Properties

Label 1150.4.b.n
Level $1150$
Weight $4$
Character orbit 1150.b
Analytic conductor $67.852$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Defining polynomial: \(x^{8} + 136 x^{6} + 5308 x^{4} + 58833 x^{2} + 116964\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_{2} q^{2} + ( \beta_{1} - \beta_{2} ) q^{3} -4 q^{4} + ( 2 - 2 \beta_{3} ) q^{6} + ( -2 \beta_{1} + \beta_{4} ) q^{7} -8 \beta_{2} q^{8} + ( -8 + \beta_{6} ) q^{9} +O(q^{10})\) \( q + 2 \beta_{2} q^{2} + ( \beta_{1} - \beta_{2} ) q^{3} -4 q^{4} + ( 2 - 2 \beta_{3} ) q^{6} + ( -2 \beta_{1} + \beta_{4} ) q^{7} -8 \beta_{2} q^{8} + ( -8 + \beta_{6} ) q^{9} + ( -10 + \beta_{3} + \beta_{6} + \beta_{7} ) q^{11} + ( -4 \beta_{1} + 4 \beta_{2} ) q^{12} + ( 8 \beta_{1} - 5 \beta_{2} + \beta_{5} ) q^{13} + ( 4 \beta_{3} - 2 \beta_{7} ) q^{14} + 16 q^{16} + ( -13 \beta_{1} + 6 \beta_{2} - \beta_{4} + \beta_{5} ) q^{17} + ( -16 \beta_{2} + 2 \beta_{5} ) q^{18} + ( -14 - 2 \beta_{3} - 2 \beta_{6} + 3 \beta_{7} ) q^{19} + ( 74 + \beta_{3} - 5 \beta_{6} + 4 \beta_{7} ) q^{21} + ( 2 \beta_{1} - 20 \beta_{2} + 2 \beta_{4} + 2 \beta_{5} ) q^{22} -23 \beta_{2} q^{23} + ( -8 + 8 \beta_{3} ) q^{24} + ( 10 - 16 \beta_{3} - 2 \beta_{6} ) q^{26} + ( \beta_{1} - 35 \beta_{2} + 3 \beta_{4} ) q^{27} + ( 8 \beta_{1} - 4 \beta_{4} ) q^{28} + ( -41 + 14 \beta_{3} - 3 \beta_{6} + 3 \beta_{7} ) q^{29} + ( 97 + 16 \beta_{3} + 5 \beta_{6} ) q^{31} + 32 \beta_{2} q^{32} + ( -26 \beta_{1} + 22 \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{33} + ( -12 + 26 \beta_{3} - 2 \beta_{6} + 2 \beta_{7} ) q^{34} + ( 32 - 4 \beta_{6} ) q^{36} + ( 18 \beta_{1} - 116 \beta_{2} - 2 \beta_{4} + 4 \beta_{5} ) q^{37} + ( -4 \beta_{1} - 28 \beta_{2} + 6 \beta_{4} - 4 \beta_{5} ) q^{38} + ( -261 + 15 \beta_{3} + 8 \beta_{6} - 3 \beta_{7} ) q^{39} + ( 121 - \beta_{3} + 10 \beta_{6} ) q^{41} + ( 2 \beta_{1} + 148 \beta_{2} + 8 \beta_{4} - 10 \beta_{5} ) q^{42} + ( 24 \beta_{1} + 222 \beta_{2} + 6 \beta_{4} - 6 \beta_{5} ) q^{43} + ( 40 - 4 \beta_{3} - 4 \beta_{6} - 4 \beta_{7} ) q^{44} + 46 q^{46} + ( -44 \beta_{1} + 67 \beta_{2} - 3 \beta_{4} - 11 \beta_{5} ) q^{47} + ( 16 \beta_{1} - 16 \beta_{2} ) q^{48} + ( -411 + 49 \beta_{3} + 9 \beta_{6} + \beta_{7} ) q^{49} + ( 458 + 26 \beta_{3} - 10 \beta_{6} - 7 \beta_{7} ) q^{51} + ( -32 \beta_{1} + 20 \beta_{2} - 4 \beta_{5} ) q^{52} + ( -40 \beta_{1} + 146 \beta_{2} - 8 \beta_{4} - 8 \beta_{5} ) q^{53} + ( 70 - 2 \beta_{3} - 6 \beta_{7} ) q^{54} + ( -16 \beta_{3} + 8 \beta_{7} ) q^{56} + ( 23 \beta_{1} - 40 \beta_{2} - 18 \beta_{4} + 11 \beta_{5} ) q^{57} + ( 28 \beta_{1} - 82 \beta_{2} + 6 \beta_{4} - 6 \beta_{5} ) q^{58} + ( 20 - 10 \beta_{3} + 2 \beta_{6} + 14 \beta_{7} ) q^{59} + ( 290 + 33 \beta_{3} + 19 \beta_{6} - 7 \beta_{7} ) q^{61} + ( 32 \beta_{1} + 194 \beta_{2} + 10 \beta_{5} ) q^{62} + ( 115 \beta_{1} + 16 \beta_{2} - 4 \beta_{4} + 11 \beta_{5} ) q^{63} -64 q^{64} + ( -44 + 52 \beta_{3} - 4 \beta_{6} + 2 \beta_{7} ) q^{66} + ( -28 \beta_{1} + 368 \beta_{2} - 12 \beta_{5} ) q^{67} + ( 52 \beta_{1} - 24 \beta_{2} + 4 \beta_{4} - 4 \beta_{5} ) q^{68} + ( -23 + 23 \beta_{3} ) q^{69} + ( 57 + 39 \beta_{3} - 4 \beta_{6} - 28 \beta_{7} ) q^{71} + ( 64 \beta_{2} - 8 \beta_{5} ) q^{72} + ( 44 \beta_{1} + 287 \beta_{2} - \beta_{4} + 3 \beta_{5} ) q^{73} + ( 232 - 36 \beta_{3} - 8 \beta_{6} + 4 \beta_{7} ) q^{74} + ( 56 + 8 \beta_{3} + 8 \beta_{6} - 12 \beta_{7} ) q^{76} + ( 61 \beta_{1} + 548 \beta_{2} - 16 \beta_{4} + 17 \beta_{5} ) q^{77} + ( 30 \beta_{1} - 522 \beta_{2} - 6 \beta_{4} + 16 \beta_{5} ) q^{78} + ( 232 + 72 \beta_{3} - 16 \beta_{6} - 20 \beta_{7} ) q^{79} + ( -267 + 31 \beta_{3} + 19 \beta_{6} + 12 \beta_{7} ) q^{81} + ( -2 \beta_{1} + 242 \beta_{2} + 20 \beta_{5} ) q^{82} + ( -26 \beta_{1} - 256 \beta_{2} - 24 \beta_{4} + 6 \beta_{5} ) q^{83} + ( -296 - 4 \beta_{3} + 20 \beta_{6} - 16 \beta_{7} ) q^{84} + ( -444 - 48 \beta_{3} + 12 \beta_{6} - 12 \beta_{7} ) q^{86} + ( 30 \beta_{1} + 547 \beta_{2} - 21 \beta_{4} - 5 \beta_{5} ) q^{87} + ( -8 \beta_{1} + 80 \beta_{2} - 8 \beta_{4} - 8 \beta_{5} ) q^{88} + ( 450 - 30 \beta_{3} - 34 \beta_{6} - 16 \beta_{7} ) q^{89} + ( 576 - 85 \beta_{3} - 51 \beta_{6} + 25 \beta_{7} ) q^{91} + 92 \beta_{2} q^{92} + ( 23 \beta_{1} + 367 \beta_{2} + 15 \beta_{4} - 16 \beta_{5} ) q^{93} + ( -134 + 88 \beta_{3} + 22 \beta_{6} + 6 \beta_{7} ) q^{94} + ( 32 - 32 \beta_{3} ) q^{96} + ( 137 \beta_{1} + 504 \beta_{2} + 31 \beta_{4} + \beta_{5} ) q^{97} + ( 98 \beta_{1} - 822 \beta_{2} + 2 \beta_{4} + 18 \beta_{5} ) q^{98} + ( 662 + 68 \beta_{3} + 4 \beta_{6} + 17 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q - 32q^{4} + 16q^{6} - 64q^{9} + O(q^{10}) \) \( 8q - 32q^{4} + 16q^{6} - 64q^{9} - 78q^{11} - 4q^{14} + 128q^{16} - 106q^{19} + 600q^{21} - 64q^{24} + 80q^{26} - 322q^{29} + 776q^{31} - 92q^{34} + 256q^{36} - 