Properties

Label 1150.4.b.m.599.7
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(599,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-32,0,16,0,0,-128,0,186] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 168x^{6} + 9540x^{4} + 208777x^{2} + 1542564 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.7
Root \(4.26018i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.m.599.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} +3.26018i q^{3} -4.00000 q^{4} -6.52037 q^{6} +27.7921i q^{7} -8.00000i q^{8} +16.3712 q^{9} -10.8182 q^{11} -13.0407i q^{12} -36.9683i q^{13} -55.5842 q^{14} +16.0000 q^{16} +118.996i q^{17} +32.7424i q^{18} +19.3321 q^{19} -90.6073 q^{21} -21.6365i q^{22} -23.0000i q^{23} +26.0815 q^{24} +73.9366 q^{26} +141.398i q^{27} -111.168i q^{28} -234.499 q^{29} +165.319 q^{31} +32.0000i q^{32} -35.2694i q^{33} -237.992 q^{34} -65.4848 q^{36} +202.301i q^{37} +38.6643i q^{38} +120.523 q^{39} -295.846 q^{41} -181.215i q^{42} +65.9221i q^{43} +43.2729 q^{44} +46.0000 q^{46} -110.279i q^{47} +52.1630i q^{48} -429.400 q^{49} -387.949 q^{51} +147.873i q^{52} +688.135i q^{53} -282.796 q^{54} +222.337 q^{56} +63.0263i q^{57} -468.998i q^{58} -10.5847 q^{59} +110.579 q^{61} +330.639i q^{62} +454.990i q^{63} -64.0000 q^{64} +70.5388 q^{66} -643.290i q^{67} -475.984i q^{68} +74.9842 q^{69} +143.216 q^{71} -130.970i q^{72} +158.213i q^{73} -404.601 q^{74} -77.3285 q^{76} -300.661i q^{77} +241.047i q^{78} -1123.34 q^{79} -18.9616 q^{81} -591.692i q^{82} +824.600i q^{83} +362.429 q^{84} -131.844 q^{86} -764.510i q^{87} +86.5458i q^{88} +879.672 q^{89} +1027.43 q^{91} +92.0000i q^{92} +538.971i q^{93} +220.557 q^{94} -104.326 q^{96} -938.437i q^{97} -858.801i q^{98} -177.107 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} + 16 q^{6} - 128 q^{9} + 186 q^{11} - 104 q^{14} + 128 q^{16} - 370 q^{19} + 604 q^{21} - 64 q^{24} + 128 q^{26} - 588 q^{29} - 422 q^{31} - 432 q^{34} + 512 q^{36} + 842 q^{39} - 738 q^{41}+ \cdots - 4026 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 3.26018i 0.627423i 0.949518 + 0.313711i \(0.101572\pi\)
−0.949518 + 0.313711i \(0.898428\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −6.52037 −0.443655
\(7\) 27.7921i 1.50063i 0.661079 + 0.750316i \(0.270099\pi\)
−0.661079 + 0.750316i \(0.729901\pi\)
\(8\) − 8.00000i − 0.353553i
\(9\) 16.3712 0.606341
\(10\) 0 0
\(11\) −10.8182 −0.296529 −0.148264 0.988948i \(-0.547369\pi\)
−0.148264 + 0.988948i \(0.547369\pi\)
\(12\) − 13.0407i − 0.313711i
\(13\) − 36.9683i − 0.788705i −0.918959 0.394352i \(-0.870969\pi\)
0.918959 0.394352i \(-0.129031\pi\)
\(14\) −55.5842 −1.06111
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 118.996i 1.69769i 0.528639 + 0.848847i \(0.322703\pi\)
−0.528639 + 0.848847i \(0.677297\pi\)
\(18\) 32.7424i 0.428748i
\(19\) 19.3321 0.233426 0.116713 0.993166i \(-0.462764\pi\)
0.116713 + 0.993166i \(0.462764\pi\)
\(20\) 0 0
\(21\) −90.6073 −0.941531
\(22\) − 21.6365i − 0.209678i
\(23\) − 23.0000i − 0.208514i
\(24\) 26.0815 0.221827
\(25\) 0 0
\(26\) 73.9366 0.557699
\(27\) 141.398i 1.00785i
\(28\) − 111.168i − 0.750316i
\(29\) −234.499 −1.50156 −0.750782 0.660550i \(-0.770323\pi\)
−0.750782 + 0.660550i \(0.770323\pi\)
\(30\) 0 0
\(31\) 165.319 0.957814 0.478907 0.877866i \(-0.341033\pi\)
0.478907 + 0.877866i \(0.341033\pi\)
\(32\) 32.0000i 0.176777i
\(33\) − 35.2694i − 0.186049i
\(34\) −237.992 −1.20045
\(35\) 0 0
\(36\) −65.4848 −0.303170
\(37\) 202.301i 0.898865i 0.893314 + 0.449432i \(0.148374\pi\)
−0.893314 + 0.449432i \(0.851626\pi\)
\(38\) 38.6643i 0.165057i
\(39\) 120.523 0.494851
\(40\) 0 0
\(41\) −295.846 −1.12691 −0.563456 0.826146i \(-0.690529\pi\)
−0.563456 + 0.826146i \(0.690529\pi\)
\(42\) − 181.215i − 0.665763i
\(43\) 65.9221i 0.233791i 0.993144 + 0.116896i \(0.0372943\pi\)
−0.993144 + 0.116896i \(0.962706\pi\)
\(44\) 43.2729 0.148264
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) − 110.279i − 0.342251i −0.985249 0.171126i \(-0.945260\pi\)
0.985249 0.171126i \(-0.0547404\pi\)
\(48\) 52.1630i 0.156856i
\(49\) −429.400 −1.25190
\(50\) 0 0
\(51\) −387.949 −1.06517
\(52\) 147.873i 0.394352i
\(53\) 688.135i 1.78345i 0.452582 + 0.891723i \(0.350503\pi\)
−0.452582 + 0.891723i \(0.649497\pi\)
\(54\) −282.796 −0.712661
\(55\) 0 0
\(56\) 222.337 0.530553
\(57\) 63.0263i 0.146457i
\(58\) − 468.998i − 1.06177i
\(59\) −10.5847 −0.0233561 −0.0116781 0.999932i \(-0.503717\pi\)
−0.0116781 + 0.999932i \(0.503717\pi\)
\(60\) 0 0
\(61\) 110.579 0.232101 0.116050 0.993243i \(-0.462977\pi\)
0.116050 + 0.993243i \(0.462977\pi\)
\(62\) 330.639i 0.677276i
\(63\) 454.990i 0.909894i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 70.5388 0.131557
\(67\) − 643.290i − 1.17299i −0.809952 0.586496i \(-0.800507\pi\)
0.809952 0.586496i \(-0.199493\pi\)
\(68\) − 475.984i − 0.848847i
\(69\) 74.9842 0.130827
\(70\) 0 0
\(71\) 143.216 0.239389 0.119695 0.992811i \(-0.461808\pi\)
