
\(312\) 371.355i 0.0673840i
\(313\) − 207.600i − 0.0374896i −0.999824 0.0187448i \(-0.994033\pi\)
0.999824 0.0187448i \(-0.00596701\pi\)
\(314\) 5267.72 0.946734
\(315\) 0 0
\(316\) −2566.59 −0.456905
\(317\) 4013.96i 0.711188i 0.934640 + 0.355594i \(0.115721\pi\)
−0.934640 + 0.355594i \(0.884279\pi\)
\(318\) − 2437.35i − 0.429811i
\(319\) 6334.06 1.11172
\(320\) 0 0
\(321\) −895.803 −0.155760
\(322\) − 422.957i − 0.0732002i
\(323\) 2338.56i 0.402852i
\(324\) −1900.23 −0.325829
\(325\) 0 0
\(326\) 575.313 0.0977413
\(327\) 358.252i 0.0605853i
\(328\) 1022.58i 0.172142i
\(329\) −5589.27 −0.936615
\(330\) 0 0
\(331\) 1196.79 0.198736 0.0993678 0.995051i \(-0.468318\pi\)
0.0993678 + 0.995051i \(0.468318\pi\)
\(332\) − 3600.75i − 0.595231i
\(333\) − 6991.12i − 1.15048i
\(334\) 2591.08 0.424484
\(335\) 0 0
\(336\) 265.902 0.0431731
\(337\) − 3245.42i − 0.524597i −0.964987 0.262299i \(-0.915519\pi\)
0.964987 0.262299i \(-0.0844806\pi\)
\(338\) 3074.83i 0.494819i
\(339\) −1569.86 −0.251514
\(340\) 0 0
\(341\) 1035.13 0.164385
\(342\) − 4833.16i − 0.764174i
\(343\) − 5530.23i − 0.870566i
\(344\) −4016.57 −0.629532
\(345\) 0 0
\(346\) 2626.93 0.408163
\(347\) − 10510.0i − 1.62596i −0.582290 0.812981i \(-0.697843\pi\)
0.582290 0.812981i \(-0.302157\pi\)
\(348\) − 1060.48i − 0.163355i
\(349\) −6150.02 −0.943276 −0.471638 0.881792i \(-0.656337\pi\)
−0.471638 + 0.881792i \(0.656337\pi\)
\(350\) 0 0
\(351\) −2355.00 −0.358121
\(352\) 1381.83i 0.209238i
\(353\) 1123.35i 0.169376i 0.996408 + 0.0846882i \(0.0269894\pi\)
−0.996408 + 0.0846882i \(0.973011\pi\)
\(354\) 53.5206 0.00803556
\(355\) 0 0
\(356\) −3695.08 −0.550109
\(357\) − 381.685i − 0.0565852i
\(358\) − 3832.75i − 0.565829i
\(359\) −2209.46 −0.324821 −0.162411 0.986723i \(-0.551927\pi\)
−0.162411 + 0.986723i \(0.551927\pi\)
\(360\) 0 0
\(361\) 3508.93 0.511581
\(362\) 8886.63i 1.29025i
\(363\) 964.624i 0.139476i
\(364\) −944.568 −0.136013
\(365\) 0 0
\(366\) 1729.90 0.247058
\(367\) 9017.63i 1.28261i 0.767287 + 0.641303i \(0.221606\pi\)
−0.767287 + 0.641303i \(0.778394\pi\)
\(368\) − 368.000i − 0.0521286i
\(369\) −3033.63 −0.427980
\(370\) 0 0
\(371\) 6199.57 0.867563
\(372\) − 173.306i − 0.0241546i
\(373\) 2000.52i 0.277702i 0.990313 + 0.138851i \(0.0443410\pi\)
−0.990313 + 0.138851i \(0.955659\pi\)
\(374\) 1983.52 0.274239
\(375\) 0 0
\(376\) −4863.03 −0.666999
\(377\) 3767.15i 0.514637i
\(378\) 1686.26i 0.229449i
\(379\) −5404.84 −0.732528 −0.366264 0.930511i \(-0.619363\pi\)
−0.366264 + 0.930511i \(0.619363\pi\)
\(380\) 0 0
\(381\) 3890.18 0.523097
\(382\) 3807.09i 0.509915i
\(383\) − 9355.83i − 1.24820i −0.781345 0.624100i \(-0.785466\pi\)
0.781345 0.624100i \(-0.214534\pi\)
\(384\) 231.352 0.0307452
\(385\) 0 0
\(386\) −6835.20 −0.901302
\(387\) − 11915.7i − 1.56515i
\(388\) 672.920i 0.0880473i
\(389\) −7771.25 −1.01290 −0.506450 0.862269i \(-0.669042\pi\)
−0.506450 + 0.862269i \(0.669042\pi\)
\(390\) 0 0
\(391\) −528.240 −0.0683229
\(392\) − 2067.66i − 0.266409i
\(393\) 3120.16i 0.400487i
\(394\) 3219.14 0.411619
\(395\) 0 0
\(396\) −4099.39 −0.520208
\(397\) 2509.29i 0.317223i 0.987341 + 0.158612i \(0.0507018\pi\)
