Properties

Label 1150.4.b.p.599.3
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1150,4,Mod(599,1150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1150.599");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 77x^{8} + 1924x^{6} + 16594x^{4} + 33128x^{2} + 10201 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.3
Root \(5.76842i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.p.599.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -1.80744i q^{3} -4.00000 q^{4} -3.61488 q^{6} +9.19471i q^{7} +8.00000i q^{8} +23.7332 q^{9} +43.1821 q^{11} +7.22976i q^{12} -25.6824i q^{13} +18.3894 q^{14} +16.0000 q^{16} +22.9669i q^{17} -47.4663i q^{18} -101.823 q^{19} +16.6189 q^{21} -86.3643i q^{22} +23.0000i q^{23} +14.4595 q^{24} -51.3647 q^{26} -91.6972i q^{27} -36.7788i q^{28} +146.682 q^{29} +23.9712 q^{31} -32.0000i q^{32} -78.0491i q^{33} +45.9339 q^{34} -94.9326 q^{36} +294.572i q^{37} +203.646i q^{38} -46.4193 q^{39} -127.823 q^{41} -33.2378i q^{42} +502.072i q^{43} -172.729 q^{44} +46.0000 q^{46} +607.879i q^{47} -28.9190i q^{48} +258.457 q^{49} +41.5114 q^{51} +102.729i q^{52} -674.254i q^{53} -183.394 q^{54} -73.5577 q^{56} +184.039i q^{57} -293.365i q^{58} -14.8056 q^{59} -478.549 q^{61} -47.9424i q^{62} +218.220i q^{63} -64.0000 q^{64} -156.098 q^{66} +458.422i q^{67} -91.8678i q^{68} +41.5711 q^{69} +1012.83 q^{71} +189.865i q^{72} +750.521i q^{73} +589.144 q^{74} +407.292 q^{76} +397.047i q^{77} +92.8387i q^{78} +641.648 q^{79} +475.058 q^{81} +255.645i q^{82} -900.187i q^{83} -66.4756 q^{84} +1004.14 q^{86} -265.120i q^{87} +345.457i q^{88} +923.770 q^{89} +236.142 q^{91} -92.0000i q^{92} -43.3265i q^{93} +1215.76 q^{94} -57.8381 q^{96} +168.230i q^{97} -516.915i q^{98} +1024.85 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 40 q^{4} - 48 q^{6} - 22 q^{9} - 108 q^{11} - 96 q^{14} + 160 q^{16} + 100 q^{19} - 316 q^{21} + 192 q^{24} - 144 q^{26} + 208 q^{29} - 684 q^{31} + 528 q^{34} + 88 q^{36} - 386 q^{39} + 4 q^{41}+ \cdots + 3480 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 1.80744i − 0.347842i −0.984760 0.173921i \(-0.944356\pi\)
0.984760 0.173921i \(-0.0556437\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −3.61488 −0.245961
\(7\) 9.19471i 0.496468i 0.968700 + 0.248234i \(0.0798501\pi\)
−0.968700 + 0.248234i \(0.920150\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 23.7332 0.879006
\(10\) 0 0
\(11\) 43.1821 1.18363 0.591814 0.806075i \(-0.298412\pi\)
0.591814 + 0.806075i \(0.298412\pi\)
\(12\) 7.22976i 0.173921i
\(13\) − 25.6824i − 0.547924i −0.961741 0.273962i \(-0.911666\pi\)
0.961741 0.273962i \(-0.0883342\pi\)
\(14\) 18.3894 0.351056
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 22.9669i 0.327665i 0.986488 + 0.163832i \(0.0523856\pi\)
−0.986488 + 0.163832i \(0.947614\pi\)
\(18\) − 47.4663i − 0.621551i
\(19\) −101.823 −1.22946 −0.614732 0.788736i \(-0.710736\pi\)
−0.614732 + 0.788736i \(0.710736\pi\)
\(20\) 0 0
\(21\) 16.6189 0.172692
\(22\) − 86.3643i − 0.836951i
\(23\) 23.0000i 0.208514i
\(24\) 14.4595 0.122981
\(25\) 0 0
\(26\) −51.3647 −0.387440
\(27\) − 91.6972i − 0.653597i
\(28\) − 36.7788i − 0.248234i
\(29\) 146.682 0.939250 0.469625 0.882866i \(-0.344389\pi\)
0.469625 + 0.882866i \(0.344389\pi\)
\(30\) 0 0
\(31\) 23.9712 0.138882 0.0694412 0.997586i \(-0.477878\pi\)
0.0694412 + 0.997586i \(0.477878\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 78.0491i − 0.411715i
\(34\) 45.9339 0.231694
\(35\) 0 0
\(36\) −94.9326 −0.439503
\(37\) 294.572i 1.30885i 0.756129 + 0.654423i \(0.227088\pi\)
−0.756129 + 0.654423i \(0.772912\pi\)
\(38\) 203.646i 0.869362i
\(39\) −46.4193 −0.190591
\(40\) 0 0
\(41\) −127.823 −0.486891 −0.243445 0.969915i \(-0.578278\pi\)
−0.243445 + 0.969915i \(0.578278\pi\)
\(42\) − 33.2378i − 0.122112i
\(43\) 502.072i 1.78059i 0.455388 + 0.890293i \(0.349501\pi\)
−0.455388 + 0.890293i \(0.650499\pi\)
\(44\) −172.729 −0.591814
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 607.879i 1.88656i 0.332002 + 0.943279i \(0.392276\pi\)
−0.332002 + 0.943279i \(0.607724\pi\)
\(48\) − 28.9190i − 0.0869605i
\(49\) 258.457 0.753520
\(50\) 0 0
\(51\) 41.5114 0.113976
\(52\) 102.729i 0.273962i
\(53\) − 674.254i − 1.74747i −0.486401 0.873735i \(-0.661691\pi\)
0.486401 0.873735i \(-0.338309\pi\)
\(54\) −183.394 −0.462163
\(55\) 0 0
\(56\) −73.5577 −0.175528
\(57\) 184.039i 0.427659i
\(58\) − 293.365i − 0.664150i
\(59\) −14.8056 −0.0326700 −0.0163350 0.999867i \(-0.505200\pi\)
−0.0163350 + 0.999867i \(0.505200\pi\)
\(60\) 0 0
\(61\) −478.549 −1.00446 −0.502229 0.864735i \(-0.667487\pi\)
−0.502229 + 0.864735i \(0.667487\pi\)
\(62\) − 47.9424i − 0.0982047i
\(63\) 218.220i 0.436398i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −156.098 −0.291127
\(67\) 458.422i 0.835898i 0.908471 + 0.417949i \(0.137251\pi\)
−0.908471 + 0.417949i \(0.862749\pi\)
\(68\) − 91.8678i − 0.163832i
\(69\) 41.5711 0.0725301
\(70\) 0 0