0.119695 + 0.992811i \(0.461808\pi\)
\(72\) − 130.970i − 0.214374i
\(73\) 158.213i 0.253664i 0.991924 + 0.126832i \(0.0404809\pi\)
−0.991924 + 0.126832i \(0.959519\pi\)
\(74\) −404.601 −0.635593
\(75\) 0 0
\(76\) −77.3285 −0.116713
\(77\) − 300.661i − 0.444981i
\(78\) 241.047i 0.349913i
\(79\) −1123.34 −1.59982 −0.799912 0.600118i \(-0.795120\pi\)
−0.799912 + 0.600118i \(0.795120\pi\)
\(80\) 0 0
\(81\) −18.9616 −0.0260104
\(82\) − 591.692i − 0.796847i
\(83\) 824.600i 1.09050i 0.838273 + 0.545251i \(0.183566\pi\)
−0.838273 + 0.545251i \(0.816434\pi\)
\(84\) 362.429 0.470765
\(85\) 0 0
\(86\) −131.844 −0.165316
\(87\) − 764.510i − 0.942115i
\(88\) 86.5458i 0.104839i
\(89\) 879.672 1.04770 0.523849 0.851811i \(-0.324496\pi\)
0.523849 + 0.851811i \(0.324496\pi\)
\(90\) 0 0
\(91\) 1027.43 1.18356
\(92\) 92.0000i 0.104257i
\(93\) 538.971i 0.600954i
\(94\) 220.557 0.242008
\(95\) 0 0
\(96\) −104.326 −0.110914
\(97\) − 938.437i − 0.982308i −0.871073 0.491154i \(-0.836575\pi\)
0.871073 0.491154i \(-0.163425\pi\)
\(98\) − 858.801i − 0.885224i
\(99\) −177.107 −0.179798
\(100\) 0 0
\(101\) −688.428 −0.678229 −0.339114 0.940745i \(-0.610127\pi\)
−0.339114 + 0.940745i \(0.610127\pi\)
\(102\) − 775.899i − 0.753190i
\(103\) − 2041.55i − 1.95301i −0.215500 0.976504i \(-0.569138\pi\)
0.215500 0.976504i \(-0.430862\pi\)
\(104\) −295.746 −0.278849
\(105\) 0 0
\(106\) −1376.27 −1.26109
\(107\) 287.420i 0.259682i 0.991535 + 0.129841i \(0.0414466\pi\)
−0.991535 + 0.129841i \(0.958553\pi\)
\(108\) − 565.592i − 0.503927i
\(109\) 1211.29 1.06441 0.532204 0.846616i \(-0.321364\pi\)
0.532204 + 0.846616i \(0.321364\pi\)
\(110\) 0 0
\(111\) −659.537 −0.563968
\(112\) 444.673i 0.375158i
\(113\) − 741.316i − 0.617143i −0.951201 0.308571i \(-0.900149\pi\)
0.951201 0.308571i \(-0.0998509\pi\)
\(114\) −126.053 −0.103561
\(115\) 0 0
\(116\) 937.996 0.750782
\(117\) − 605.215i − 0.478224i
\(118\) − 21.1694i − 0.0165153i
\(119\) −3307.15 −2.54761
\(120\) 0 0
\(121\) −1213.97 −0.912071
\(122\) 221.157i 0.164120i
\(123\) − 964.513i − 0.707050i
\(124\) −661.277 −0.478907
\(125\) 0 0
\(126\) −909.980 −0.643392
\(127\) 1579.99i 1.10395i 0.833860 + 0.551976i \(0.186126\pi\)
−0.833860 + 0.551976i \(0.813874\pi\)
\(128\) − 128.000i − 0.0883883i
\(129\) −214.918 −0.146686
\(130\) 0 0
\(131\) −2348.86 −1.56657 −0.783285 0.621662i \(-0.786458\pi\)
−0.783285 + 0.621662i \(0.786458\pi\)
\(132\) 141.078i 0.0930245i
\(133\) 537.280i 0.350287i
\(134\) 1286.58 0.829430
\(135\) 0 0
\(136\) 951.969 0.600225
\(137\) − 617.567i − 0.385127i −0.981285 0.192563i \(-0.938320\pi\)
0.981285 0.192563i \(-0.0616801\pi\)
\(138\) 149.968i 0.0925084i
\(139\) −1509.75 −0.921260 −0.460630 0.887592i \(-0.652377\pi\)
−0.460630 + 0.887592i \(0.652377\pi\)
\(140\) 0 0
\(141\) 359.529 0.214736
\(142\) 286.432i 0.169274i
\(143\) 399.932i 0.233874i
\(144\) 261.939 0.151585
\(145\) 0 0
\(146\) −316.427 −0.179368
\(147\) − 1399.92i − 0.785468i
\(148\) − 809.202i − 0.449432i
\(149\) −1025.46 −0.563818 −0.281909 0.959441i \(-0.590968\pi\)
−0.281909 + 0.959441i \(0.590968\pi\)
\(150\) 0 0
\(151\) −1516.67 −0.817383 −0.408692 0.912672i \(-0.634015\pi\)
−0.408692 + 0.912672i \(0.634015\pi\)
\(152\) − 154.657i − 0.0825286i
\(153\) 1948.11i 1.02938i
\(154\) 601.322 0.314649
\(155\) 0 0
\(156\) −482.094 −0.247426
\(157\) − 2757.31i − 1.40164i −0.713339 0.700819i \(-0.752818\pi\)
0.713339 0.700819i \(-0.247182\pi\)
\(158\) − 2246.69i − 1.13125i
\(159\) −2243.45 −1.11897
\(160\) 0 0
\(161\) 639.218 0.312903
\(162\) − 37.9231i − 0.0183921i
\(163\) − 1263.29i − 0.607047i −0.952824 0.303524i \(-0.901837\pi\)
0.952824 0.303524i \(-0.0981631\pi\)
\(164\) 1183.38 0.563456
\(165\) 0 0
\(166\) −1649.20 −0.771101
\(167\) − 349.646i − 0.162014i −0.996714 0.0810072i \(-0.974186\pi\)
0.996714 0.0810072i \(-0.0258137\pi\)
\(168\) 724.859i 0.332881i
\(169\) 830.344 0.377945
\(170\) 0 0
\(171\) 316.490 0.141536
\(172\) − 263.689i − 0.116896i
\(173\) − 2313.83i − 1.01686i −0.861102 0.508432i \(-0.830225\pi\)
0.861102 0.508432i \(-0.169775\pi\)
\(174\) 1529.02 0.666176
\(175\) 0 0
\(176\) −173.092 −0.0741322
\(177\) − 34.5081i − 0.0146542i
\(178\) 1759.34i 0.740834i
\(179\) 2347.69 0.980306 0.490153 0.871636i \(-0.336941\pi\)
0.490153 + 0.871636i \(0.336941\pi\)
\(180\) 0 0
\(181\) 4396.31 1.80539 0.902695 0.430282i \(-0.141586\pi\)
0.902695 + 0.430282i \(0.141586\pi\)
\(182\) 2054.85i 0.836900i
\(183\) 360.507i 0.145625i
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −1077.94 −0.424939
\(187\) − 1287.33i − 0.503415i
\(188\) 441.115i 0.171126i
\(189\) −3929.75 −1.51242
\(190\) 0 0
\(191\) 4153.14 1.57335 0.786677 0.617365i \(-0.211800\pi\)
0.786677 + 0.617365i \(0.211800\pi\)
\(192\) − 208.652i − 0.0784278i
\(193\) 1020.52i 0.380616i 0.981724 + 0.190308i \(0.0609487\pi\)
−0.981724 + 0.190308i \(0.939051\pi\)
\(194\) 1876.87 0.694596
\(195\) 0 0
\(196\) 1717.60 0.625948