−0.987341 + 0.158612i \(0.949298\pi\)
\(398\) 9037.81i 1.13825i
\(399\) −1692.19 −0.212319
\(400\) 0 0
\(401\) 1502.71 0.187136 0.0935681 0.995613i \(-0.470173\pi\)
0.0935681 + 0.995613i \(0.470173\pi\)
\(402\) 1657.14i 0.205599i
\(403\) 615.637i 0.0760969i
\(404\) 2533.64 0.312013
\(405\) 0 0
\(406\) 2697.41 0.329729
\(407\) − 12720.2i − 1.54919i
\(408\) − 332.091i − 0.0402965i
\(409\) −6281.54 −0.759419 −0.379709 0.925106i \(-0.623976\pi\)
−0.379709 + 0.925106i \(0.623976\pi\)
\(410\) 0 0
\(411\) −3201.14 −0.384186
\(412\) − 5202.52i − 0.622111i
\(413\) 136.134i 0.0162196i
\(414\) 1091.73 0.129602
\(415\) 0 0
\(416\) −821.836 −0.0968601
\(417\) − 5041.09i − 0.591999i
\(418\) − 8793.87i − 1.02900i
\(419\) 5437.48 0.633982 0.316991 0.948429i \(-0.397328\pi\)
0.316991 + 0.948429i \(0.397328\pi\)
\(420\) 0 0
\(421\) 8424.12 0.975217 0.487608 0.873062i \(-0.337869\pi\)
0.487608 + 0.873062i \(0.337869\pi\)
\(422\) 10817.3i 1.24781i
\(423\) − 14426.9i − 1.65830i
\(424\) 5394.03 0.617824
\(425\) 0 0
\(426\) −3661.24 −0.416403
\(427\) 4400.12i 0.498681i
\(428\) − 1982.48i − 0.223894i
\(429\) −2004.49 −0.225589
\(430\) 0 0
\(431\) −2280.19 −0.254832 −0.127416 0.991849i \(-0.540668\pi\)
−0.127416 + 0.991849i \(0.540668\pi\)
\(432\) 1467.15i 0.163399i
\(433\) − 9676.90i − 1.07400i −0.843582 0.537000i \(-0.819557\pi\)
0.843582 0.537000i \(-0.180443\pi\)
\(434\) 440.816 0.0487554
\(435\) 0 0
\(436\) −792.839 −0.0870874
\(437\) 2341.93i 0.256361i
\(438\) 2713.04i 0.295969i
\(439\) 10267.6 1.11628 0.558138 0.829748i \(-0.311516\pi\)
0.558138 + 0.829748i \(0.311516\pi\)
\(440\) 0 0
\(441\) 6134.01 0.662348
\(442\) 1179.69i 0.126951i
\(443\) 2947.70i 0.316139i 0.987428 + 0.158069i \(0.0505269\pi\)
−0.987428 + 0.158069i \(0.949473\pi\)
\(444\) −2129.68 −0.227636
\(445\) 0 0
\(446\) −11625.5 −1.23427
\(447\) 3958.39i 0.418849i
\(448\) 588.462i 0.0620585i
\(449\) 14322.2 1.50536 0.752682 0.658385i \(-0.228760\pi\)
0.752682 + 0.658385i \(0.228760\pi\)
\(450\) 0 0
\(451\) −5519.65 −0.576297
\(452\) − 3474.22i − 0.361534i
\(453\) − 2836.94i − 0.294240i
\(454\) 4066.59 0.420385
\(455\) 0 0
\(456\) −1472.31 −0.151200
\(457\) 13404.4i 1.37206i 0.727574 + 0.686029i \(0.240648\pi\)
−0.727574 + 0.686029i \(0.759352\pi\)
\(458\) 871.805i 0.0889449i
\(459\) 2106.00 0.214161
\(460\) 0 0
\(461\) −16928.6 −1.71029 −0.855144 0.518390i \(-0.826532\pi\)
−0.855144 + 0.518390i \(0.826532\pi\)
\(462\) 1435.28i 0.144535i
\(463\) − 13109.3i − 1.31585i −0.753083 0.657925i \(-0.771434\pi\)
0.753083 0.657925i \(-0.228566\pi\)
\(464\) 2346.92 0.234812
\(465\) 0 0
\(466\) 3164.10 0.314537
\(467\) − 4676.02i − 0.463341i −0.972794 0.231671i \(-0.925581\pi\)
0.972794 0.231671i \(-0.0744191\pi\)
\(468\) − 2438.09i − 0.240814i
\(469\) −4215.06 −0.414996
\(470\) 0 0
\(471\) 4760.54 0.465720
\(472\) 118.445i 0.0115506i
\(473\) − 21680.5i − 2.10755i
\(474\) −2319.48 −0.224762
\(475\) 0 0
\(476\) 844.698 0.0813375
\(477\) 16002.2i 1.53604i
\(478\) 3465.20i 0.331579i
\(479\) 13518.0 1.28947 0.644734 0.764407i \(-0.276968\pi\)
0.644734 + 0.764407i \(0.276968\pi\)
\(480\) 0 0
\(481\) 7565.30 0.717148