\(71\) 1012.83 1.69296 0.846481 0.532419i \(-0.178717\pi\)
0.846481 + 0.532419i \(0.178717\pi\)
\(72\) 189.865i 0.310776i
\(73\) 750.521i 1.20331i 0.798755 + 0.601657i \(0.205492\pi\)
−0.798755 + 0.601657i \(0.794508\pi\)
\(74\) 589.144 0.925494
\(75\) 0 0
\(76\) 407.292 0.614732
\(77\) 397.047i 0.587633i
\(78\) 92.8387i 0.134768i
\(79\) 641.648 0.913811 0.456905 0.889515i \(-0.348958\pi\)
0.456905 + 0.889515i \(0.348958\pi\)
\(80\) 0 0
\(81\) 475.058 0.651657
\(82\) 255.645i 0.344284i
\(83\) − 900.187i − 1.19046i −0.803554 0.595231i \(-0.797060\pi\)
0.803554 0.595231i \(-0.202940\pi\)
\(84\) −66.4756 −0.0863462
\(85\) 0 0
\(86\) 1004.14 1.25906
\(87\) − 265.120i − 0.326711i
\(88\) 345.457i 0.418476i
\(89\) 923.770 1.10022 0.550109 0.835093i \(-0.314586\pi\)
0.550109 + 0.835093i \(0.314586\pi\)
\(90\) 0 0
\(91\) 236.142 0.272026
\(92\) − 92.0000i − 0.104257i
\(93\) − 43.3265i − 0.0483091i
\(94\) 1215.76 1.33400
\(95\) 0 0
\(96\) −57.8381 −0.0614904
\(97\) 168.230i 0.176095i 0.996116 + 0.0880473i \(0.0280627\pi\)
−0.996116 + 0.0880473i \(0.971937\pi\)
\(98\) − 516.915i − 0.532819i
\(99\) 1024.85 1.04042
\(100\) 0 0
\(101\) −633.410 −0.624026 −0.312013 0.950078i \(-0.601003\pi\)
−0.312013 + 0.950078i \(0.601003\pi\)
\(102\) − 83.0228i − 0.0805929i
\(103\) − 1300.63i − 1.24422i −0.782929 0.622111i \(-0.786275\pi\)
0.782929 0.622111i \(-0.213725\pi\)
\(104\) 205.459 0.193720
\(105\) 0 0
\(106\) −1348.51 −1.23565
\(107\) − 495.620i − 0.447789i −0.974613 0.223894i \(-0.928123\pi\)
0.974613 0.223894i \(-0.0718770\pi\)
\(108\) 366.789i 0.326799i
\(109\) 198.210 0.174175 0.0870874 0.996201i \(-0.472244\pi\)
0.0870874 + 0.996201i \(0.472244\pi\)
\(110\) 0 0
\(111\) 532.421 0.455272
\(112\) 147.115i 0.124117i
\(113\) − 868.555i − 0.723069i −0.932359 0.361534i \(-0.882253\pi\)
0.932359 0.361534i \(-0.117747\pi\)
\(114\) 368.078 0.302401
\(115\) 0 0
\(116\) −586.730 −0.469625
\(117\) − 609.524i − 0.481628i
\(118\) 29.6113i 0.0231012i
\(119\) −211.174 −0.162675
\(120\) 0 0
\(121\) 533.696 0.400974
\(122\) 957.098i 0.710259i
\(123\) 231.032i 0.169361i
\(124\) −95.8848 −0.0694412
\(125\) 0 0
\(126\) 436.439 0.308580
\(127\) 2152.32i 1.50384i 0.659257 + 0.751918i \(0.270871\pi\)
−0.659257 + 0.751918i \(0.729129\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 907.464 0.619363
\(130\) 0 0
\(131\) 1726.29 1.15135 0.575673 0.817680i \(-0.304740\pi\)
0.575673 + 0.817680i \(0.304740\pi\)
\(132\) 312.196i 0.205858i
\(133\) − 936.233i − 0.610389i
\(134\) 916.844 0.591069
\(135\) 0 0
\(136\) −183.736 −0.115847
\(137\) − 1771.09i − 1.10448i −0.833684 0.552242i \(-0.813773\pi\)
0.833684 0.552242i \(-0.186227\pi\)
\(138\) − 83.1423i − 0.0512865i
\(139\) −2789.08 −1.70192 −0.850959 0.525232i \(-0.823979\pi\)
−0.850959 + 0.525232i \(0.823979\pi\)
\(140\) 0 0
\(141\) 1098.70 0.656224
\(142\) − 2025.65i − 1.19710i
\(143\) − 1109.02i − 0.648537i
\(144\) 379.731 0.219751
\(145\) 0 0
\(146\) 1501.04 0.850871
\(147\) − 467.146i − 0.262106i
\(148\) − 1178.29i − 0.654423i
\(149\) 2190.05 1.20413 0.602067 0.798445i \(-0.294344\pi\)
0.602067 + 0.798445i \(0.294344\pi\)
\(150\) 0 0
\(151\) −1569.59 −0.845902 −0.422951 0.906153i \(-0.639006\pi\)
−0.422951 + 0.906153i \(0.639006\pi\)
\(152\) − 814.584i − 0.434681i
\(153\) 545.078i 0.288019i
\(154\) 794.094 0.415519
\(155\) 0 0
\(156\) 185.677 0.0952954
\(157\) 2633.86i 1.33888i 0.742864 + 0.669442i \(0.233467\pi\)
−0.742864 + 0.669442i \(0.766533\pi\)
\(158\) − 1283.30i − 0.646162i
\(159\) −1218.67 −0.607844
\(160\) 0 0
\(161\) −211.478 −0.103521
\(162\) − 950.116i − 0.460791i
\(163\) 287.657i 0.138227i 0.997609 + 0.0691135i \(0.0220171\pi\)
−0.997609 + 0.0691135i \(0.977983\pi\)
\(164\) 511.290 0.243445
\(165\) 0 0
\(166\) −1800.37 −0.841784
\(167\) 1295.54i 0.600310i 0.953890 + 0.300155i \(0.0970385\pi\)
−0.953890 + 0.300155i \(0.902962\pi\)
\(168\) 132.951i 0.0610560i
\(169\) 1537.42 0.699780
\(170\) 0 0
\(171\) −2416.58 −1.08071
\(172\) − 2008.29i − 0.890293i
\(173\) 1313.46i 0.577230i 0.957445 + 0.288615i \(0.0931947\pi\)
−0.957445 + 0.288615i \(0.906805\pi\)
\(174\) −530.240 −0.231019
\(175\) 0 0
\(176\) 690.914 0.295907
\(177\) 26.7603i 0.0113640i
\(178\) − 1847.54i − 0.777972i
\(179\) −1916.37 −0.800204 −0.400102 0.916471i \(-0.631025\pi\)
−0.400102 + 0.916471i \(0.631025\pi\)
\(180\) 0 0
\(181\) 4443.32 1.82469 0.912345 0.409421i \(-0.134269\pi\)
0.912345 + 0.409421i \(0.134269\pi\)
\(182\) − 472.284i − 0.192352i
\(183\) 864.949i 0.349393i
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −86.6530 −0.0341597
\(187\) 991.762i 0.387833i
\(188\) − 2431.51i − 0.943279i
\(189\) 843.129 0.324490
\(190\) 0 0
\(191\) 1903.54 0.721129 0.360564 0.932734i \(-0.382584\pi\)
0.360564 + 0.932734i \(0.382584\pi\)
\(192\) 115.676i 0.0434803i
\(193\) − 3417.60i − 1.27463i −0.770602 0.637317i \(-0.780044\pi\)
0.770602 0.637317i \(-0.219956\pi\)
\(194\) 336.460 0.124518
\(195\) 0 0