\(197\) − 398.643i − 0.144173i −0.997398 0.0720866i \(-0.977034\pi\)
0.997398 0.0720866i \(-0.0229658\pi\)
\(198\) − 354.215i − 0.127136i
\(199\) −4131.40 −1.47169 −0.735847 0.677148i \(-0.763216\pi\)
−0.735847 + 0.677148i \(0.763216\pi\)
\(200\) 0 0
\(201\) 2097.24 0.735961
\(202\) − 1376.86i − 0.479580i
\(203\) − 6517.22i − 2.25329i
\(204\) 1551.80 0.532586
\(205\) 0 0
\(206\) 4083.10 1.38098
\(207\) − 376.538i − 0.126431i
\(208\) − 591.493i − 0.197176i
\(209\) −209.139 −0.0692176
\(210\) 0 0
\(211\) 826.315 0.269601 0.134801 0.990873i \(-0.456961\pi\)
0.134801 + 0.990873i \(0.456961\pi\)
\(212\) − 2752.54i − 0.891723i
\(213\) 466.911i 0.150198i
\(214\) −574.840 −0.183623
\(215\) 0 0
\(216\) 1131.18 0.356330
\(217\) 4594.57i 1.43733i
\(218\) 2422.58i 0.752650i
\(219\) −515.805 −0.159155
\(220\) 0 0
\(221\) 4399.08 1.33898
\(222\) − 1319.07i − 0.398786i
\(223\) − 1110.09i − 0.333351i −0.986012 0.166676i \(-0.946697\pi\)
0.986012 0.166676i \(-0.0533033\pi\)
\(224\) −889.347 −0.265277
\(225\) 0 0
\(226\) 1482.63 0.436386
\(227\) − 4917.90i − 1.43794i −0.695040 0.718971i \(-0.744614\pi\)
0.695040 0.718971i \(-0.255386\pi\)
\(228\) − 252.105i − 0.0732284i
\(229\) 1390.62 0.401288 0.200644 0.979664i \(-0.435696\pi\)
0.200644 + 0.979664i \(0.435696\pi\)
\(230\) 0 0
\(231\) 980.211 0.279191
\(232\) 1875.99i 0.530883i
\(233\) 3409.59i 0.958668i 0.877633 + 0.479334i \(0.159122\pi\)
−0.877633 + 0.479334i \(0.840878\pi\)
\(234\) 1210.43 0.338155
\(235\) 0 0
\(236\) 42.3388 0.0116781
\(237\) − 3662.31i − 1.00377i
\(238\) − 6614.30i − 1.80143i
\(239\) −2056.35 −0.556544 −0.278272 0.960502i \(-0.589762\pi\)
−0.278272 + 0.960502i \(0.589762\pi\)
\(240\) 0 0
\(241\) −1957.03 −0.523085 −0.261543 0.965192i \(-0.584231\pi\)
−0.261543 + 0.965192i \(0.584231\pi\)
\(242\) − 2427.93i − 0.644931i
\(243\) 3755.93i 0.991535i
\(244\) −442.315 −0.116050
\(245\) 0 0
\(246\) 1929.03 0.499960
\(247\) − 714.676i − 0.184104i
\(248\) − 1322.55i − 0.338638i
\(249\) −2688.35 −0.684205
\(250\) 0 0
\(251\) −1954.13 −0.491410 −0.245705 0.969345i \(-0.579019\pi\)
−0.245705 + 0.969345i \(0.579019\pi\)
\(252\) − 1819.96i − 0.454947i
\(253\) 248.819i 0.0618306i
\(254\) −3159.99 −0.780612
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 1958.40i 0.475338i 0.971346 + 0.237669i \(0.0763834\pi\)
−0.971346 + 0.237669i \(0.923617\pi\)
\(258\) − 429.837i − 0.103723i
\(259\) −5622.35 −1.34887
\(260\) 0 0
\(261\) −3839.03 −0.910459
\(262\) − 4697.72i − 1.10773i
\(263\) − 7205.23i − 1.68933i −0.535295 0.844665i \(-0.679800\pi\)
0.535295 0.844665i \(-0.320200\pi\)
\(264\) −282.155 −0.0657783
\(265\) 0 0
\(266\) −1074.56 −0.247690
\(267\) 2867.89i 0.657349i
\(268\) 2573.16i 0.586496i
\(269\) 3764.30 0.853210 0.426605 0.904438i \(-0.359709\pi\)
0.426605 + 0.904438i \(0.359709\pi\)
\(270\) 0 0
\(271\) −5208.88 −1.16759 −0.583795 0.811901i \(-0.698433\pi\)
−0.583795 + 0.811901i \(0.698433\pi\)
\(272\) 1903.94i 0.424423i
\(273\) 3349.60i 0.742590i
\(274\) 1235.13 0.272326
\(275\) 0 0
\(276\) −299.937 −0.0654133
\(277\) 1550.21i 0.336256i 0.985765 + 0.168128i \(0.0537723\pi\)
−0.985765 + 0.168128i \(0.946228\pi\)
\(278\) − 3019.50i − 0.651430i
\(279\) 2706.47 0.580761
\(280\) 0 0
\(281\) 7997.53 1.69784 0.848920 0.528522i \(-0.177254\pi\)
0.848920 + 0.528522i \(0.177254\pi\)
\(282\) 719.058i 0.151841i
\(283\) 5808.41i 1.22005i 0.792382 + 0.610025i \(0.208841\pi\)
−0.792382 + 0.610025i \(0.791159\pi\)
\(284\) −572.864 −0.119695
\(285\) 0 0
\(286\) −799.863 −0.165374
\(287\) − 8222.18i − 1.69108i
\(288\) 523.878i 0.107187i
\(289\) −9247.08 −1.88216
\(290\) 0 0
\(291\) 3059.48 0.616322
\(292\) − 632.854i − 0.126832i
\(293\) 8854.66i 1.76551i 0.469832 + 0.882756i \(0.344314\pi\)
−0.469832 + 0.882756i \(0.655686\pi\)
\(294\) 2799.85 0.555410
\(295\) 0 0
\(296\) 1618.40 0.317797
\(297\) − 1529.68i − 0.298858i
\(298\) − 2050.92i − 0.398680i
\(299\) −850.271 −0.164456
\(300\) 0 0
\(301\) −1832.11 −0.350835
\(302\) − 3033.34i − 0.577977i
\(303\) − 2244.40i − 0.425536i
\(304\) 309.314 0.0583565
\(305\) 0 0
\(306\) −3896.22 −0.727882
\(307\) − 1501.03i − 0.279050i −0.990219 0.139525i \(-0.955443\pi\)
0.990219 0.139525i \(-0.0445575\pi\)
\(308\) 1202.64i 0.222490i
\(309\) 6655.83 1.22536
\(310\) 0 0
\(311\) −7440.48 −1.35663 −0.678313 0.734773i \(-0.737289\pi\)
−0.678313 + 0.734773i \(0.737289\pi\)
\(312\) − 964.188i − 0.174956i
\(313\) 2528.63i 0.456634i 0.973587 + 0.228317i \(0.0733222\pi\)
−0.973587 + 0.228317i \(0.926678\pi\)
\(314\) 5514.61 0.991107
\(315\) 0 0
\(316\) 4493.38 0.799912
\(317\) − 9636.72i − 1.70742i −0.520749 0.853710i \(-0.674347\pi\)
0.520749 0.853710i \(-0.325653\pi\)
\(318\) − 4486.89i − 0.791234i
\(319\) 2536.86 0.445257
\(320\) 0 0
\(321\) −937.042 −0.162930
\(322\) 1278.44i 0.221256i
\(323\) 2300.45i 0.396286i
\(324\) 75.8462 0.0130052
\(325\) 0 0
\(326\) 2526.58 0.429247
\(327\) 3949.03i 0.667834i
\(328\) 2366.77i 0.398424i