\(482\) − 8883.47i − 0.839483i
\(483\) − 382.234i − 0.0360088i
\(484\) −2134.79 −0.200487
\(485\) 0 0
\(486\) −6668.92 −0.622446
\(487\) 14914.7i 1.38778i 0.720082 + 0.693889i \(0.244104\pi\)
−0.720082 + 0.693889i \(0.755896\pi\)
\(488\) 3828.39i 0.355129i
\(489\) 519.922 0.0480812
\(490\) 0 0
\(491\) −3706.99 −0.340722 −0.170361 0.985382i \(-0.554493\pi\)
−0.170361 + 0.985382i \(0.554493\pi\)
\(492\) 924.126i 0.0846806i
\(493\) − 3368.85i − 0.307759i
\(494\) 5230.11 0.476344
\(495\) 0 0
\(496\) 383.539 0.0347206
\(497\) − 9312.64i − 0.840501i
\(498\) − 3254.07i − 0.292808i
\(499\) −13037.0 −1.16957 −0.584784 0.811189i \(-0.698821\pi\)
−0.584784 + 0.811189i \(0.698821\pi\)
\(500\) 0 0
\(501\) 2341.61 0.208813
\(502\) 9429.08i 0.838328i
\(503\) − 2976.34i − 0.263834i −0.991261 0.131917i \(-0.957887\pi\)
0.991261 0.131917i \(-0.0421132\pi\)
\(504\) −1745.76 −0.154290
\(505\) 0 0
\(506\) 1986.38 0.174516
\(507\) 2778.79i 0.243413i
\(508\) 8609.26i 0.751918i
\(509\) −20818.7 −1.81292 −0.906458 0.422297i \(-0.861224\pi\)
−0.906458 + 0.422297i \(0.861224\pi\)
\(510\) 0 0
\(511\) −6900.83 −0.597406
\(512\) 512.000i 0.0441942i
\(513\) − 9336.88i − 0.803574i
\(514\) 8458.82 0.725881
\(515\) 0 0
\(516\) −3629.86 −0.309681
\(517\) − 26249.5i − 2.23298i
\(518\) − 5417.00i − 0.459478i
\(519\) 2374.01 0.200785
\(520\) 0 0
\(521\) −10439.5 −0.877855 −0.438927 0.898522i \(-0.644641\pi\)
−0.438927 + 0.898522i \(0.644641\pi\)
\(522\) 6962.48i 0.583792i
\(523\) − 22364.9i − 1.86988i −0.354801 0.934942i \(-0.615451\pi\)
0.354801 0.934942i \(-0.384549\pi\)
\(524\) −6905.15 −0.575673
\(525\) 0 0
\(526\) −9697.60 −0.803870
\(527\) − 550.545i − 0.0455069i
\(528\) 1248.79i 0.102929i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −351.385 −0.0287171
\(532\) − 3744.93i − 0.305194i
\(533\) − 3282.78i − 0.266779i
\(534\) −3339.32 −0.270611
\(535\) 0 0
\(536\) −3667.38 −0.295535
\(537\) − 3463.73i − 0.278344i
\(538\) − 9207.27i − 0.737832i
\(539\) 11160.7 0.891887
\(540\) 0 0
\(541\) −22462.5 −1.78510 −0.892550 0.450949i \(-0.851086\pi\)
−0.892550 + 0.450949i \(0.851086\pi\)
\(542\) − 3042.63i − 0.241129i
\(543\) 8031.03i 0.634704i
\(544\) 734.942 0.0579235
\(545\) 0 0
\(546\) −853.625 −0.0669080
\(547\) 4367.35i 0.341379i 0.985325 + 0.170690i \(0.0545996\pi\)
−0.985325 + 0.170690i \(0.945400\pi\)
\(548\) − 7084.35i − 0.552242i
\(549\) −11357.5 −0.882924
\(550\) 0 0
\(551\) −14935.7 −1.15477
\(552\) − 332.569i − 0.0256433i
\(553\) − 5899.77i − 0.453677i
\(554\) −6587.47 −0.505189
\(555\) 0 0
\(556\) 11156.3 0.850959
\(557\) − 13805.9i − 1.05022i −0.851034 0.525110i \(-0.824024\pi\)
0.851034 0.525110i \(-0.175976\pi\)
\(558\) 1137.82i 0.0863225i
\(559\) 12894.4 0.975625
\(560\) 0 0
\(561\) 1792.55 0.134905
\(562\) 17715.7i 1.32970i
\(563\) − 8149.77i − 0.610075i −0.952340 0.305037i \(-0.901331\pi\)
0.952340 0.305037i \(-0.0986689\pi\)
\(564\) −4394.82 −0.328112
\(565\) 0 0
\(566\) 10940.9 0.812508
\(567\) − 4368.02i − 0.323527i
\(568\) − 8102.60i − 0.598552i
\(569\) 11539.9 0.850226 0.425113 0.905140i \(-0.360234\pi\)
0.425113 + 0.905140i \(0.360234\pi\)
\(570\) 0 0