\(196\) −1033.83 −0.376760
\(197\) 1609.57i 0.582117i 0.956705 + 0.291059i \(0.0940075\pi\)
−0.956705 + 0.291059i \(0.905993\pi\)
\(198\) − 2049.70i − 0.735685i
\(199\) 4518.91 1.60973 0.804866 0.593456i \(-0.202237\pi\)
0.804866 + 0.593456i \(0.202237\pi\)
\(200\) 0 0
\(201\) 828.570 0.290760
\(202\) 1266.82i 0.441253i
\(203\) 1348.70i 0.466307i
\(204\) −166.046 −0.0569878
\(205\) 0 0
\(206\) −2601.26 −0.879798
\(207\) 545.863i 0.183285i
\(208\) − 410.918i − 0.136981i
\(209\) −4396.94 −1.45523
\(210\) 0 0
\(211\) 5408.64 1.76467 0.882337 0.470618i \(-0.155969\pi\)
0.882337 + 0.470618i \(0.155969\pi\)
\(212\) 2697.02i 0.873735i
\(213\) − 1830.62i − 0.588883i
\(214\) −991.240 −0.316634
\(215\) 0 0
\(216\) 733.577 0.231082
\(217\) 220.408i 0.0689506i
\(218\) − 396.420i − 0.123160i
\(219\) 1356.52 0.418563
\(220\) 0 0
\(221\) 589.846 0.179535
\(222\) − 1064.84i − 0.321926i
\(223\) − 5812.74i − 1.74552i −0.488154 0.872758i \(-0.662329\pi\)
0.488154 0.872758i \(-0.337671\pi\)
\(224\) 294.231 0.0877639
\(225\) 0 0
\(226\) −1737.11 −0.511287
\(227\) 2033.30i 0.594514i 0.954798 + 0.297257i \(0.0960717\pi\)
−0.954798 + 0.297257i \(0.903928\pi\)
\(228\) − 736.156i − 0.213830i
\(229\) 435.903 0.125787 0.0628936 0.998020i \(-0.479967\pi\)
0.0628936 + 0.998020i \(0.479967\pi\)
\(230\) 0 0
\(231\) 717.639 0.204403
\(232\) 1173.46i 0.332075i
\(233\) 1582.05i 0.444822i 0.974953 + 0.222411i \(0.0713927\pi\)
−0.974953 + 0.222411i \(0.928607\pi\)
\(234\) −1219.05 −0.340562
\(235\) 0 0
\(236\) 59.2226 0.0163350
\(237\) − 1159.74i − 0.317862i
\(238\) 422.349i 0.115029i
\(239\) 1732.60 0.468923 0.234461 0.972125i \(-0.424667\pi\)
0.234461 + 0.972125i \(0.424667\pi\)
\(240\) 0 0
\(241\) −4441.73 −1.18721 −0.593604 0.804757i \(-0.702296\pi\)
−0.593604 + 0.804757i \(0.702296\pi\)
\(242\) − 1067.39i − 0.283531i
\(243\) − 3334.46i − 0.880271i
\(244\) 1914.20 0.502229
\(245\) 0 0
\(246\) 462.063 0.119756
\(247\) 2615.06i 0.673652i
\(248\) 191.770i 0.0491023i
\(249\) −1627.03 −0.414093
\(250\) 0 0
\(251\) 4714.54 1.18557 0.592787 0.805359i \(-0.298028\pi\)
0.592787 + 0.805359i \(0.298028\pi\)
\(252\) − 872.878i − 0.218199i
\(253\) 993.189i 0.246803i
\(254\) 4304.63 1.06337
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4229.41i 1.02655i 0.858224 + 0.513275i \(0.171568\pi\)
−0.858224 + 0.513275i \(0.828432\pi\)
\(258\) − 1814.93i − 0.437956i
\(259\) −2708.50 −0.649800
\(260\) 0 0
\(261\) 3481.24 0.825606
\(262\) − 3452.57i − 0.814125i
\(263\) − 4848.80i − 1.13684i −0.822737 0.568422i \(-0.807554\pi\)
0.822737 0.568422i \(-0.192446\pi\)
\(264\) 624.393 0.145563
\(265\) 0 0
\(266\) −1872.47 −0.431610
\(267\) − 1669.66i − 0.382702i
\(268\) − 1833.69i − 0.417949i
\(269\) −4603.64 −1.04345 −0.521726 0.853113i \(-0.674712\pi\)
−0.521726 + 0.853113i \(0.674712\pi\)
\(270\) 0 0
\(271\) −1521.31 −0.341008 −0.170504 0.985357i \(-0.554540\pi\)
−0.170504 + 0.985357i \(0.554540\pi\)
\(272\) 367.471i 0.0819162i
\(273\) − 426.812i − 0.0946222i
\(274\) −3542.18 −0.780988
\(275\) 0 0
\(276\) −166.285 −0.0362650
\(277\) − 3293.74i − 0.714446i −0.934019 0.357223i \(-0.883724\pi\)
0.934019 0.357223i \(-0.116276\pi\)
\(278\) 5578.16i 1.20344i
\(279\) 568.912 0.122078
\(280\) 0 0
\(281\) 8857.86 1.88048 0.940242 0.340508i \(-0.110599\pi\)
0.940242 + 0.340508i \(0.110599\pi\)
\(282\) − 2197.41i − 0.464020i
\(283\) 5470.44i 1.14906i 0.818483 + 0.574530i \(0.194815\pi\)
−0.818483 + 0.574530i \(0.805185\pi\)
\(284\) −4051.30 −0.846481
\(285\) 0 0
\(286\) −2218.04 −0.458585
\(287\) − 1175.29i − 0.241726i
\(288\) − 759.461i − 0.155388i
\(289\) 4385.52 0.892636
\(290\) 0 0
\(291\) 304.066 0.0612531
\(292\) − 3002.09i − 0.601657i
\(293\) − 629.599i − 0.125534i −0.998028 0.0627672i \(-0.980007\pi\)
0.998028 0.0627672i \(-0.0199926\pi\)
\(294\) −934.292 −0.185337
\(295\) 0 0
\(296\) −2356.57 −0.462747
\(297\) − 3959.68i − 0.773616i
\(298\) − 4380.10i − 0.851452i
\(299\) 590.694 0.114250
\(300\) 0 0
\(301\) −4616.40 −0.884004
\(302\) 3139.17i 0.598143i
\(303\) 1144.85i 0.217062i
\(304\) −1629.17 −0.307366
\(305\) 0 0
\(306\) 1090.16 0.203660
\(307\) − 791.929i − 0.147224i −0.997287 0.0736120i \(-0.976547\pi\)
0.997287 0.0736120i \(-0.0234526\pi\)
\(308\) − 1588.19i − 0.293816i
\(309\) −2350.81 −0.432793
\(310\) 0 0
\(311\) 2109.26 0.384582 0.192291 0.981338i \(-0.438408\pi\)
0.192291 + 0.981338i \(0.438408\pi\)
\(312\) − 371.355i − 0.0673840i
\(313\) 207.600i 0.0374896i 0.999824 + 0.0187448i \(0.00596701\pi\)
−0.999824 + 0.0187448i \(0.994033\pi\)
\(314\) 5267.72 0.946734
\(315\) 0 0
\(316\) −2566.59 −0.456905
\(317\) − 4013.96i − 0.711188i −0.934640 0.355594i \(-0.884279\pi\)
0.934640 0.355594i \(-0.115721\pi\)
\(318\) 2437.35i 0.429811i
\(319\) 6334.06 1.11172
\(320\) 0 0
\(321\) −895.803 −0.155760
\(322\) 422.957i 0.0732002i
\(323\) − 2338.56i − 0.402852i
\(324\) −1900.23 −0.325829
\(325\) 0 0
\(326\) 575.313 0.0977413
\(327\) − 358.252i − 0.0605853i