\(329\) 3064.88 0.513593
\(330\) 0 0
\(331\) 2875.82 0.477551 0.238776 0.971075i \(-0.423254\pi\)
0.238776 + 0.971075i \(0.423254\pi\)
\(332\) − 3298.40i − 0.545251i
\(333\) 3311.90i 0.545018i
\(334\) 699.291 0.114561
\(335\) 0 0
\(336\) −1449.72 −0.235383
\(337\) 9911.19i 1.60207i 0.598619 + 0.801034i \(0.295717\pi\)
−0.598619 + 0.801034i \(0.704283\pi\)
\(338\) 1660.69i 0.267247i
\(339\) 2416.83 0.387209
\(340\) 0 0
\(341\) −1788.46 −0.284019
\(342\) 632.980i 0.100081i
\(343\) − 2401.24i − 0.378003i
\(344\) 527.377 0.0826578
\(345\) 0 0
\(346\) 4627.67 0.719031
\(347\) 4497.70i 0.695820i 0.937528 + 0.347910i \(0.113108\pi\)
−0.937528 + 0.347910i \(0.886892\pi\)
\(348\) 3058.04i 0.471058i
\(349\) −888.112 −0.136216 −0.0681082 0.997678i \(-0.521696\pi\)
−0.0681082 + 0.997678i \(0.521696\pi\)
\(350\) 0 0
\(351\) 5227.25 0.794900
\(352\) − 346.183i − 0.0524194i
\(353\) 11722.2i 1.76745i 0.468002 + 0.883727i \(0.344974\pi\)
−0.468002 + 0.883727i \(0.655026\pi\)
\(354\) 69.0161 0.0103621
\(355\) 0 0
\(356\) −3518.69 −0.523849
\(357\) − 10781.9i − 1.59843i
\(358\) 4695.39i 0.693181i
\(359\) 1257.49 0.184869 0.0924343 0.995719i \(-0.470535\pi\)
0.0924343 + 0.995719i \(0.470535\pi\)
\(360\) 0 0
\(361\) −6485.27 −0.945512
\(362\) 8792.63i 1.27660i
\(363\) − 3957.75i − 0.572254i
\(364\) −4109.71 −0.591778
\(365\) 0 0
\(366\) −721.014 −0.102973
\(367\) 10122.2i 1.43972i 0.694120 + 0.719859i \(0.255794\pi\)
−0.694120 + 0.719859i \(0.744206\pi\)
\(368\) − 368.000i − 0.0521286i
\(369\) −4843.36 −0.683293
\(370\) 0 0
\(371\) −19124.7 −2.67629
\(372\) − 2155.89i − 0.300477i
\(373\) − 6530.08i − 0.906473i −0.891390 0.453237i \(-0.850269\pi\)
0.891390 0.453237i \(-0.149731\pi\)
\(374\) 2574.65 0.355968
\(375\) 0 0
\(376\) −882.230 −0.121004
\(377\) 8669.03i 1.18429i
\(378\) − 7859.50i − 1.06944i
\(379\) −277.850 −0.0376575 −0.0188288 0.999823i \(-0.505994\pi\)
−0.0188288 + 0.999823i \(0.505994\pi\)
\(380\) 0 0
\(381\) −5151.07 −0.692644
\(382\) 8306.28i 1.11253i
\(383\) 10679.6i 1.42482i 0.701766 + 0.712408i \(0.252395\pi\)
−0.701766 + 0.712408i \(0.747605\pi\)
\(384\) 417.304 0.0554569
\(385\) 0 0
\(386\) −2041.05 −0.269136
\(387\) 1079.22i 0.141757i
\(388\) 3753.75i 0.491154i
\(389\) −1546.05 −0.201511 −0.100756 0.994911i \(-0.532126\pi\)
−0.100756 + 0.994911i \(0.532126\pi\)
\(390\) 0 0
\(391\) 2736.91 0.353994
\(392\) 3435.20i 0.442612i
\(393\) − 7657.71i − 0.982902i
\(394\) 797.285 0.101946
\(395\) 0 0
\(396\) 708.429 0.0898988
\(397\) − 12901.8i − 1.63103i −0.578733 0.815517i \(-0.696453\pi\)
0.578733 0.815517i \(-0.303547\pi\)
\(398\) − 8262.80i − 1.04064i
\(399\) −1751.63 −0.219778
\(400\) 0 0
\(401\) −8534.31 −1.06280 −0.531400 0.847121i \(-0.678334\pi\)
−0.531400 + 0.847121i \(0.678334\pi\)
\(402\) 4194.49i 0.520403i
\(403\) − 6111.57i − 0.755432i
\(404\) 2753.71 0.339114
\(405\) 0 0
\(406\) 13034.4 1.59332
\(407\) − 2188.53i − 0.266539i
\(408\) 3103.59i 0.376595i
\(409\) −650.968 −0.0787000 −0.0393500 0.999225i \(-0.512529\pi\)
−0.0393500 + 0.999225i \(0.512529\pi\)
\(410\) 0 0
\(411\) 2013.38 0.241637
\(412\) 8166.20i 0.976504i
\(413\) − 294.171i − 0.0350489i
\(414\) 753.075 0.0894001
\(415\) 0 0
\(416\) 1182.99 0.139425
\(417\) − 4922.06i − 0.578020i
\(418\) − 418.279i − 0.0489442i
\(419\) −13266.2 −1.54677 −0.773384 0.633938i \(-0.781437\pi\)
−0.773384 + 0.633938i \(0.781437\pi\)
\(420\) 0 0
\(421\) −8274.69 −0.957918 −0.478959 0.877837i \(-0.658986\pi\)
−0.478959 + 0.877837i \(0.658986\pi\)
\(422\) 1652.63i 0.190637i
\(423\) − 1805.39i − 0.207521i
\(424\) 5505.08 0.630543
\(425\) 0 0
\(426\) −933.822 −0.106206
\(427\) 3073.21i 0.348298i
\(428\) − 1149.68i − 0.129841i
\(429\) −1303.85 −0.146738
\(430\) 0 0
\(431\) 724.084 0.0809232 0.0404616 0.999181i \(-0.487117\pi\)
0.0404616 + 0.999181i \(0.487117\pi\)
\(432\) 2262.37i 0.251964i
\(433\) 11996.5i 1.33145i 0.746198 + 0.665724i \(0.231877\pi\)
−0.746198 + 0.665724i \(0.768123\pi\)
\(434\) −9189.14 −1.01634
\(435\) 0 0
\(436\) −4845.16 −0.532204
\(437\) − 444.639i − 0.0486727i
\(438\) − 1031.61i − 0.112539i
\(439\) 7765.40 0.844242 0.422121 0.906539i \(-0.361286\pi\)
0.422121 + 0.906539i \(0.361286\pi\)
\(440\) 0 0
\(441\) −7029.80 −0.759075
\(442\) 8798.17i 0.946801i
\(443\) 9061.54i 0.971844i 0.874002 + 0.485922i \(0.161516\pi\)
−0.874002 + 0.485922i \(0.838484\pi\)
\(444\) 2638.15 0.281984
\(445\) 0 0
\(446\) 2220.19 0.235715
\(447\) − 3343.19i − 0.353752i
\(448\) − 1778.69i − 0.187579i
\(449\) 10944.3 1.15032 0.575159 0.818041i \(-0.304940\pi\)
0.575159 + 0.818041i \(0.304940\pi\)
\(450\) 0 0
\(451\) 3200.53 0.334162
\(452\) 2965.26i 0.308571i
\(453\) − 4944.63i − 0.512845i
\(454\) 9835.81 1.01678
\(455\) 0 0
\(456\) 504.211 0.0517803
\(457\) 10934.9i 1.11928i 0.828735 + 0.559641i \(0.189061\pi\)
−0.828735 + 0.559641i \(0.810939\pi\)
\(458\) 2781.25i 0.283754i
\(459\) −16825.8 −1.71103
\(460\) 0 0
\(461\) 2652.25 0.267956 0.133978 0.990984i \(-0.457225\pi\)