\(571\) −2436.53 −0.178573 −0.0892867 0.996006i \(-0.528459\pi\)
−0.0892867 + 0.996006i \(0.528459\pi\)
\(572\) − 4436.08i − 0.324269i
\(573\) 3440.54i 0.250839i
\(574\) −2350.58 −0.170926
\(575\) 0 0
\(576\) −1518.92 −0.109876
\(577\) − 6965.59i − 0.502567i −0.967913 0.251284i \(-0.919147\pi\)
0.967913 0.251284i \(-0.0808527\pi\)
\(578\) 8771.04i 0.631189i
\(579\) −6177.11 −0.443371
\(580\) 0 0
\(581\) 8276.96 0.591026
\(582\) 608.132i 0.0433125i
\(583\) 29115.7i 2.06835i
\(584\) −6004.17 −0.425435
\(585\) 0 0
\(586\) −1259.20 −0.0887662
\(587\) 3080.79i 0.216623i 0.994117 + 0.108311i \(0.0345444\pi\)
−0.994117 + 0.108311i \(0.965456\pi\)
\(588\) − 1868.58i − 0.131053i
\(589\) −2440.82 −0.170751
\(590\) 0 0
\(591\) 2909.20 0.202485
\(592\) − 4713.15i − 0.327211i
\(593\) 13741.0i 0.951563i 0.879564 + 0.475782i \(0.157835\pi\)
−0.879564 + 0.475782i \(0.842165\pi\)
\(594\) −7919.36 −0.547029
\(595\) 0 0
\(596\) −8760.21 −0.602067
\(597\) 8167.65i 0.559933i
\(598\) 1181.39i 0.0807869i
\(599\) −24131.0 −1.64602 −0.823011 0.568026i \(-0.807707\pi\)
−0.823011 + 0.568026i \(0.807707\pi\)
\(600\) 0 0
\(601\) −18108.3 −1.22904 −0.614520 0.788901i \(-0.710650\pi\)
−0.614520 + 0.788901i \(0.710650\pi\)
\(602\) − 9232.81i − 0.625085i
\(603\) − 10879.8i − 0.734759i
\(604\) 6278.35 0.422951
\(605\) 0 0
\(606\) 2289.70 0.153486
\(607\) 10257.1i 0.685873i 0.939359 + 0.342936i \(0.111422\pi\)
−0.939359 + 0.342936i \(0.888578\pi\)
\(608\) − 3258.34i − 0.217340i
\(609\) 2437.70 0.162201
\(610\) 0 0
\(611\) 15611.8 1.03369
\(612\) 2180.31i 0.144010i
\(613\) 2710.49i 0.178590i 0.996005 + 0.0892951i \(0.0284614\pi\)
−0.996005 + 0.0892951i \(0.971539\pi\)
\(614\) −1583.86 −0.104103
\(615\) 0 0
\(616\) −3176.38 −0.207760
\(617\) 20517.7i 1.33875i 0.742923 + 0.669377i \(0.233439\pi\)
−0.742923 + 0.669377i \(0.766561\pi\)
\(618\) − 4701.62i − 0.306031i
\(619\) 5220.67 0.338992 0.169496 0.985531i \(-0.445786\pi\)
0.169496 + 0.985531i \(0.445786\pi\)
\(620\) 0 0
\(621\) 2109.03 0.136284
\(622\) 4218.52i 0.271941i
\(623\) − 8493.80i − 0.546223i
\(624\) −742.710 −0.0476477
\(625\) 0 0
\(626\) 415.200 0.0265092
\(627\) − 7947.20i − 0.506189i
\(628\) 10535.4i 0.669442i
\(629\) −6765.41 −0.428863
\(630\) 0 0
\(631\) −19100.5 −1.20504 −0.602520 0.798103i \(-0.705837\pi\)
−0.602520 + 0.798103i \(0.705837\pi\)
\(632\) − 5133.18i − 0.323081i
\(633\) 9775.80i 0.613828i
\(634\) −8027.93 −0.502886
\(635\) 0 0
\(636\) 4874.70 0.303922
\(637\) 6637.79i 0.412871i
\(638\) 12668.1i 0.786106i
\(639\) 24037.5 1.48812
\(640\) 0 0
\(641\) 15088.0 0.929701 0.464851 0.885389i \(-0.346108\pi\)
0.464851 + 0.885389i \(0.346108\pi\)
\(642\) − 1791.61i − 0.110139i
\(643\) − 1568.01i − 0.0961687i −0.998843 0.0480843i \(-0.984688\pi\)
0.998843 0.0480843i \(-0.0153116\pi\)
\(644\) 845.913 0.0517603
\(645\) 0 0
\(646\) −4677.13 −0.284859
\(647\) − 15035.4i − 0.913603i −0.889569 0.456801i \(-0.848995\pi\)
0.889569 0.456801i \(-0.151005\pi\)
\(648\) − 3800.47i − 0.230396i
\(649\) −639.339 −0.0386691
\(650\) 0 0
\(651\) 398.375 0.0239839
\(652\) 1150.63i 0.0691135i
\(653\) 22403.7i 1.34261i 0.741180 + 0.671307i \(0.234267\pi\)
−0.741180 + 0.671307i \(0.765733\pi\)