\(328\) − 1022.58i − 0.172142i
\(329\) −5589.27 −0.936615
\(330\) 0 0
\(331\) 1196.79 0.198736 0.0993678 0.995051i \(-0.468318\pi\)
0.0993678 + 0.995051i \(0.468318\pi\)
\(332\) 3600.75i 0.595231i
\(333\) 6991.12i 1.15048i
\(334\) 2591.08 0.424484
\(335\) 0 0
\(336\) 265.902 0.0431731
\(337\) 3245.42i 0.524597i 0.964987 + 0.262299i \(0.0844806\pi\)
−0.964987 + 0.262299i \(0.915519\pi\)
\(338\) − 3074.83i − 0.494819i
\(339\) −1569.86 −0.251514
\(340\) 0 0
\(341\) 1035.13 0.164385
\(342\) 4833.16i 0.764174i
\(343\) 5530.23i 0.870566i
\(344\) −4016.57 −0.629532
\(345\) 0 0
\(346\) 2626.93 0.408163
\(347\) 10510.0i 1.62596i 0.582290 + 0.812981i \(0.302157\pi\)
−0.582290 + 0.812981i \(0.697843\pi\)
\(348\) 1060.48i 0.163355i
\(349\) −6150.02 −0.943276 −0.471638 0.881792i \(-0.656337\pi\)
−0.471638 + 0.881792i \(0.656337\pi\)
\(350\) 0 0
\(351\) −2355.00 −0.358121
\(352\) − 1381.83i − 0.209238i
\(353\) − 1123.35i − 0.169376i −0.996408 0.0846882i \(-0.973011\pi\)
0.996408 0.0846882i \(-0.0269894\pi\)
\(354\) 53.5206 0.00803556
\(355\) 0 0
\(356\) −3695.08 −0.550109
\(357\) 381.685i 0.0565852i
\(358\) 3832.75i 0.565829i
\(359\) −2209.46 −0.324821 −0.162411 0.986723i \(-0.551927\pi\)
−0.162411 + 0.986723i \(0.551927\pi\)
\(360\) 0 0
\(361\) 3508.93 0.511581
\(362\) − 8886.63i − 1.29025i
\(363\) − 964.624i − 0.139476i
\(364\) −944.568 −0.136013
\(365\) 0 0
\(366\) 1729.90 0.247058
\(367\) − 9017.63i − 1.28261i −0.767287 0.641303i \(-0.778394\pi\)
0.767287 0.641303i \(-0.221606\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −3033.63 −0.427980
\(370\) 0 0
\(371\) 6199.57 0.867563
\(372\) 173.306i 0.0241546i
\(373\) − 2000.52i − 0.277702i −0.990313 0.138851i \(-0.955659\pi\)
0.990313 0.138851i \(-0.0443410\pi\)
\(374\) 1983.52 0.274239
\(375\) 0 0
\(376\) −4863.03 −0.666999
\(377\) − 3767.15i − 0.514637i
\(378\) − 1686.26i − 0.229449i
\(379\) −5404.84 −0.732528 −0.366264 0.930511i \(-0.619363\pi\)
−0.366264 + 0.930511i \(0.619363\pi\)
\(380\) 0 0
\(381\) 3890.18 0.523097
\(382\) − 3807.09i − 0.509915i
\(383\) 9355.83i 1.24820i 0.781345 + 0.624100i \(0.214534\pi\)
−0.781345 + 0.624100i \(0.785466\pi\)
\(384\) 231.352 0.0307452
\(385\) 0 0
\(386\) −6835.20 −0.901302
\(387\) 11915.7i 1.56515i
\(388\) − 672.920i − 0.0880473i
\(389\) −7771.25 −1.01290 −0.506450 0.862269i \(-0.669042\pi\)
−0.506450 + 0.862269i \(0.669042\pi\)
\(390\) 0 0
\(391\) −528.240 −0.0683229
\(392\) 2067.66i 0.266409i
\(393\) − 3120.16i − 0.400487i
\(394\) 3219.14 0.411619
\(395\) 0 0
\(396\) −4099.39 −0.520208
\(397\) − 2509.29i − 0.317223i −0.987341 0.158612i \(-0.949298\pi\)
0.987341 0.158612i \(-0.0507018\pi\)
\(398\) − 9037.81i − 1.13825i
\(399\) −1692.19 −0.212319
\(400\) 0 0
\(401\) 1502.71 0.187136 0.0935681 0.995613i \(-0.470173\pi\)
0.0935681 + 0.995613i \(0.470173\pi\)
\(402\) − 1657.14i − 0.205599i
\(403\) − 615.637i − 0.0760969i
\(404\) 2533.64 0.312013
\(405\) 0 0
\(406\) 2697.41 0.329729
\(407\) 12720.2i 1.54919i
\(408\) 332.091i 0.0402965i
\(409\) −6281.54 −0.759419 −0.379709 0.925106i \(-0.623976\pi\)
−0.379709 + 0.925106i \(0.623976\pi\)
\(410\) 0 0
\(411\) −3201.14 −0.384186
\(412\) 5202.52i 0.622111i
\(413\) − 136.134i − 0.0162196i
\(414\) 1091.73 0.129602
\(415\) 0 0
\(416\) −821.836 −0.0968601
\(417\) 5041.09i 0.591999i
\(418\) 8793.87i 1.02900i
\(419\) 5437.48 0.633982 0.316991 0.948429i \(-0.397328\pi\)
0.316991 + 0.948429i \(0.397328\pi\)
\(420\) 0 0
\(421\) 8424.12 0.975217 0.487608 0.873062i \(-0.337869\pi\)
0.487608 + 0.873062i \(0.337869\pi\)
\(422\) − 10817.3i − 1.24781i
\(423\) 14426.9i 1.65830i
\(424\) 5394.03 0.617824
\(425\) 0 0
\(426\) −3661.24 −0.416403
\(427\) − 4400.12i − 0.498681i
\(428\) 1982.48i 0.223894i
\(429\) −2004.49 −0.225589
\(430\) 0 0
\(431\) −2280.19 −0.254832 −0.127416 0.991849i \(-0.540668\pi\)
−0.127416 + 0.991849i \(0.540668\pi\)
\(432\) − 1467.15i − 0.163399i
\(433\) 9676.90i 1.07400i 0.843582 + 0.537000i \(0.180443\pi\)
−0.843582 + 0.537000i \(0.819557\pi\)
\(434\) 440.816 0.0487554
\(435\) 0 0
\(436\) −792.839 −0.0870874
\(437\) − 2341.93i − 0.256361i
\(438\) − 2713.04i − 0.295969i
\(439\) 10267.6 1.11628 0.558138 0.829748i \(-0.311516\pi\)
0.558138 + 0.829748i \(0.311516\pi\)
\(440\) 0 0
\(441\) 6134.01 0.662348
\(442\) − 1179.69i − 0.126951i
\(443\) − 2947.70i − 0.316139i −0.987428 0.158069i \(-0.949473\pi\)
0.987428 0.158069i \(-0.0505269\pi\)
\(444\) −2129.68 −0.227636
\(445\) 0 0
\(446\) −11625.5 −1.23427
\(447\) − 3958.39i − 0.418849i
\(448\) − 588.462i − 0.0620585i
\(449\) 14322.2 1.50536 0.752682 0.658385i \(-0.228760\pi\)
0.752682 + 0.658385i \(0.228760\pi\)
\(450\) 0 0
\(451\) −5519.65 −0.576297
\(452\) 3474.22i 0.361534i
\(453\) 2836.94i 0.294240i
\(454\) 4066.59 0.420385
\(455\) 0 0
\(456\) −1472.31 −0.151200
\(457\) − 13404.4i − 1.37206i −0.727574 0.686029i \(-0.759352\pi\)
0.727574 0.686029i \(-0.240648\pi\)
\(458\) − 871.805i − 0.0889449i
\(459\) 2106.00 0.214161