0.133978 + 0.990984i \(0.457225\pi\)
\(462\) 1960.42i 0.197418i
\(463\) − 707.699i − 0.0710358i −0.999369 0.0355179i \(-0.988692\pi\)
0.999369 0.0355179i \(-0.0113081\pi\)
\(464\) −3751.98 −0.375391
\(465\) 0 0
\(466\) −6819.18 −0.677880
\(467\) − 10671.1i − 1.05738i −0.848814 0.528691i \(-0.822683\pi\)
0.848814 0.528691i \(-0.177317\pi\)
\(468\) 2420.86i 0.239112i
\(469\) 17878.4 1.76023
\(470\) 0 0
\(471\) 8989.33 0.879419
\(472\) 84.6776i 0.00825763i
\(473\) − 713.161i − 0.0693259i
\(474\) 7324.62 0.709770
\(475\) 0 0
\(476\) 13228.6 1.27381
\(477\) 11265.6i 1.08138i
\(478\) − 4112.69i − 0.393536i
\(479\) −1951.17 −0.186119 −0.0930597 0.995661i \(-0.529665\pi\)
−0.0930597 + 0.995661i \(0.529665\pi\)
\(480\) 0 0
\(481\) 7478.71 0.708939
\(482\) − 3914.06i − 0.369877i
\(483\) 2083.97i 0.196323i
\(484\) 4855.86 0.456035
\(485\) 0 0
\(486\) −7511.86 −0.701121
\(487\) 17071.2i 1.58844i 0.607630 + 0.794220i \(0.292120\pi\)
−0.607630 + 0.794220i \(0.707880\pi\)
\(488\) − 884.629i − 0.0820600i
\(489\) 4118.57 0.380875
\(490\) 0 0
\(491\) 16979.9 1.56067 0.780337 0.625359i \(-0.215047\pi\)
0.780337 + 0.625359i \(0.215047\pi\)
\(492\) 3858.05i 0.353525i
\(493\) − 27904.5i − 2.54920i
\(494\) 1429.35 0.130181
\(495\) 0 0
\(496\) 2645.11 0.239453
\(497\) 3980.28i 0.359235i
\(498\) − 5376.70i − 0.483806i
\(499\) 2788.83 0.250191 0.125095 0.992145i \(-0.460076\pi\)
0.125095 + 0.992145i \(0.460076\pi\)
\(500\) 0 0
\(501\) 1139.91 0.101651
\(502\) − 3908.27i − 0.347479i
\(503\) 15525.1i 1.37620i 0.725614 + 0.688102i \(0.241556\pi\)
−0.725614 + 0.688102i \(0.758444\pi\)
\(504\) 3639.92 0.321696
\(505\) 0 0
\(506\) −497.638 −0.0437208
\(507\) 2707.08i 0.237131i
\(508\) − 6319.98i − 0.551976i
\(509\) −9039.20 −0.787143 −0.393571 0.919294i \(-0.628761\pi\)
−0.393571 + 0.919294i \(0.628761\pi\)
\(510\) 0 0
\(511\) −4397.08 −0.380657
\(512\) 512.000i 0.0441942i
\(513\) 2733.53i 0.235260i
\(514\) −3916.81 −0.336115
\(515\) 0 0
\(516\) 859.673 0.0733430
\(517\) 1193.02i 0.101487i
\(518\) − 11244.7i − 0.953792i
\(519\) 7543.52 0.638004
\(520\) 0 0
\(521\) 1093.03 0.0919128 0.0459564 0.998943i \(-0.485366\pi\)
0.0459564 + 0.998943i \(0.485366\pi\)
\(522\) − 7678.06i − 0.643792i
\(523\) 4660.98i 0.389695i 0.980834 + 0.194848i \(0.0624212\pi\)
−0.980834 + 0.194848i \(0.937579\pi\)
\(524\) 9395.44 0.783285
\(525\) 0 0
\(526\) 14410.5 1.19454
\(527\) 19672.4i 1.62607i
\(528\) − 564.311i − 0.0465123i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −173.284 −0.0141618
\(532\) − 2149.12i − 0.175143i
\(533\) 10936.9i 0.888801i
\(534\) −5735.79 −0.464816
\(535\) 0 0
\(536\) −5146.32 −0.414715
\(537\) 7653.91i 0.615066i
\(538\) 7528.60i 0.603311i
\(539\) 4645.35 0.371223
\(540\) 0 0
\(541\) −8072.40 −0.641515 −0.320757 0.947161i \(-0.603937\pi\)
−0.320757 + 0.947161i \(0.603937\pi\)
\(542\) − 10417.8i − 0.825611i
\(543\) 14332.8i 1.13274i
\(544\) −3807.88 −0.300113
\(545\) 0 0
\(546\) −6699.20 −0.525090
\(547\) − 2877.27i − 0.224905i −0.993657 0.112452i \(-0.964129\pi\)
0.993657 0.112452i \(-0.0358706\pi\)
\(548\) 2470.27i 0.192563i
\(549\) 1810.31 0.140732
\(550\) 0 0
\(551\) −4533.36 −0.350504
\(552\) − 599.874i − 0.0462542i
\(553\) − 31220.1i − 2.40075i
\(554\) −3100.42 −0.237769
\(555\) 0 0
\(556\) 6038.99 0.460630
\(557\) 15928.7i 1.21171i 0.795575 + 0.605855i \(0.207169\pi\)
−0.795575 + 0.605855i \(0.792831\pi\)
\(558\) 5412.95i 0.410660i
\(559\) 2437.03 0.184392
\(560\) 0 0
\(561\) 4196.92 0.315854
\(562\) 15995.1i 1.20055i
\(563\) − 7988.51i − 0.598003i −0.954253 0.299001i \(-0.903346\pi\)
0.954253 0.299001i \(-0.0966535\pi\)
\(564\) −1438.12 −0.107368
\(565\) 0 0
\(566\) −11616.8 −0.862706
\(567\) − 526.981i − 0.0390320i
\(568\) − 1145.73i − 0.0846368i
\(569\) 6429.49 0.473705 0.236853 0.971546i \(-0.423884\pi\)
0.236853 + 0.971546i \(0.423884\pi\)
\(570\) 0 0
\(571\) 2886.51 0.211553 0.105776 0.994390i \(-0.466267\pi\)
0.105776 + 0.994390i \(0.466267\pi\)
\(572\) − 1599.73i − 0.116937i
\(573\) 13540.0i 0.987158i
\(574\) 16444.4 1.19577
\(575\) 0 0
\(576\) −1047.76 −0.0757926
\(577\) − 9966.59i − 0.719089i −0.933128 0.359545i \(-0.882932\pi\)
0.933128 0.359545i \(-0.117068\pi\)
\(578\) − 18494.2i − 1.33089i
\(579\) −3327.10 −0.238807
\(580\) 0 0
\(581\) −22917.4 −1.63644
\(582\) 6118.95i 0.435806i
\(583\) − 7444.40i − 0.528843i
\(584\) 1265.71 0.0896838
\(585\) 0 0
\(586\) −17709.3 −1.24841
\(587\) − 3522.91i − 0.247710i −0.992300 0.123855i \(-0.960474\pi\)
0.992300 0.123855i \(-0.0395258\pi\)
\(588\) 5599.70i 0.392734i
\(589\) 3195.97 0.223579
\(590\) 0 0
\(591\) 1299.65 0.0904575
\(592\) 3236.81i 0.224716i
\(593\) 28713.0i 1.98837i 0.107695 + 0.994184i \(0.465653\pi\)
−0.107695 + 0.994184i \(0.534347\pi\)
\(594\) 3059.35 0.211325
\(595\) 0 0
\(596\) 4101.84 0.281909
\(597\) − 13469.1i − 0.923374i
\(598\) − 1700.54i − 0.116288i
\(599\) −7736.44 −0.527717 −0.263858 0.964561i \(-0.584995\pi\)