\(654\) −716.505 −0.0428403
\(655\) 0 0
\(656\) −2045.16 −0.121723
\(657\) − 17812.2i − 1.05772i
\(658\) − 11178.5i − 0.662287i
\(659\) −890.918 −0.0526635 −0.0263317 0.999653i \(-0.508383\pi\)
−0.0263317 + 0.999653i \(0.508383\pi\)
\(660\) 0 0
\(661\) −28636.0 −1.68504 −0.842519 0.538667i \(-0.818928\pi\)
−0.842519 + 0.538667i \(0.818928\pi\)
\(662\) 2393.58i 0.140527i
\(663\) 1066.11i 0.0624499i
\(664\) 7201.50 0.420892
\(665\) 0 0
\(666\) 13982.2 0.813515
\(667\) − 3373.70i − 0.195847i
\(668\) 5182.16i 0.300155i
\(669\) −10506.2 −0.607164
\(670\) 0 0
\(671\) −20664.8 −1.18890
\(672\) 531.805i 0.0305280i
\(673\) − 15056.8i − 0.862405i −0.902255 0.431203i \(-0.858089\pi\)
0.902255 0.431203i \(-0.141911\pi\)
\(674\) 6490.84 0.370946
\(675\) 0 0
\(676\) −6149.66 −0.349890
\(677\) − 1612.72i − 0.0915539i −0.998952 0.0457770i \(-0.985424\pi\)
0.998952 0.0457770i \(-0.0145764\pi\)
\(678\) − 3139.72i − 0.177847i
\(679\) −1546.83 −0.0874253
\(680\) 0 0
\(681\) 3675.06 0.206797
\(682\) 2070.25i 0.116238i
\(683\) − 20264.3i − 1.13527i −0.823279 0.567637i \(-0.807858\pi\)
0.823279 0.567637i \(-0.192142\pi\)
\(684\) 9666.33 0.540353
\(685\) 0 0
\(686\) 11060.5 0.615583
\(687\) 787.868i 0.0437540i
\(688\) − 8033.15i − 0.445147i
\(689\) −17316.4 −0.957481
\(690\) 0 0
\(691\) −7628.56 −0.419977 −0.209988 0.977704i \(-0.567343\pi\)
−0.209988 + 0.977704i \(0.567343\pi\)
\(692\) 5253.85i 0.288615i
\(693\) − 9423.19i − 0.516533i
\(694\) 21020.1 1.14973
\(695\) 0 0
\(696\) 2120.96 0.115510
\(697\) 2935.69i 0.159537i
\(698\) − 12300.0i − 0.666997i
\(699\) 2859.46 0.154728
\(700\) 0 0
\(701\) 18206.5 0.980953 0.490477 0.871454i \(-0.336823\pi\)
0.490477 + 0.871454i \(0.336823\pi\)
\(702\) − 4710.00i − 0.253230i
\(703\) 29994.2i 1.60918i
\(704\) −2763.66 −0.147953
\(705\) 0 0
\(706\) −2246.70 −0.119767
\(707\) 5824.02i 0.309809i
\(708\) 107.041i 0.00568200i
\(709\) −14793.4 −0.783607 −0.391804 0.920049i \(-0.628149\pi\)
−0.391804 + 0.920049i \(0.628149\pi\)
\(710\) 0 0
\(711\) 15228.3 0.803245
\(712\) − 7390.16i − 0.388986i
\(713\) − 551.337i − 0.0289590i
\(714\) 763.370 0.0400118
\(715\) 0 0
\(716\) 7665.49 0.400102
\(717\) 3131.57i 0.163111i
\(718\) − 4418.92i − 0.229683i
\(719\) −32215.9 −1.67100 −0.835500 0.549490i \(-0.814822\pi\)
−0.835500 + 0.549490i \(0.814822\pi\)
\(720\) 0 0
\(721\) 11958.9 0.617716
\(722\) 7017.86i 0.361742i
\(723\) − 8028.17i − 0.412961i
\(724\) −17773.3 −0.912345
\(725\) 0 0
\(726\) −1929.25 −0.0986242
\(727\) − 1853.37i − 0.0945497i −0.998882 0.0472748i \(-0.984946\pi\)
0.998882 0.0472748i \(-0.0150537\pi\)
\(728\) − 1889.14i − 0.0961759i
\(729\) 6799.73 0.345462
\(730\) 0 0
\(731\) −11531.1 −0.583436
\(732\) 3459.80i 0.174696i
\(733\) 6958.47i 0.350637i 0.984512 + 0.175319i \(0.0560955\pi\)
−0.984512 + 0.175319i \(0.943904\pi\)
\(734\) −18035.3 −0.906940
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) − 19795.6i − 0.989392i
\(738\) − 6067.26i − 0.302628i
\(739\) −6469.54 −0.322038 −0.161019 0.986951i \(-0.551478\pi\)
−0.161019 + 0.986951i \(0.551478\pi\)
\(740\) 0 0
\(741\) 4726.56 0.234325
\(742\) 12399.1i 0.613460i