\(460\) 0 0
\(461\) −16928.6 −1.71029 −0.855144 0.518390i \(-0.826532\pi\)
−0.855144 + 0.518390i \(0.826532\pi\)
\(462\) − 1435.28i − 0.144535i
\(463\) 13109.3i 1.31585i 0.753083 + 0.657925i \(0.228566\pi\)
−0.753083 + 0.657925i \(0.771434\pi\)
\(464\) 2346.92 0.234812
\(465\) 0 0
\(466\) 3164.10 0.314537
\(467\) 4676.02i 0.463341i 0.972794 + 0.231671i \(0.0744191\pi\)
−0.972794 + 0.231671i \(0.925581\pi\)
\(468\) 2438.09i 0.240814i
\(469\) −4215.06 −0.414996
\(470\) 0 0
\(471\) 4760.54 0.465720
\(472\) − 118.445i − 0.0115506i
\(473\) 21680.5i 2.10755i
\(474\) −2319.48 −0.224762
\(475\) 0 0
\(476\) 844.698 0.0813375
\(477\) − 16002.2i − 1.53604i
\(478\) − 3465.20i − 0.331579i
\(479\) 13518.0 1.28947 0.644734 0.764407i \(-0.276968\pi\)
0.644734 + 0.764407i \(0.276968\pi\)
\(480\) 0 0
\(481\) 7565.30 0.717148
\(482\) 8883.47i 0.839483i
\(483\) 382.234i 0.0360088i
\(484\) −2134.79 −0.200487
\(485\) 0 0
\(486\) −6668.92 −0.622446
\(487\) − 14914.7i − 1.38778i −0.720082 0.693889i \(-0.755896\pi\)
0.720082 0.693889i \(-0.244104\pi\)
\(488\) − 3828.39i − 0.355129i
\(489\) 519.922 0.0480812
\(490\) 0 0
\(491\) −3706.99 −0.340722 −0.170361 0.985382i \(-0.554493\pi\)
−0.170361 + 0.985382i \(0.554493\pi\)
\(492\) − 924.126i − 0.0846806i
\(493\) 3368.85i 0.307759i
\(494\) 5230.11 0.476344
\(495\) 0 0
\(496\) 383.539 0.0347206
\(497\) 9312.64i 0.840501i
\(498\) 3254.07i 0.292808i
\(499\) −13037.0 −1.16957 −0.584784 0.811189i \(-0.698821\pi\)
−0.584784 + 0.811189i \(0.698821\pi\)
\(500\) 0 0
\(501\) 2341.61 0.208813
\(502\) − 9429.08i − 0.838328i
\(503\) 2976.34i 0.263834i 0.991261 + 0.131917i \(0.0421132\pi\)
−0.991261 + 0.131917i \(0.957887\pi\)
\(504\) −1745.76 −0.154290
\(505\) 0 0
\(506\) 1986.38 0.174516
\(507\) − 2778.79i − 0.243413i
\(508\) − 8609.26i − 0.751918i
\(509\) −20818.7 −1.81292 −0.906458 0.422297i \(-0.861224\pi\)
−0.906458 + 0.422297i \(0.861224\pi\)
\(510\) 0 0
\(511\) −6900.83 −0.597406
\(512\) − 512.000i − 0.0441942i
\(513\) 9336.88i 0.803574i
\(514\) 8458.82 0.725881
\(515\) 0 0
\(516\) −3629.86 −0.309681
\(517\) 26249.5i 2.23298i
\(518\) 5417.00i 0.459478i
\(519\) 2374.01 0.200785
\(520\) 0 0
\(521\) −10439.5 −0.877855 −0.438927 0.898522i \(-0.644641\pi\)
−0.438927 + 0.898522i \(0.644641\pi\)
\(522\) − 6962.48i − 0.583792i
\(523\) 22364.9i 1.86988i 0.354801 + 0.934942i \(0.384549\pi\)
−0.354801 + 0.934942i \(0.615451\pi\)
\(524\) −6905.15 −0.575673
\(525\) 0 0
\(526\) −9697.60 −0.803870
\(527\) 550.545i 0.0455069i
\(528\) − 1248.79i − 0.102929i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −351.385 −0.0287171
\(532\) 3744.93i 0.305194i
\(533\) 3282.78i 0.266779i
\(534\) −3339.32 −0.270611
\(535\) 0 0
\(536\) −3667.38 −0.295535
\(537\) 3463.73i 0.278344i
\(538\) 9207.27i 0.737832i
\(539\) 11160.7 0.891887
\(540\) 0 0
\(541\) −22462.5 −1.78510 −0.892550 0.450949i \(-0.851086\pi\)
−0.892550 + 0.450949i \(0.851086\pi\)
\(542\) 3042.63i 0.241129i
\(543\) − 8031.03i − 0.634704i
\(544\) 734.942 0.0579235
\(545\) 0 0
\(546\) −853.625 −0.0669080
\(547\) − 4367.35i − 0.341379i −0.985325 0.170690i \(-0.945400\pi\)
0.985325 0.170690i \(-0.0545996\pi\)
\(548\) 7084.35i 0.552242i
\(549\) −11357.5 −0.882924
\(550\) 0 0
\(551\) −14935.7 −1.15477
\(552\) 332.569i 0.0256433i
\(553\) 5899.77i 0.453677i
\(554\) −6587.47 −0.505189
\(555\) 0 0
\(556\) 11156.3 0.850959
\(557\) 13805.9i 1.05022i 0.851034 + 0.525110i \(0.175976\pi\)
−0.851034 + 0.525110i \(0.824024\pi\)
\(558\) − 1137.82i − 0.0863225i
\(559\) 12894.4 0.975625
\(560\) 0 0
\(561\) 1792.55 0.134905
\(562\) − 17715.7i − 1.32970i
\(563\) 8149.77i 0.610075i 0.952340 + 0.305037i \(0.0986689\pi\)
−0.952340 + 0.305037i \(0.901331\pi\)
\(564\) −4394.82 −0.328112
\(565\) 0 0
\(566\) 10940.9 0.812508
\(567\) 4368.02i 0.323527i
\(568\) 8102.60i 0.598552i
\(569\) 11539.9 0.850226 0.425113 0.905140i \(-0.360234\pi\)
0.425113 + 0.905140i \(0.360234\pi\)
\(570\) 0 0
\(571\) −2436.53 −0.178573 −0.0892867 0.996006i \(-0.528459\pi\)
−0.0892867 + 0.996006i \(0.528459\pi\)
\(572\) 4436.08i 0.324269i
\(573\) − 3440.54i − 0.250839i
\(574\) −2350.58 −0.170926
\(575\) 0 0
\(576\) −1518.92 −0.109876
\(577\) 6965.59i 0.502567i 0.967913 + 0.251284i \(0.0808527\pi\)
−0.967913 + 0.251284i \(0.919147\pi\)
\(578\) − 8771.04i − 0.631189i
\(579\) −6177.11 −0.443371
\(580\) 0 0
\(581\) 8276.96 0.591026
\(582\) − 608.132i − 0.0433125i
\(583\) − 29115.7i − 2.06835i
\(584\) −6004.17 −0.425435
\(585\) 0 0
\(586\) −1259.20 −0.0887662
\(587\) − 3080.79i − 0.216623i −0.994117 0.108311i \(-0.965456\pi\)
0.994117 0.108311i \(-0.0345444\pi\)
\(588\) 1868.58i 0.131053i
\(589\) −2440.82 −0.170751
\(590\) 0 0
\(591\) 2909.20 0.202485
\(592\) 4713.15i 0.327211i
\(593\) − 13741.0i − 0.951563i −0.879564 0.475782i \(-0.842165\pi\)
0.879564 0.475782i \(-0.157835\pi\)
\(594\) −7919.36 −0.547029
\(595\) 0 0
\(596\) −8760.21 −0.602067
\(597\) − 8167.65i − 0.559933i
\(598\) − 1181.39i − 0.0807869i