−0.263858 + 0.964561i \(0.584995\pi\)
\(600\) 0 0
\(601\) −3863.89 −0.262249 −0.131124 0.991366i \(-0.541859\pi\)
−0.131124 + 0.991366i \(0.541859\pi\)
\(602\) − 3664.23i − 0.248078i
\(603\) − 10531.4i − 0.711232i
\(604\) 6066.68 0.408692
\(605\) 0 0
\(606\) 4488.80 0.300900
\(607\) 24954.6i 1.66866i 0.551265 + 0.834330i \(0.314145\pi\)
−0.551265 + 0.834330i \(0.685855\pi\)
\(608\) 618.628i 0.0412643i
\(609\) 21247.3 1.41377
\(610\) 0 0
\(611\) −4076.82 −0.269935
\(612\) − 7792.44i − 0.514690i
\(613\) − 12712.0i − 0.837574i −0.908085 0.418787i \(-0.862455\pi\)
0.908085 0.418787i \(-0.137545\pi\)
\(614\) 3002.06 0.197318
\(615\) 0 0
\(616\) −2405.29 −0.157324
\(617\) 11017.6i 0.718884i 0.933167 + 0.359442i \(0.117033\pi\)
−0.933167 + 0.359442i \(0.882967\pi\)
\(618\) 13311.7i 0.866461i
\(619\) −6859.65 −0.445416 −0.222708 0.974885i \(-0.571490\pi\)
−0.222708 + 0.974885i \(0.571490\pi\)
\(620\) 0 0
\(621\) 3252.16 0.210152
\(622\) − 14881.0i − 0.959280i
\(623\) 24447.9i 1.57221i
\(624\) 1928.38 0.123713
\(625\) 0 0
\(626\) −5057.25 −0.322889
\(627\) − 681.833i − 0.0434287i
\(628\) 11029.2i 0.700819i
\(629\) −24073.0 −1.52600
\(630\) 0 0
\(631\) −14104.0 −0.889815 −0.444907 0.895577i \(-0.646763\pi\)
−0.444907 + 0.895577i \(0.646763\pi\)
\(632\) 8986.75i 0.565623i
\(633\) 2693.94i 0.169154i
\(634\) 19273.4 1.20733
\(635\) 0 0
\(636\) 8973.79 0.559487
\(637\) 15874.2i 0.987376i
\(638\) 5073.73i 0.314844i
\(639\) 2344.62 0.145151
\(640\) 0 0
\(641\) −144.931 −0.00893047 −0.00446524 0.999990i \(-0.501421\pi\)
−0.00446524 + 0.999990i \(0.501421\pi\)
\(642\) − 1874.08i − 0.115209i
\(643\) − 30891.4i − 1.89461i −0.320328 0.947307i \(-0.603793\pi\)
0.320328 0.947307i \(-0.396207\pi\)
\(644\) −2556.87 −0.156452
\(645\) 0 0
\(646\) −4600.90 −0.280217
\(647\) 22784.1i 1.38444i 0.721684 + 0.692222i \(0.243368\pi\)
−0.721684 + 0.692222i \(0.756632\pi\)
\(648\) 151.692i 0.00919605i
\(649\) 114.508 0.00692576
\(650\) 0 0
\(651\) −14979.1 −0.901811
\(652\) 5053.17i 0.303524i
\(653\) 32125.7i 1.92523i 0.270868 + 0.962617i \(0.412689\pi\)
−0.270868 + 0.962617i \(0.587311\pi\)
\(654\) −7898.05 −0.472230
\(655\) 0 0
\(656\) −4733.54 −0.281728
\(657\) 2590.14i 0.153807i
\(658\) 6129.75i 0.363165i
\(659\) −15521.7 −0.917508 −0.458754 0.888563i \(-0.651704\pi\)
−0.458754 + 0.888563i \(0.651704\pi\)
\(660\) 0 0
\(661\) 19428.4 1.14323 0.571617 0.820521i \(-0.306316\pi\)
0.571617 + 0.820521i \(0.306316\pi\)
\(662\) 5751.64i 0.337680i
\(663\) 14341.8i 0.840106i
\(664\) 6596.80 0.385550
\(665\) 0 0
\(666\) −6623.80 −0.385386
\(667\) 5393.48i 0.313098i
\(668\) 1398.58i 0.0810072i
\(669\) 3619.11 0.209152
\(670\) 0 0
\(671\) −1196.27 −0.0688246
\(672\) − 2899.43i − 0.166441i
\(673\) − 18992.7i − 1.08784i −0.839138 0.543919i \(-0.816940\pi\)
0.839138 0.543919i \(-0.183060\pi\)
\(674\) −19822.4 −1.13283
\(675\) 0 0
\(676\) −3321.38 −0.188972
\(677\) 19104.3i 1.08455i 0.840202 + 0.542273i \(0.182436\pi\)
−0.840202 + 0.542273i \(0.817564\pi\)
\(678\) 4833.65i 0.273798i
\(679\) 26081.1 1.47408
\(680\) 0 0
\(681\) 16033.3 0.902197
\(682\) − 3576.92i − 0.200832i
\(683\) 24737.2i 1.38586i 0.721004 + 0.692931i \(0.243681\pi\)
−0.721004 + 0.692931i \(0.756319\pi\)
\(684\) −1265.96 −0.0707679
\(685\) 0 0
\(686\) 4802.49 0.267288
\(687\) 4533.69i 0.251778i
\(688\) 1054.75i 0.0584479i
\(689\) 25439.2 1.40661
\(690\) 0 0
\(691\) 12957.9 0.713373 0.356687 0.934224i \(-0.383906\pi\)
0.356687 + 0.934224i \(0.383906\pi\)
\(692\) 9255.33i 0.508432i
\(693\) − 4922.18i − 0.269810i
\(694\) −8995.41 −0.492019
\(695\) 0 0
\(696\) −6116.08 −0.333088
\(697\) − 35204.5i − 1.91315i
\(698\) − 1776.22i − 0.0963195i
\(699\) −11115.9 −0.601490
\(700\) 0 0
\(701\) 20730.7 1.11696 0.558478 0.829519i \(-0.311385\pi\)
0.558478 + 0.829519i \(0.311385\pi\)
\(702\) 10454.5i 0.562079i
\(703\) 3910.90i 0.209819i
\(704\) 692.367 0.0370661
\(705\) 0 0
\(706\) −23444.5 −1.24978
\(707\) − 19132.8i − 1.01777i
\(708\) 138.032i 0.00732708i
\(709\) 22191.2 1.17547 0.587735 0.809053i \(-0.300020\pi\)
0.587735 + 0.809053i \(0.300020\pi\)
\(710\) 0 0
\(711\) −18390.5 −0.970038
\(712\) − 7037.38i − 0.370417i
\(713\) − 3802.34i − 0.199718i
\(714\) 21563.8 1.13026
\(715\) 0 0
\(716\) −9390.77 −0.490153
\(717\) − 6704.07i − 0.349188i
\(718\) 2514.98i 0.130722i
\(719\) 773.962 0.0401445 0.0200723 0.999799i \(-0.493610\pi\)
0.0200723 + 0.999799i \(0.493610\pi\)
\(720\) 0 0
\(721\) 56738.9 2.93075
\(722\) − 12970.5i − 0.668578i
\(723\) − 6380.29i − 0.328196i
\(724\) −17585.3 −0.902695
\(725\) 0 0
\(726\) 7915.51 0.404645
\(727\) − 32484.7i − 1.65721i −0.559835 0.828604i \(-0.689136\pi\)
0.559835 0.828604i \(-0.310864\pi\)
\(728\) − 8219.41i − 0.418450i
\(729\) −12757.0 −0.648122
\(730\) 0 0
\(731\) −7844.48 −0.396906
\(732\) − 1442.03i − 0.0728127i
\(733\) 13701.5i 0.690416i 0.938526 + 0.345208i \(0.112192\pi\)
−0.938526 + 0.345208i \(0.887808\pi\)