2094q^{39} + 968q^{41} + 312q^{44} + 368q^{46} - 3286q^{49} + 3650q^{51} + 548q^{54} + 16q^{56} + 188q^{59} + 2306q^{61} - 512q^{64} - 348q^{66} - 184q^{69} + 400q^{71} + 1864q^{74} + 424q^{76} + 1816q^{79} - 2112q^{81} - 2400q^{84} - 3576q^{86} + 3568q^{89} + 4658q^{91} - 1060q^{94} + 256q^{96} + 5330q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 136 x^{6} + 5308 x^{4} + 58833 x^{2} + 116964\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{7} + 136 \nu^{5} + 4966 \nu^{3} + 35577 \nu \)\()/37962\)
\(\beta_{3}\)\(=\)\((\)\( \nu^{4} + 68 \nu^{2} + 342 \)\()/111\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{7} - 79 \nu^{5} + 1019 \nu^{3} + 89367 \nu \)\()/6327\)
\(\beta_{5}\)\(=\)\((\)\( 17 \nu^{7} + 2141 \nu^{5} + 72794 \nu^{3} + 584289 \nu \)\()/18981\)
\(\beta_{6}\)\(=\)\((\)\( 2 \nu^{4} + 247 \nu^{2} + 4458 \)\()/111\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{6} + 118 \nu^{4} + 3409 \nu^{2} + 15102 \)\()/333\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{6} - 2 \beta_{3} - 34\)
\(\nu^{3}\)\(=\)\(3 \beta_{5} + 3 \beta_{4} - 84 \beta_{2} - 56 \beta_{1}\)
\(\nu^{4}\)\(=\)\(-68 \beta_{6} + 247 \beta_{3} + 1970\)
\(\nu^{5}\)\(=\)\(-315 \beta_{5} - 204 \beta_{4} + 9486 \beta_{2} + 3688 \beta_{1}\)
\(\nu^{6}\)\(=\)\(333 \beta_{7} + 4615 \beta_{6} - 22328 \beta_{3} - 131656\)
\(\nu^{7}\)\(=\)\(27942 \beta_{5} + 12846 \beta_{4} - 834990 \beta_{2} - 259049 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
599.1
8.73081i
1.58997i
3.74869i
6.57209i
6.57209i
3.74869i
1.58997i
8.73081i
2.00000i 7.73081i −4.00000 0 −15.4616 23.5622i 8.00000i −32.7654 0
599.2 2.00000i 0.589969i −4.00000 0 −1.17994 18.5077i 8.00000i 26.6519 0
599.3 2.00000i 4.74869i −4.00000 0 9.49738 29.3684i 8.00000i 4.44993 0
599.4 2.00000i 7.57209i −4.00000 0 15.1442 35.4229i 8.00000i −30.3365 0
599.5 2.00000i 7.57209i −4.00000 0 15.1442 35.4229i 8.00000i −30.3365 0
599.6 2.00000i 4.74869i −4.00000 0 9.49738 29.3684i 8.00000i 4.44993 0
599.7 2.00000i 0.589969i −4.00000 0 −1.17994 18.5077i 8.00000i 26.6519 0
599.8 2.00000i 7.73081i −4.00000 0 −15.4616 23.5622i 8.00000i −32.7654 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 599.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1150.4.b.n 8
5.b even 2 1 inner 1150.4.b.n 8
5.c odd 4 1 230.4.a.h 4
5.c odd 4 1 1150.4.a.p 4
15.e even 4 1 2070.4.a.bj 4
20.e even 4 1 1840.4.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