\(599\) −24131.0 −1.64602 −0.823011 0.568026i \(-0.807707\pi\)
−0.823011 + 0.568026i \(0.807707\pi\)
\(600\) 0 0
\(601\) −18108.3 −1.22904 −0.614520 0.788901i \(-0.710650\pi\)
−0.614520 + 0.788901i \(0.710650\pi\)
\(602\) 9232.81i 0.625085i
\(603\) 10879.8i 0.734759i
\(604\) 6278.35 0.422951
\(605\) 0 0
\(606\) 2289.70 0.153486
\(607\) − 10257.1i − 0.685873i −0.939359 0.342936i \(-0.888578\pi\)
0.939359 0.342936i \(-0.111422\pi\)
\(608\) 3258.34i 0.217340i
\(609\) 2437.70 0.162201
\(610\) 0 0
\(611\) 15611.8 1.03369
\(612\) − 2180.31i − 0.144010i
\(613\) − 2710.49i − 0.178590i −0.996005 0.0892951i \(-0.971539\pi\)
0.996005 0.0892951i \(-0.0284614\pi\)
\(614\) −1583.86 −0.104103
\(615\) 0 0
\(616\) −3176.38 −0.207760
\(617\) − 20517.7i − 1.33875i −0.742923 0.669377i \(-0.766561\pi\)
0.742923 0.669377i \(-0.233439\pi\)
\(618\) 4701.62i 0.306031i
\(619\) 5220.67 0.338992 0.169496 0.985531i \(-0.445786\pi\)
0.169496 + 0.985531i \(0.445786\pi\)
\(620\) 0 0
\(621\) 2109.03 0.136284
\(622\) − 4218.52i − 0.271941i
\(623\) 8493.80i 0.546223i
\(624\) −742.710 −0.0476477
\(625\) 0 0
\(626\) 415.200 0.0265092
\(627\) 7947.20i 0.506189i
\(628\) − 10535.4i − 0.669442i
\(629\) −6765.41 −0.428863
\(630\) 0 0
\(631\) −19100.5 −1.20504 −0.602520 0.798103i \(-0.705837\pi\)
−0.602520 + 0.798103i \(0.705837\pi\)
\(632\) 5133.18i 0.323081i
\(633\) − 9775.80i − 0.613828i
\(634\) −8027.93 −0.502886
\(635\) 0 0
\(636\) 4874.70 0.303922
\(637\) − 6637.79i − 0.412871i
\(638\) − 12668.1i − 0.786106i
\(639\) 24037.5 1.48812
\(640\) 0 0
\(641\) 15088.0 0.929701 0.464851 0.885389i \(-0.346108\pi\)
0.464851 + 0.885389i \(0.346108\pi\)
\(642\) 1791.61i 0.110139i
\(643\) 1568.01i 0.0961687i 0.998843 + 0.0480843i \(0.0153116\pi\)
−0.998843 + 0.0480843i \(0.984688\pi\)
\(644\) 845.913 0.0517603
\(645\) 0 0
\(646\) −4677.13 −0.284859
\(647\) 15035.4i 0.913603i 0.889569 + 0.456801i \(0.151005\pi\)
−0.889569 + 0.456801i \(0.848995\pi\)
\(648\) 3800.47i 0.230396i
\(649\) −639.339 −0.0386691
\(650\) 0 0
\(651\) 398.375 0.0239839
\(652\) − 1150.63i − 0.0691135i
\(653\) − 22403.7i − 1.34261i −0.741180 0.671307i \(-0.765733\pi\)
0.741180 0.671307i \(-0.234267\pi\)
\(654\) −716.505 −0.0428403
\(655\) 0 0
\(656\) −2045.16 −0.121723
\(657\) 17812.2i 1.05772i
\(658\) 11178.5i 0.662287i
\(659\) −890.918 −0.0526635 −0.0263317 0.999653i \(-0.508383\pi\)
−0.0263317 + 0.999653i \(0.508383\pi\)
\(660\) 0 0
\(661\) −28636.0 −1.68504 −0.842519 0.538667i \(-0.818928\pi\)
−0.842519 + 0.538667i \(0.818928\pi\)
\(662\) − 2393.58i − 0.140527i
\(663\) − 1066.11i − 0.0624499i
\(664\) 7201.50 0.420892
\(665\) 0 0
\(666\) 13982.2 0.813515
\(667\) 3373.70i 0.195847i
\(668\) − 5182.16i − 0.300155i
\(669\) −10506.2 −0.607164
\(670\) 0 0
\(671\) −20664.8 −1.18890
\(672\) − 531.805i − 0.0305280i
\(673\) 15056.8i 0.862405i 0.902255 + 0.431203i \(0.141911\pi\)
−0.902255 + 0.431203i \(0.858089\pi\)
\(674\) 6490.84 0.370946
\(675\) 0 0
\(676\) −6149.66 −0.349890
\(677\) 1612.72i 0.0915539i 0.998952 + 0.0457770i \(0.0145764\pi\)
−0.998952 + 0.0457770i \(0.985424\pi\)
\(678\) 3139.72i 0.177847i
\(679\) −1546.83 −0.0874253
\(680\) 0 0
\(681\) 3675.06 0.206797
\(682\) − 2070.25i − 0.116238i
\(683\) 20264.3i 1.13527i 0.823279 + 0.567637i \(0.192142\pi\)
−0.823279 + 0.567637i \(0.807858\pi\)
\(684\) 9666.33 0.540353
\(685\) 0 0
\(686\) 11060.5 0.615583
\(687\) − 787.868i − 0.0437540i
\(688\) 8033.15i 0.445147i
\(689\) −17316.4 −0.957481
\(690\) 0 0
\(691\) −7628.56 −0.419977 −0.209988 0.977704i \(-0.567343\pi\)
−0.209988 + 0.977704i \(0.567343\pi\)
\(692\) − 5253.85i − 0.288615i
\(693\) 9423.19i 0.516533i
\(694\) 21020.1 1.14973
\(695\) 0 0
\(696\) 2120.96 0.115510
\(697\) − 2935.69i − 0.159537i
\(698\) 12300.0i 0.666997i
\(699\) 2859.46 0.154728
\(700\) 0 0
\(701\) 18206.5 0.980953 0.490477 0.871454i \(-0.336823\pi\)
0.490477 + 0.871454i \(0.336823\pi\)
\(702\) 4710.00i 0.253230i
\(703\) − 29994.2i − 1.60918i
\(704\) −2763.66 −0.147953
\(705\) 0 0
\(706\) −2246.70 −0.119767
\(707\) − 5824.02i − 0.309809i
\(708\) − 107.041i − 0.00568200i
\(709\) −14793.4 −0.783607 −0.391804 0.920049i \(-0.628149\pi\)
−0.391804 + 0.920049i \(0.628149\pi\)
\(710\) 0 0
\(711\) 15228.3 0.803245
\(712\) 7390.16i 0.388986i
\(713\) 551.337i 0.0289590i
\(714\) 763.370 0.0400118
\(715\) 0 0
\(716\) 7665.49 0.400102
\(717\) − 3131.57i − 0.163111i
\(718\) 4418.92i 0.229683i
\(719\) −32215.9 −1.67100 −0.835500 0.549490i \(-0.814822\pi\)
−0.835500 + 0.549490i \(0.814822\pi\)
\(720\) 0 0
\(721\) 11958.9 0.617716
\(722\) − 7017.86i − 0.361742i
\(723\) 8028.17i 0.412961i
\(724\) −17773.3 −0.912345
\(725\) 0 0
\(726\) −1929.25 −0.0986242
\(727\) 1853.37i 0.0945497i 0.998882 + 0.0472748i \(0.0150537\pi\)
−0.998882 + 0.0472748i \(0.984946\pi\)
\(728\) 1889.14i 0.0961759i
\(729\) 6799.73 0.345462
\(730\) 0 0
\(731\) −11531.1 −0.583436
\(732\) − 3459.80i − 0.174696i