\(734\) −20244.5 −1.01803
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) 6959.26i 0.347826i
\(738\) − 9686.71i − 0.483161i
\(739\) 31474.2 1.56671 0.783354 0.621576i \(-0.213507\pi\)
0.783354 + 0.621576i \(0.213507\pi\)
\(740\) 0 0
\(741\) 2329.98 0.115511
\(742\) − 38249.4i − 1.89243i
\(743\) − 28664.2i − 1.41533i −0.706549 0.707664i \(-0.749749\pi\)
0.706549 0.707664i \(-0.250251\pi\)
\(744\) 4311.77 0.212469
\(745\) 0 0
\(746\) 13060.2 0.640974
\(747\) 13499.7i 0.661215i
\(748\) 5149.31i 0.251708i
\(749\) −7988.00 −0.389687
\(750\) 0 0
\(751\) −25904.0 −1.25866 −0.629328 0.777140i \(-0.716670\pi\)
−0.629328 + 0.777140i \(0.716670\pi\)
\(752\) − 1764.46i − 0.0855628i
\(753\) − 6370.84i − 0.308322i
\(754\) −17338.1 −0.837420
\(755\) 0 0
\(756\) 15719.0 0.756209
\(757\) 2569.70i 0.123378i 0.998095 + 0.0616892i \(0.0196488\pi\)
−0.998095 + 0.0616892i \(0.980351\pi\)
\(758\) − 555.700i − 0.0266279i
\(759\) −811.197 −0.0387939
\(760\) 0 0
\(761\) −23219.4 −1.10605 −0.553024 0.833165i \(-0.686526\pi\)
−0.553024 + 0.833165i \(0.686526\pi\)
\(762\) − 10302.1i − 0.489774i
\(763\) 33664.3i 1.59728i
\(764\) −16612.6 −0.786677
\(765\) 0 0
\(766\) −21359.3 −1.00750
\(767\) 391.298i 0.0184211i
\(768\) 834.607i 0.0392139i
\(769\) −34771.1 −1.63053 −0.815265 0.579088i \(-0.803409\pi\)
−0.815265 + 0.579088i \(0.803409\pi\)
\(770\) 0 0
\(771\) −6384.76 −0.298238
\(772\) − 4082.10i − 0.190308i
\(773\) 36377.2i 1.69262i 0.532687 + 0.846312i \(0.321182\pi\)
−0.532687 + 0.846312i \(0.678818\pi\)
\(774\) −2158.45 −0.100238
\(775\) 0 0
\(776\) −7507.50 −0.347298
\(777\) − 18329.9i − 0.846309i
\(778\) − 3092.10i − 0.142490i
\(779\) −5719.34 −0.263051
\(780\) 0 0
\(781\) −1549.34 −0.0709858
\(782\) 5473.82i 0.250311i
\(783\) − 33157.7i − 1.51336i
\(784\) −6870.40 −0.312974
\(785\) 0 0
\(786\) 15315.4 0.695017
\(787\) − 1814.43i − 0.0821824i −0.999155 0.0410912i \(-0.986917\pi\)
0.999155 0.0410912i \(-0.0130834\pi\)
\(788\) 1594.57i 0.0720866i
\(789\) 23490.4 1.05992
\(790\) 0 0
\(791\) 20602.7 0.926104
\(792\) 1416.86i 0.0635680i
\(793\) − 4087.91i − 0.183059i
\(794\) 25803.5 1.15332
\(795\) 0 0
\(796\) 16525.6 0.735847
\(797\) − 7958.23i − 0.353695i −0.984238 0.176848i \(-0.943410\pi\)
0.984238 0.176848i \(-0.0565900\pi\)
\(798\) − 3503.27i − 0.155406i
\(799\) 13122.7 0.581038
\(800\) 0 0
\(801\) 14401.3 0.635261
\(802\) − 17068.6i − 0.751513i
\(803\) − 1711.59i − 0.0752188i
\(804\) −8388.98 −0.367981
\(805\) 0 0
\(806\) 12223.1 0.534171
\(807\) 12272.3i 0.535323i
\(808\) 5507.42i 0.239790i
\(809\) −20506.9 −0.891203 −0.445601 0.895232i \(-0.647010\pi\)
−0.445601 + 0.895232i \(0.647010\pi\)
\(810\) 0 0
\(811\) 1962.00 0.0849506 0.0424753 0.999098i \(-0.486476\pi\)
0.0424753 + 0.999098i \(0.486476\pi\)
\(812\) 26068.9i 1.12665i
\(813\) − 16981.9i − 0.732573i
\(814\) 4377.07 0.188472
\(815\) 0 0
\(816\) −6207.19 −0.266293
\(817\) 1274.42i 0.0545730i
\(818\) − 1301.94i − 0.0556493i
\(819\) 16820.2 0.717638
\(820\) 0 0
\(821\) 25168.1 1.06988 0.534941 0.844889i \(-0.320334\pi\)
0.534941 + 0.844889i \(0.320334\pi\)
\(822\) 4026.77i 0.170863i
\(823\) − 3337.33i − 0.141351i −0.997499 0.0706756i \(-0.977484\pi\)
0.997499 0.0706756i \(-0.0225155\pi\)
\(824\) −16332.4 −0.690492
\(825\) 0 0
\(826\) 588.342 0.0247833
\(827\) − 13087.4i − 0.550294i −0.961402 0.275147i \(-0.911273\pi\)
0.961402 0.275147i \(-0.0887265\pi\)
\(828\) 1506.15i 0.0632154i
\(829\) 38486.8 1.61243 0.806213 0.591626i \(-0.201514\pi\)
0.806213 + 0.591626i \(0.201514\pi\)
\(830\) 0 0
\(831\) −5053.97 −0.210975
\(832\) 2365.97i 0.0985881i
\(833\) − 51097.0i − 2.12534i
\(834\) 9844.12 0.408722
\(835\) 0 0
\(836\) 836.558 0.0346088
\(837\) 23375.8i 0.965337i
\(838\) − 26532.4i − 1.09373i
\(839\) −8192.40 −0.337107 −0.168554 0.985692i \(-0.553910\pi\)
−0.168554 + 0.985692i \(0.553910\pi\)
\(840\) 0 0
\(841\) 30600.7 1.25469
\(842\) − 16549.4i − 0.677350i
\(843\) 26073.4i 1.06526i
\(844\) −3305.26 −0.134801
\(845\) 0 0
\(846\) 3610.79 0.146739
\(847\) − 33738.7i − 1.36868i
\(848\) 11010.2i 0.445861i
\(849\) −18936.5 −0.765487
\(850\) 0 0
\(851\) 4652.91 0.187426
\(852\) − 1867.64i − 0.0750991i
\(853\) 6774.83i 0.271941i 0.990713 + 0.135971i \(0.0434152\pi\)
−0.990713 + 0.135971i \(0.956585\pi\)
\(854\) −6146.42 −0.246284
\(855\) 0 0
\(856\) 2299.36 0.0918113
\(857\) 19272.3i 0.768177i 0.923296 + 0.384089i \(0.125484\pi\)
−0.923296 + 0.384089i \(0.874516\pi\)
\(858\) − 2607.70i − 0.103759i
\(859\) 5991.11 0.237968 0.118984 0.992896i \(-0.462036\pi\)
0.118984 + 0.992896i \(0.462036\pi\)
\(860\) 0 0
\(861\) 26805.8 1.06102
\(862\) 1448.17i 0.0572214i
\(863\) − 20711.4i − 0.816945i −0.912771 0.408472i \(-0.866062\pi\)
0.912771 0.408472i \(-0.133938\pi\)
\(864\) −4524.74 −0.178165
\(865\) 0 0
\(866\) −23993.1 −0.941476
\(867\) − 30147.2i − 1.18091i
\(868\) − 18378.3i − 0.718663i
\(869\) 12152.6 0.474394
\(870\) 0 0
\(871\) −23781.4 −0.925144
\(872\) − 9690.31i − 0.376325i