\(743\) 6992.55i 0.345265i 0.984986 + 0.172632i \(0.0552273\pi\)
−0.984986 + 0.172632i \(0.944773\pi\)
\(744\) 346.612 0.0170799
\(745\) 0 0
\(746\) −4001.04 −0.196365
\(747\) 21364.3i 1.04642i
\(748\) 3967.05i 0.193917i
\(749\) 4557.08 0.222313
\(750\) 0 0
\(751\) 24595.2 1.19506 0.597531 0.801846i \(-0.296148\pi\)
0.597531 + 0.801846i \(0.296148\pi\)
\(752\) − 9726.06i − 0.471639i
\(753\) 8521.25i 0.412393i
\(754\) −7534.30 −0.363903
\(755\) 0 0
\(756\) −3372.52 −0.162245
\(757\) 35778.4i 1.71782i 0.512128 + 0.858909i \(0.328857\pi\)
−0.512128 + 0.858909i \(0.671143\pi\)
\(758\) − 10809.7i − 0.517975i
\(759\) 1795.13 0.0858486
\(760\) 0 0
\(761\) −39181.2 −1.86638 −0.933191 0.359380i \(-0.882988\pi\)
−0.933191 + 0.359380i \(0.882988\pi\)
\(762\) 7780.37i 0.369886i
\(763\) − 1822.48i − 0.0864722i
\(764\) −7614.18 −0.360564
\(765\) 0 0
\(766\) 18711.7 0.882610
\(767\) − 380.244i − 0.0179007i
\(768\) 462.705i 0.0217401i
\(769\) −9455.39 −0.443394 −0.221697 0.975116i \(-0.571160\pi\)
−0.221697 + 0.975116i \(0.571160\pi\)
\(770\) 0 0
\(771\) 7644.41 0.357077
\(772\) − 13670.4i − 0.637317i
\(773\) 5683.75i 0.264464i 0.991219 + 0.132232i \(0.0422143\pi\)
−0.991219 + 0.132232i \(0.957786\pi\)
\(774\) 23831.5 1.10673
\(775\) 0 0
\(776\) −1345.84 −0.0622588
\(777\) − 4895.46i − 0.226028i
\(778\) − 15542.5i − 0.716228i
\(779\) 13015.3 0.598615
\(780\) 0 0
\(781\) 43736.0 2.00384
\(782\) − 1056.48i − 0.0483116i
\(783\) 13450.4i 0.613891i
\(784\) 4135.32 0.188380
\(785\) 0 0
\(786\) −6240.32 −0.283187
\(787\) − 18500.7i − 0.837966i −0.907994 0.418983i \(-0.862387\pi\)
0.907994 0.418983i \(-0.137613\pi\)
\(788\) 6438.28i 0.291059i
\(789\) −8763.91 −0.395442
\(790\) 0 0
\(791\) 7986.11 0.358980
\(792\) − 8198.79i − 0.367842i
\(793\) − 12290.3i − 0.550366i
\(794\) −5018.58 −0.224311
\(795\) 0 0
\(796\) −18075.6 −0.804866
\(797\) 30464.4i 1.35396i 0.736002 + 0.676979i \(0.236711\pi\)
−0.736002 + 0.676979i \(0.763289\pi\)
\(798\) − 3384.37i − 0.150132i
\(799\) −13961.1 −0.618159
\(800\) 0 0
\(801\) 21924.0 0.967099
\(802\) 3005.42i 0.132325i
\(803\) − 32409.1i − 1.42427i
\(804\) −3314.28 −0.145380
\(805\) 0 0
\(806\) −1231.27 −0.0538087
\(807\) − 8320.80i − 0.362957i
\(808\) 5067.28i 0.220626i
\(809\) 20168.5 0.876500 0.438250 0.898853i \(-0.355599\pi\)
0.438250 + 0.898853i \(0.355599\pi\)
\(810\) 0 0
\(811\) 3472.00 0.150331 0.0751655 0.997171i \(-0.476051\pi\)
0.0751655 + 0.997171i \(0.476051\pi\)
\(812\) 5394.81i 0.233154i
\(813\) − 2749.68i − 0.118617i
\(814\) 25440.5 1.09544
\(815\) 0 0
\(816\) 664.182 0.0284939
\(817\) 51122.5i 2.18917i
\(818\) − 12563.1i − 0.536990i
\(819\) 5604.39 0.239113
\(820\) 0 0
\(821\) 7377.27 0.313603 0.156802 0.987630i \(-0.449882\pi\)
0.156802 + 0.987630i \(0.449882\pi\)
\(822\) − 6402.27i − 0.271660i
\(823\) 19960.3i 0.845411i 0.906267 + 0.422705i \(0.138919\pi\)
−0.906267 + 0.422705i \(0.861081\pi\)
\(824\) 10405.0 0.439899
\(825\) 0 0
\(826\) −272.267 −0.0114690
\(827\) − 3105.37i − 0.130574i −0.997867 0.0652868i \(-0.979204\pi\)
0.997867 0.0652868i \(-0.0207962\pi\)
\(828\) 2183.45i 0.0916427i
\(829\) 10780.3 0.451646 0.225823 0.974168i \(-0.427493\pi\)