230.4.a.h 4 5.c odd 4 1
1150.4.a.p 4 5.c odd 4 1
1150.4.b.n 8 1.a even 1 1 trivial
1150.4.b.n 8 5.b even 2 1 inner
1840.4.a.m 4 20.e even 4 1
2070.4.a.bj 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(1150, [\chi])\):

\( T_{3}^{8} + 140 T_{3}^{6} + 6116 T_{3}^{4} + 79385 T_{3}^{2} + 26896 \)
\( T_{7}^{8} + 3015 T_{7}^{6} + 3173141 T_{7}^{4} + 1374197220 T_{7}^{2} + 205811024896 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 4 + T^{2} )^{4} \)
$3$ \( 26896 + 79385 T^{2} + 6116 T^{4} + 140 T^{6} + T^{8} \)
$5$ \( T^{8} \)
$7$ \( 205811024896 + 1374197220 T^{2} + 3173141 T^{4} + 3015 T^{6} + T^{8} \)
$11$ \( ( -977536 - 94420 T - 1771 T^{2} + 39 T^{3} + T^{4} )^{2} \)
$13$ \( 9357493236004 + 30921165153 T^{2} + 29581468 T^{4} + 10296 T^{6} + T^{8} \)
$17$ \( 1098689697856 + 378462071476 T^{2} + 231041117 T^{4} + 28939 T^{6} + T^{8} \)
$19$ \( ( -78336 - 340080 T - 15029 T^{2} + 53 T^{3} + T^{4} )^{2} \)
$23$ \( ( 529 + T^{2} )^{4} \)
$29$ \( ( 1597064 - 1886712 T - 27260 T^{2} + 161 T^{3} + T^{4} )^{2} \)
$31$ \( ( -397027152 + 5546709 T + 13076 T^{2} - 388 T^{3} + T^{4} )^{2} \)
$37$ \( 62742621208576 + 1065658064896 T^{2} + 786594560 T^{4} + 141316 T^{6} + T^{8} \)
$41$ \( ( 1506099394 + 17572043 T - 36232 T^{2} - 484 T^{3} + T^{4} )^{2} \)
$43$ \( 29073917985322696704 + 2319170105769984 T^{2} + 57830464512 T^{4} + 465732 T^{6} + T^{8} \)
$47$ \( 1705996182469100544 + 2496179747456784 T^{2} + 78759541516 T^{4} + 531005 T^{6} + T^{8} \)
$53$ \( 10474877669735098624 + 5669291856436992 T^{2} + 96953199584 T^{4} + 546480 T^{6} + T^{8} \)
$59$ \( ( 11673423616 + 20596976 T - 243460 T^{2} - 94 T^{3} + T^{4} )^{2} \)
$61$ \( ( -42772329400 + 315388730 T - 54057 T^{2} - 1153 T^{3} + T^{4} )^{2} \)
$67$ \( \)\(10\!\cdots\!64\)\( + 14235723146461184 T^{2} + 216109619456 T^{4} + 962720 T^{6} + T^{8} \)
$71$ \( ( 274201266224 + 93278335 T - 1067322 T^{2} - 200 T^{3} + T^{4} )^{2} \)
$73$ \( 22601538539917711936 + 3467966319547776 T^{2} + 96552759536 T^{4} + 603369 T^{6} + T^{8} \)
$79$ \( ( 145785325568 + 272612224 T - 923664 T^{2} - 908 T^{3} + T^{4} )^{2} \)
$83$ \( \)\(31\!\cdots\!84\)\( + 327375019180504064 T^{2} + 1186957522832 T^{4} + 1817192 T^{6} + T^{8} \)
$89$ \( ( -969417760000 + 2249185600 T - 492084 T^{2} - 1784 T^{3} + T^{4} )^{2} \)
$97$ \( \)\(43\!\cdots\!76\)\( + 6601831785785843608 T^{2} + 10443122214545 T^{4} + 5623807 T^{6} + T^{8} \)
show more
show less