\(873\) − 15363.3i − 0.595613i
\(874\) 889.278 0.0344168
\(875\) 0 0
\(876\) 2063.22 0.0795774
\(877\) − 45757.4i − 1.76182i −0.473281 0.880912i \(-0.656930\pi\)
0.473281 0.880912i \(-0.343070\pi\)
\(878\) 15530.8i 0.596969i
\(879\) −28867.8 −1.10772
\(880\) 0 0
\(881\) 37019.6 1.41569 0.707845 0.706367i \(-0.249667\pi\)
0.707845 + 0.706367i \(0.249667\pi\)
\(882\) − 14059.6i − 0.536747i
\(883\) 9311.25i 0.354868i 0.984133 + 0.177434i \(0.0567797\pi\)
−0.984133 + 0.177434i \(0.943220\pi\)
\(884\) −17596.3 −0.669490
\(885\) 0 0
\(886\) −18123.1 −0.687197
\(887\) 33041.8i 1.25077i 0.780315 + 0.625387i \(0.215059\pi\)
−0.780315 + 0.625387i \(0.784941\pi\)
\(888\) 5276.30i 0.199393i
\(889\) −43911.4 −1.65662
\(890\) 0 0
\(891\) 205.130 0.00771283
\(892\) 4440.37i 0.166676i
\(893\) − 2131.92i − 0.0798903i
\(894\) 6686.37 0.250141
\(895\) 0 0
\(896\) 3557.39 0.132638
\(897\) − 2772.04i − 0.103184i
\(898\) 21888.6i 0.813398i
\(899\) −38767.2 −1.43822
\(900\) 0 0
\(901\) −81885.4 −3.02774
\(902\) 6401.06i 0.236288i
\(903\) − 5973.03i − 0.220122i
\(904\) −5930.53 −0.218193
\(905\) 0 0
\(906\) 9889.25 0.362636
\(907\) − 41359.1i − 1.51412i −0.653346 0.757060i \(-0.726635\pi\)
0.653346 0.757060i \(-0.273365\pi\)
\(908\) 19671.6i 0.718971i
\(909\) −11270.4 −0.411238
\(910\) 0 0
\(911\) −16960.3 −0.616818 −0.308409 0.951254i \(-0.599797\pi\)
−0.308409 + 0.951254i \(0.599797\pi\)
\(912\) 1008.42i 0.0366142i
\(913\) − 8920.71i − 0.323365i
\(914\) −21869.8 −0.791452
\(915\) 0 0
\(916\) −5562.50 −0.200644
\(917\) − 65279.7i − 2.35085i
\(918\) − 33651.7i − 1.20988i
\(919\) −3085.38 −0.110748 −0.0553739 0.998466i \(-0.517635\pi\)
−0.0553739 + 0.998466i \(0.517635\pi\)
\(920\) 0 0
\(921\) 4893.63 0.175082
\(922\) 5304.51i 0.189474i
\(923\) − 5294.46i − 0.188807i
\(924\) −3920.84 −0.139596
\(925\) 0 0
\(926\) 1415.40 0.0502299
\(927\) − 33422.6i − 1.18419i
\(928\) − 7503.97i − 0.265442i
\(929\) 42292.0 1.49360 0.746801 0.665048i \(-0.231589\pi\)
0.746801 + 0.665048i \(0.231589\pi\)
\(930\) 0 0
\(931\) −8301.22 −0.292225
\(932\) − 13638.4i − 0.479334i
\(933\) − 24257.3i − 0.851178i
\(934\) 21342.1 0.747682
\(935\) 0 0
\(936\) −4841.72 −0.169078
\(937\) 15746.4i 0.549000i 0.961587 + 0.274500i \(0.0885123\pi\)
−0.961587 + 0.274500i \(0.911488\pi\)
\(938\) 35756.8i 1.24467i
\(939\) −8243.79 −0.286502
\(940\) 0 0
\(941\) 52033.4 1.80259 0.901296 0.433204i \(-0.142617\pi\)
0.901296 + 0.433204i \(0.142617\pi\)
\(942\) 17978.7i 0.621843i
\(943\) 6804.46i 0.234977i
\(944\) −169.355 −0.00583903
\(945\) 0 0
\(946\) 1426.32 0.0490208
\(947\) − 17293.2i − 0.593405i −0.954970 0.296702i \(-0.904113\pi\)
0.954970 0.296702i \(-0.0958869\pi\)
\(948\) 14649.2i 0.501883i
\(949\) 5848.88 0.200066
\(950\) 0 0
\(951\) 31417.5 1.07127
\(952\) 26457.2i 0.900717i
\(953\) − 8989.54i − 0.305561i −0.988260 0.152781i \(-0.951177\pi\)
0.988260 0.152781i \(-0.0488228\pi\)
\(954\) −22531.2 −0.764648
\(955\) 0 0
\(956\) 8225.39 0.278272
\(957\) 8270.64i 0.279365i
\(958\) − 3902.34i − 0.131606i
\(959\) 17163.5 0.577933
\(960\) 0 0
\(961\) −2460.53 −0.0825931
\(962\) 14957.4i 0.501296i
\(963\) 4705.41i 0.157456i
\(964\) 7828.13 0.261543
\(965\) 0 0
\(966\) −4167.94 −0.138821
\(967\) 23285.3i 0.774358i 0.922005 + 0.387179i \(0.126550\pi\)
−0.922005 + 0.387179i \(0.873450\pi\)
\(968\) 9711.73i 0.322466i
\(969\) −7499.89 −0.248639
\(970\) 0 0
\(971\) 44316.5 1.46466 0.732330 0.680950i \(-0.238433\pi\)
0.732330 + 0.680950i \(0.238433\pi\)
\(972\) − 15023.7i − 0.495768i
\(973\) − 41959.1i − 1.38247i
\(974\) −34142.4 −1.12320
\(975\) 0 0
\(976\) 1769.26 0.0580252
\(977\) 761.665i 0.0249415i 0.999922 + 0.0124707i \(0.00396966\pi\)
−0.999922 + 0.0124707i \(0.996030\pi\)
\(978\) 8237.13i 0.269319i
\(979\) −9516.49 −0.310673
\(980\) 0 0
\(981\) 19830.3 0.645394
\(982\) 33959.8i 1.10356i
\(983\) 17423.3i 0.565328i 0.959219 + 0.282664i \(0.0912182\pi\)
−0.959219 + 0.282664i \(0.908782\pi\)
\(984\) −7716.10 −0.249980
\(985\) 0 0
\(986\) 55808.9 1.80255
\(987\) 9992.06i 0.322240i
\(988\) 2858.70i 0.0920521i
\(989\) 1516.21 0.0487489
\(990\) 0 0
\(991\) −33873.1 −1.08579 −0.542894 0.839801i \(-0.682671\pi\)
−0.542894 + 0.839801i \(0.682671\pi\)
\(992\) 5290.22i 0.169319i
\(993\) 9375.71i 0.299626i
\(994\) −7960.55 −0.254017
\(995\) 0 0
\(996\) 10753.4 0.342103
\(997\) − 31163.3i − 0.989921i −0.868915 0.494960i \(-0.835183\pi\)
0.868915 0.494960i \(-0.164817\pi\)
\(998\) 5577.66i 0.176912i
\(999\) −28604.9 −0.905925
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.m.599.7 8
5.2 odd 4 1150.4.a.o.1.3 4
5.3 odd 4 230.4.a.i.1.2 4
5.4 even 2 inner 1150.4.b.m.599.2 8
15.8 even 4 2070.4.a.bi.1.4 4
20.3 even 4 1840.4.a.l.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.2 4 5.3 odd 4
1150.4.a.o.1.3 4 5.2 odd 4
1150.4.b.m.599.2 8 5.4 even 2 inner
1150.4.b.m.599.7 8 1.1 even 1 trivial
1840.4.a.l.1.3 4 20.3 even 4
2070.4.a.bi.1.4 4 15.8 even 4