0.225823 + 0.974168i \(0.427493\pi\)
\(830\) 0 0
\(831\) −5953.23 −0.248514
\(832\) − 1643.67i − 0.0684905i
\(833\) − 5935.98i − 0.246902i
\(834\) 10082.2 0.418606
\(835\) 0 0
\(836\) 17587.7 0.727613
\(837\) 2198.09i 0.0907731i
\(838\) 10875.0i 0.448293i
\(839\) −2884.27 −0.118684 −0.0593422 0.998238i \(-0.518900\pi\)
−0.0593422 + 0.998238i \(0.518900\pi\)
\(840\) 0 0
\(841\) −2873.26 −0.117810
\(842\) 16848.2i 0.689582i
\(843\) 16010.1i 0.654111i
\(844\) −21634.6 −0.882337
\(845\) 0 0
\(846\) 28853.8 1.17259
\(847\) − 4907.18i − 0.199071i
\(848\) 10788.1i 0.436868i
\(849\) 9887.50 0.399691
\(850\) 0 0
\(851\) −6775.15 −0.272913
\(852\) − 7322.49i − 0.294442i
\(853\) 13694.1i 0.549681i 0.961490 + 0.274841i \(0.0886251\pi\)
−0.961490 + 0.274841i \(0.911375\pi\)
\(854\) −8800.24 −0.352621
\(855\) 0 0
\(856\) 3964.96 0.158317
\(857\) − 31610.2i − 1.25996i −0.776613 0.629978i \(-0.783064\pi\)
0.776613 0.629978i \(-0.216936\pi\)
\(858\) − 4008.97i − 0.159515i
\(859\) 20316.3 0.806964 0.403482 0.914988i \(-0.367800\pi\)
0.403482 + 0.914988i \(0.367800\pi\)
\(860\) 0 0
\(861\) −2124.27 −0.0840823
\(862\) − 4560.37i − 0.180194i
\(863\) 9902.42i 0.390593i 0.980744 + 0.195297i \(0.0625670\pi\)
−0.980744 + 0.195297i \(0.937433\pi\)
\(864\) −2934.31 −0.115541
\(865\) 0 0
\(866\) 19353.8 0.759433
\(867\) 7926.56i 0.310496i
\(868\) 881.633i 0.0344753i
\(869\) 27707.7 1.08161
\(870\) 0 0
\(871\) 11773.4 0.458008
\(872\) − 1585.68i − 0.0615801i
\(873\) − 3992.63i − 0.154788i
\(874\) −4683.86 −0.181275
\(875\) 0 0
\(876\) −5426.09 −0.209281
\(877\) − 11027.7i − 0.424606i −0.977204 0.212303i \(-0.931904\pi\)
0.977204 0.212303i \(-0.0680965\pi\)
\(878\) 20535.2i 0.789326i
\(879\) −1137.96 −0.0436661
\(880\) 0 0
\(881\) −27892.8 −1.06667 −0.533333 0.845906i \(-0.679061\pi\)
−0.533333 + 0.845906i \(0.679061\pi\)
\(882\) 12268.0i 0.468351i
\(883\) 1618.76i 0.0616937i 0.999524 + 0.0308468i \(0.00982041\pi\)
−0.999524 + 0.0308468i \(0.990180\pi\)
\(884\) −2359.38 −0.0897677
\(885\) 0 0
\(886\) −5895.40 −0.223544
\(887\) 9518.69i 0.360323i 0.983637 + 0.180161i \(0.0576620\pi\)
−0.983637 + 0.180161i \(0.942338\pi\)
\(888\) − 4259.37i − 0.160963i
\(889\) −19789.9 −0.746606
\(890\) 0 0
\(891\) 20514.0 0.771319
\(892\) − 23251.0i − 0.872758i
\(893\) 61896.0i 2.31945i
\(894\) −7916.78 −0.296171
\(895\) 0 0
\(896\) −1176.92 −0.0438820
\(897\) 1067.64i 0.0397409i
\(898\) 28644.5i 1.06445i
\(899\) 3516.15 0.130445
\(900\) 0 0
\(901\) 15485.6 0.572585
\(902\) − 11039.3i − 0.407504i
\(903\) − 8343.87i − 0.307494i
\(904\) 6948.44 0.255643
\(905\) 0 0
\(906\) 5673.87 0.208059
\(907\) − 9580.94i − 0.350750i −0.984502 0.175375i \(-0.943886\pi\)
0.984502 0.175375i \(-0.0561137\pi\)
\(908\) 8133.18i 0.297257i
\(909\) −15032.8 −0.548522
\(910\) 0 0
\(911\) −18016.6 −0.655232 −0.327616 0.944811i \(-0.606245\pi\)
−0.327616 + 0.944811i \(0.606245\pi\)
\(912\) − 2944.62i − 0.106915i
\(913\) 38872.0i 1.40906i
\(914\) −26808.8 −0.970192
\(915\) 0 0
\(916\) −1743.61 −0.0628936
\(917\) − 15872.7i − 0.571606i
\(918\) 4212.01i 0.151435i
\(919\) 36712.5 1.31777 0.658887 0.752242i \(-0.271027\pi\)