\(733\) − 6958.47i − 0.350637i −0.984512 0.175319i \(-0.943904\pi\)
0.984512 0.175319i \(-0.0560955\pi\)
\(734\) −18035.3 −0.906940
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 19795.6i 0.989392i
\(738\) 6067.26i 0.302628i
\(739\) −6469.54 −0.322038 −0.161019 0.986951i \(-0.551478\pi\)
−0.161019 + 0.986951i \(0.551478\pi\)
\(740\) 0 0
\(741\) 4726.56 0.234325
\(742\) − 12399.1i − 0.613460i
\(743\) − 6992.55i − 0.345265i −0.984986 0.172632i \(-0.944773\pi\)
0.984986 0.172632i \(-0.0552273\pi\)
\(744\) 346.612 0.0170799
\(745\) 0 0
\(746\) −4001.04 −0.196365
\(747\) − 21364.3i − 1.04642i
\(748\) − 3967.05i − 0.193917i
\(749\) 4557.08 0.222313
\(750\) 0 0
\(751\) 24595.2 1.19506 0.597531 0.801846i \(-0.296148\pi\)
0.597531 + 0.801846i \(0.296148\pi\)
\(752\) 9726.06i 0.471639i
\(753\) − 8521.25i − 0.412393i
\(754\) −7534.30 −0.363903
\(755\) 0 0
\(756\) −3372.52 −0.162245
\(757\) − 35778.4i − 1.71782i −0.512128 0.858909i \(-0.671143\pi\)
0.512128 0.858909i \(-0.328857\pi\)
\(758\) 10809.7i 0.517975i
\(759\) 1795.13 0.0858486
\(760\) 0 0
\(761\) −39181.2 −1.86638 −0.933191 0.359380i \(-0.882988\pi\)
−0.933191 + 0.359380i \(0.882988\pi\)
\(762\) − 7780.37i − 0.369886i
\(763\) 1822.48i 0.0864722i
\(764\) −7614.18 −0.360564
\(765\) 0 0
\(766\) 18711.7 0.882610
\(767\) 380.244i 0.0179007i
\(768\) − 462.705i − 0.0217401i
\(769\) −9455.39 −0.443394 −0.221697 0.975116i \(-0.571160\pi\)
−0.221697 + 0.975116i \(0.571160\pi\)
\(770\) 0 0
\(771\) 7644.41 0.357077
\(772\) 13670.4i 0.637317i
\(773\) − 5683.75i − 0.264464i −0.991219 0.132232i \(-0.957786\pi\)
0.991219 0.132232i \(-0.0422143\pi\)
\(774\) 23831.5 1.10673
\(775\) 0 0
\(776\) −1345.84 −0.0622588
\(777\) 4895.46i 0.226028i
\(778\) 15542.5i 0.716228i
\(779\) 13015.3 0.598615
\(780\) 0 0
\(781\) 43736.0 2.00384
\(782\) 1056.48i 0.0483116i
\(783\) − 13450.4i − 0.613891i
\(784\) 4135.32 0.188380
\(785\) 0 0
\(786\) −6240.32 −0.283187
\(787\) 18500.7i 0.837966i 0.907994 + 0.418983i \(0.137613\pi\)
−0.907994 + 0.418983i \(0.862387\pi\)
\(788\) − 6438.28i − 0.291059i
\(789\) −8763.91 −0.395442
\(790\) 0 0
\(791\) 7986.11 0.358980
\(792\) 8198.79i 0.367842i
\(793\) 12290.3i 0.550366i
\(794\) −5018.58 −0.224311
\(795\) 0 0
\(796\) −18075.6 −0.804866
\(797\) − 30464.4i − 1.35396i −0.736002 0.676979i \(-0.763289\pi\)
0.736002 0.676979i \(-0.236711\pi\)
\(798\) 3384.37i 0.150132i
\(799\) −13961.1 −0.618159
\(800\) 0 0
\(801\) 21924.0 0.967099
\(802\) − 3005.42i − 0.132325i
\(803\) 32409.1i 1.42427i
\(804\) −3314.28 −0.145380
\(805\) 0 0
\(806\) −1231.27 −0.0538087
\(807\) 8320.80i 0.362957i
\(808\) − 5067.28i − 0.220626i
\(809\) 20168.5 0.876500 0.438250 0.898853i \(-0.355599\pi\)
0.438250 + 0.898853i \(0.355599\pi\)
\(810\) 0 0
\(811\) 3472.00 0.150331 0.0751655 0.997171i \(-0.476051\pi\)
0.0751655 + 0.997171i \(0.476051\pi\)
\(812\) − 5394.81i − 0.233154i
\(813\) 2749.68i 0.118617i
\(814\) 25440.5 1.09544
\(815\) 0 0
\(816\) 664.182 0.0284939
\(817\) − 51122.5i − 2.18917i
\(818\) 12563.1i 0.536990i
\(819\) 5604.39 0.239113
\(820\) 0 0
\(821\) 7377.27 0.313603 0.156802 0.987630i \(-0.449882\pi\)
0.156802 + 0.987630i \(0.449882\pi\)
\(822\) 6402.27i 0.271660i
\(823\) − 19960.3i − 0.845411i −0.906267 0.422705i \(-0.861081\pi\)
0.906267 0.422705i \(-0.138919\pi\)
\(824\) 10405.0 0.439899
\(825\) 0 0
\(826\) −272.267 −0.0114690
\(827\) 3105.37i 0.130574i 0.997867 + 0.0652868i \(0.0207962\pi\)
−0.997867 + 0.0652868i \(0.979204\pi\)
\(828\) − 2183.45i − 0.0916427i
\(829\) 10780.3 0.451646 0.225823 0.974168i \(-0.427493\pi\)
0.225823 + 0.974168i \(0.427493\pi\)
\(830\) 0 0
\(831\) −5953.23 −0.248514
\(832\) 1643.67i 0.0684905i
\(833\) 5935.98i 0.246902i
\(834\) 10082.2 0.418606
\(835\) 0 0
\(836\) 17587.7 0.727613
\(837\) − 2198.09i − 0.0907731i
\(838\) − 10875.0i − 0.448293i
\(839\) −2884.27 −0.118684 −0.0593422 0.998238i \(-0.518900\pi\)
−0.0593422 + 0.998238i \(0.518900\pi\)
\(840\) 0 0
\(841\) −2873.26 −0.117810
\(842\) − 16848.2i − 0.689582i
\(843\) − 16010.1i − 0.654111i
\(844\) −21634.6 −0.882337
\(845\) 0 0
\(846\) 28853.8 1.17259
\(847\) 4907.18i 0.199071i
\(848\) − 10788.1i − 0.436868i
\(849\) 9887.50 0.399691
\(850\) 0 0
\(851\) −6775.15 −0.272913
\(852\) 7322.49i 0.294442i
\(853\) − 13694.1i − 0.549681i −0.961490 0.274841i \(-0.911375\pi\)
0.961490 0.274841i \(-0.0886251\pi\)
\(854\) −8800.24 −0.352621
\(855\) 0 0
\(856\) 3964.96 0.158317
\(857\) 31610.2i 1.25996i 0.776613 + 0.629978i \(0.216936\pi\)
−0.776613 + 0.629978i \(0.783064\pi\)
\(858\) 4008.97i 0.159515i
\(859\) 20316.3 0.806964 0.403482 0.914988i \(-0.367800\pi\)
0.403482 + 0.914988i \(0.367800\pi\)
\(860\) 0 0
\(861\) −2124.27 −0.0840823
\(862\) 4560.37i 0.180194i
\(863\) − 9902.42i − 0.390593i −0.980744 0.195297i \(-0.937433\pi\)
0.980744 0.195297i \(-0.0625670\pi\)
\(864\) −2934.31 −0.115541
\(865\) 0 0
\(866\) 19353.8 0.759433
\(867\) − 7926.56i − 0.310496i
\(868\) − 881.633i − 0.0344753i
\(869\) 27707.7 1.08161