0.658887 + 0.752242i \(0.271027\pi\)
\(920\) 0 0
\(921\) −1431.36 −0.0512107
\(922\) − 33857.2i − 1.20936i
\(923\) 26011.8i 0.927614i
\(924\) −2870.56 −0.102202
\(925\) 0 0
\(926\) 26218.5 0.930447
\(927\) 30868.1i 1.09368i
\(928\) 4693.84i 0.166037i
\(929\) −4117.08 −0.145400 −0.0727002 0.997354i \(-0.523162\pi\)
−0.0727002 + 0.997354i \(0.523162\pi\)
\(930\) 0 0
\(931\) −26316.9 −0.926425
\(932\) 6328.20i 0.222411i
\(933\) 3812.36i 0.133774i
\(934\) 9352.04 0.327632
\(935\) 0 0
\(936\) 4876.19 0.170281
\(937\) 11540.5i 0.402362i 0.979554 + 0.201181i \(0.0644779\pi\)
−0.979554 + 0.201181i \(0.935522\pi\)
\(938\) − 8430.12i − 0.293447i
\(939\) 375.225 0.0130405
\(940\) 0 0
\(941\) −8600.43 −0.297945 −0.148972 0.988841i \(-0.547597\pi\)
−0.148972 + 0.988841i \(0.547597\pi\)
\(942\) 9521.08i 0.329314i
\(943\) 2939.92i 0.101524i
\(944\) −236.890 −0.00816750
\(945\) 0 0
\(946\) 43361.0 1.49026
\(947\) − 48782.8i − 1.67395i −0.547243 0.836974i \(-0.684323\pi\)
0.547243 0.836974i \(-0.315677\pi\)
\(948\) − 4638.96i − 0.158931i
\(949\) 19275.2 0.659324
\(950\) 0 0
\(951\) −7255.00 −0.247381
\(952\) 1689.40i 0.0575143i
\(953\) 42550.4i 1.44632i 0.690681 + 0.723160i \(0.257311\pi\)
−0.690681 + 0.723160i \(0.742689\pi\)
\(954\) −32004.4 −1.08614
\(955\) 0 0
\(956\) −6930.40 −0.234461
\(957\) 11448.4i 0.386704i
\(958\) 27036.1i 0.911791i
\(959\) 16284.6 0.548341
\(960\) 0 0
\(961\) −29216.4 −0.980712
\(962\) 15130.6i 0.507100i
\(963\) 11762.6i 0.393609i
\(964\) 17766.9 0.593604
\(965\) 0 0
\(966\) 764.469 0.0254621
\(967\) 25119.6i 0.835360i 0.908594 + 0.417680i \(0.137157\pi\)
−0.908594 + 0.417680i \(0.862843\pi\)
\(968\) − 4269.57i − 0.141766i
\(969\) −4226.82 −0.140129
\(970\) 0 0
\(971\) 11624.9 0.384204 0.192102 0.981375i \(-0.438470\pi\)
0.192102 + 0.981375i \(0.438470\pi\)
\(972\) − 13337.8i − 0.440136i
\(973\) 25644.8i 0.844947i
\(974\) −29829.3 −0.981308
\(975\) 0 0
\(976\) −7656.78 −0.251114
\(977\) 15427.4i 0.505187i 0.967573 + 0.252593i \(0.0812835\pi\)
−0.967573 + 0.252593i \(0.918717\pi\)
\(978\) 1039.84i 0.0339985i
\(979\) 39890.4 1.30225
\(980\) 0 0
\(981\) 4704.14 0.153101
\(982\) − 7413.99i − 0.240927i
\(983\) − 42012.4i − 1.36316i −0.731744 0.681580i \(-0.761293\pi\)
0.731744 0.681580i \(-0.238707\pi\)
\(984\) −1848.25 −0.0598782
\(985\) 0 0
\(986\) 6737.70 0.217619
\(987\) − 10102.3i − 0.325794i
\(988\) 10460.2i 0.336826i
\(989\) −11547.6 −0.371278
\(990\) 0 0
\(991\) 30889.0 0.990132 0.495066 0.868855i \(-0.335144\pi\)
0.495066 + 0.868855i \(0.335144\pi\)
\(992\) 767.078i 0.0245512i
\(993\) 2163.13i 0.0691286i
\(994\) 18625.3 0.594324
\(995\) 0 0
\(996\) 6508.14 0.207046
\(997\) − 10011.2i − 0.318011i −0.987278 0.159005i \(-0.949171\pi\)
0.987278 0.159005i \(-0.0508287\pi\)
\(998\) − 26073.9i − 0.827009i
\(999\) 27011.4 0.855458
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.p.599.8 10
5.2 odd 4 1150.4.a.s.1.3 5
5.3 odd 4 1150.4.a.t.1.3 yes 5
5.4 even 2 inner 1150.4.b.p.599.3 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.s.1.3 5 5.2 odd 4
1150.4.a.t.1.3 yes 5 5.3 odd 4
1150.4.b.p.599.3 10 5.4 even 2 inner
1150.4.b.p.599.8 10 1.1 even 1 trivial