\(870\) 0 0
\(871\) 11773.4 0.458008
\(872\) 1585.68i 0.0615801i
\(873\) 3992.63i 0.154788i
\(874\) −4683.86 −0.181275
\(875\) 0 0
\(876\) −5426.09 −0.209281
\(877\) 11027.7i 0.424606i 0.977204 + 0.212303i \(0.0680965\pi\)
−0.977204 + 0.212303i \(0.931904\pi\)
\(878\) − 20535.2i − 0.789326i
\(879\) −1137.96 −0.0436661
\(880\) 0 0
\(881\) −27892.8 −1.06667 −0.533333 0.845906i \(-0.679061\pi\)
−0.533333 + 0.845906i \(0.679061\pi\)
\(882\) − 12268.0i − 0.468351i
\(883\) − 1618.76i − 0.0616937i −0.999524 0.0308468i \(-0.990180\pi\)
0.999524 0.0308468i \(-0.00982041\pi\)
\(884\) −2359.38 −0.0897677
\(885\) 0 0
\(886\) −5895.40 −0.223544
\(887\) − 9518.69i − 0.360323i −0.983637 0.180161i \(-0.942338\pi\)
0.983637 0.180161i \(-0.0576620\pi\)
\(888\) 4259.37i 0.160963i
\(889\) −19789.9 −0.746606
\(890\) 0 0
\(891\) 20514.0 0.771319
\(892\) 23251.0i 0.872758i
\(893\) − 61896.0i − 2.31945i
\(894\) −7916.78 −0.296171
\(895\) 0 0
\(896\) −1176.92 −0.0438820
\(897\) − 1067.64i − 0.0397409i
\(898\) − 28644.5i − 1.06445i
\(899\) 3516.15 0.130445
\(900\) 0 0
\(901\) 15485.6 0.572585
\(902\) 11039.3i 0.407504i
\(903\) 8343.87i 0.307494i
\(904\) 6948.44 0.255643
\(905\) 0 0
\(906\) 5673.87 0.208059
\(907\) 9580.94i 0.350750i 0.984502 + 0.175375i \(0.0561137\pi\)
−0.984502 + 0.175375i \(0.943886\pi\)
\(908\) − 8133.18i − 0.297257i
\(909\) −15032.8 −0.548522
\(910\) 0 0
\(911\) −18016.6 −0.655232 −0.327616 0.944811i \(-0.606245\pi\)
−0.327616 + 0.944811i \(0.606245\pi\)
\(912\) 2944.62i 0.106915i
\(913\) − 38872.0i − 1.40906i
\(914\) −26808.8 −0.970192
\(915\) 0 0
\(916\) −1743.61 −0.0628936
\(917\) 15872.7i 0.571606i
\(918\) − 4212.01i − 0.151435i
\(919\) 36712.5 1.31777 0.658887 0.752242i \(-0.271027\pi\)
0.658887 + 0.752242i \(0.271027\pi\)
\(920\) 0 0
\(921\) −1431.36 −0.0512107
\(922\) 33857.2i 1.20936i
\(923\) − 26011.8i − 0.927614i
\(924\) −2870.56 −0.102202
\(925\) 0 0
\(926\) 26218.5 0.930447
\(927\) − 30868.1i − 1.09368i
\(928\) − 4693.84i − 0.166037i
\(929\) −4117.08 −0.145400 −0.0727002 0.997354i \(-0.523162\pi\)
−0.0727002 + 0.997354i \(0.523162\pi\)
\(930\) 0 0
\(931\) −26316.9 −0.926425
\(932\) − 6328.20i − 0.222411i
\(933\) − 3812.36i − 0.133774i
\(934\) 9352.04 0.327632
\(935\) 0 0
\(936\) 4876.19 0.170281
\(937\) − 11540.5i − 0.402362i −0.979554 0.201181i \(-0.935522\pi\)
0.979554 0.201181i \(-0.0644779\pi\)
\(938\) 8430.12i 0.293447i
\(939\) 375.225 0.0130405
\(940\) 0 0
\(941\) −8600.43 −0.297945 −0.148972 0.988841i \(-0.547597\pi\)
−0.148972 + 0.988841i \(0.547597\pi\)
\(942\) − 9521.08i − 0.329314i
\(943\) − 2939.92i − 0.101524i
\(944\) −236.890 −0.00816750
\(945\) 0 0
\(946\) 43361.0 1.49026
\(947\) 48782.8i 1.67395i 0.547243 + 0.836974i \(0.315677\pi\)
−0.547243 + 0.836974i \(0.684323\pi\)
\(948\) 4638.96i 0.158931i
\(949\) 19275.2 0.659324
\(950\) 0 0
\(951\) −7255.00 −0.247381
\(952\) − 1689.40i − 0.0575143i
\(953\) − 42550.4i − 1.44632i −0.690681 0.723160i \(-0.742689\pi\)
0.690681 0.723160i \(-0.257311\pi\)
\(954\) −32004.4 −1.08614
\(955\) 0 0
\(956\) −6930.40 −0.234461
\(957\) − 11448.4i − 0.386704i
\(958\) − 27036.1i − 0.911791i
\(959\) 16284.6 0.548341
\(960\) 0 0
\(961\) −29216.4 −0.980712
\(962\) − 15130.6i − 0.507100i
\(963\) − 11762.6i − 0.393609i
\(964\) 17766.9 0.593604
\(965\) 0 0
\(966\) 764.469 0.0254621
\(967\) − 25119.6i − 0.835360i −0.908594 0.417680i \(-0.862843\pi\)
0.908594 0.417680i \(-0.137157\pi\)
\(968\) 4269.57i 0.141766i
\(969\) −4226.82 −0.140129
\(970\) 0 0
\(971\) 11624.9 0.384204 0.192102 0.981375i \(-0.438470\pi\)
0.192102 + 0.981375i \(0.438470\pi\)
\(972\) 13337.8i 0.440136i
\(973\) − 25644.8i − 0.844947i
\(974\) −29829.3 −0.981308
\(975\) 0 0
\(976\) −7656.78 −0.251114
\(977\) − 15427.4i − 0.505187i −0.967573 0.252593i \(-0.918717\pi\)
0.967573 0.252593i \(-0.0812835\pi\)
\(978\) − 1039.84i − 0.0339985i
\(979\) 39890.4 1.30225
\(980\) 0 0
\(981\) 4704.14 0.153101
\(982\) 7413.99i 0.240927i
\(983\) 42012.4i 1.36316i 0.731744 + 0.681580i \(0.238707\pi\)
−0.731744 + 0.681580i \(0.761293\pi\)
\(984\) −1848.25 −0.0598782
\(985\) 0 0
\(986\) 6737.70 0.217619
\(987\) 10102.3i 0.325794i
\(988\) − 10460.2i − 0.336826i
\(989\) −11547.6 −0.371278
\(990\) 0 0
\(991\) 30889.0 0.990132 0.495066 0.868855i \(-0.335144\pi\)
0.495066 + 0.868855i \(0.335144\pi\)
\(992\) − 767.078i − 0.0245512i
\(993\) − 2163.13i − 0.0691286i
\(994\) 18625.3 0.594324
\(995\) 0 0
\(996\) 6508.14 0.207046
\(997\) 10011.2i 0.318011i 0.987278 + 0.159005i \(0.0508287\pi\)
−0.987278 + 0.159005i \(0.949171\pi\)
\(998\) 26073.9i 0.827009i
\(999\) 27011.4 0.855458
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.p.599.3 10
5.2 odd 4 1150.4.a.t.1.3 yes 5
5.3 odd 4 1150.4.a.s.1.3 5
5.4 even 2 inner 1150.4.b.p.599.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1150.4.a.s.1.3 5 5.3 odd 4
1150.4.a.t.1.3 yes 5 5.2 odd 4
1150.4.b.p.599.3 10 1.1 even 1 trivial
1150.4.b.p.599.8 10 5.4 even 2 inner