Properties

Label 1150.4.b.m.599.4
Level $1150$
Weight $4$
Character 1150.599
Analytic conductor $67.852$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1150,4,Mod(599,1150)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1150.599"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1150, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1150 = 2 \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1150.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-32,0,16,0,0,-128,0,186] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(67.8521965066\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 168x^{6} + 9540x^{4} + 208777x^{2} + 1542564 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 230)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 599.4
Root \(7.92791i\) of defining polynomial
Character \(\chi\) \(=\) 1150.599
Dual form 1150.4.b.m.599.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} +8.92791i q^{3} -4.00000 q^{4} +17.8558 q^{6} -23.5524i q^{7} +8.00000i q^{8} -52.7075 q^{9} +1.63537 q^{11} -35.7116i q^{12} -88.6599i q^{13} -47.1048 q^{14} +16.0000 q^{16} +7.31435i q^{17} +105.415i q^{18} +6.53738 q^{19} +210.274 q^{21} -3.27074i q^{22} +23.0000i q^{23} -71.4232 q^{24} -177.320 q^{26} -229.514i q^{27} +94.2096i q^{28} -119.240 q^{29} -156.456 q^{31} -32.0000i q^{32} +14.6004i q^{33} +14.6287 q^{34} +210.830 q^{36} +293.173i q^{37} -13.0748i q^{38} +791.547 q^{39} +74.3404 q^{41} -420.547i q^{42} +468.081i q^{43} -6.54148 q^{44} +46.0000 q^{46} +393.971i q^{47} +142.846i q^{48} -211.715 q^{49} -65.3018 q^{51} +354.639i q^{52} +233.171i q^{53} -459.028 q^{54} +188.419 q^{56} +58.3651i q^{57} +238.481i q^{58} +766.648 q^{59} +178.365 q^{61} +312.912i q^{62} +1241.39i q^{63} -64.0000 q^{64} +29.2009 q^{66} -246.904i q^{67} -29.2574i q^{68} -205.342 q^{69} -650.678 q^{71} -421.660i q^{72} +695.444i q^{73} +586.346 q^{74} -26.1495 q^{76} -38.5169i q^{77} -1583.09i q^{78} -660.717 q^{79} +625.978 q^{81} -148.681i q^{82} -1328.39i q^{83} -841.094 q^{84} +936.163 q^{86} -1064.57i q^{87} +13.0830i q^{88} +824.702 q^{89} -2088.15 q^{91} -92.0000i q^{92} -1396.82i q^{93} +787.942 q^{94} +285.693 q^{96} -383.833i q^{97} +423.430i q^{98} -86.1963 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} + 16 q^{6} - 128 q^{9} + 186 q^{11} - 104 q^{14} + 128 q^{16} - 370 q^{19} + 604 q^{21} - 64 q^{24} + 128 q^{26} - 588 q^{29} - 422 q^{31} - 432 q^{34} + 512 q^{36} + 842 q^{39} - 738 q^{41}+ \cdots - 4026 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1150\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 8.92791i 1.71818i 0.511828 + 0.859088i \(0.328969\pi\)
−0.511828 + 0.859088i \(0.671031\pi\)
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 17.8558 1.21493
\(7\) − 23.5524i − 1.27171i −0.771809 0.635855i \(-0.780648\pi\)
0.771809 0.635855i \(-0.219352\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −52.7075 −1.95213
\(10\) 0 0
\(11\) 1.63537 0.0448257 0.0224129 0.999749i \(-0.492865\pi\)
0.0224129 + 0.999749i \(0.492865\pi\)
\(12\) − 35.7116i − 0.859088i
\(13\) − 88.6599i − 1.89152i −0.324860 0.945762i \(-0.605317\pi\)
0.324860 0.945762i \(-0.394683\pi\)
\(14\) −47.1048 −0.899234
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 7.31435i 0.104352i 0.998638 + 0.0521762i \(0.0166157\pi\)
−0.998638 + 0.0521762i \(0.983384\pi\)
\(18\) 105.415i 1.38036i
\(19\) 6.53738 0.0789357 0.0394678 0.999221i \(-0.487434\pi\)
0.0394678 + 0.999221i \(0.487434\pi\)
\(20\) 0 0
\(21\) 210.274 2.18502
\(22\) − 3.27074i − 0.0316966i
\(23\) 23.0000i 0.208514i
\(24\) −71.4232 −0.607467
\(25\) 0 0
\(26\) −177.320 −1.33751
\(27\) − 229.514i − 1.63593i
\(28\) 94.2096i 0.635855i
\(29\) −119.240 −0.763530 −0.381765 0.924259i \(-0.624684\pi\)
−0.381765 + 0.924259i \(0.624684\pi\)
\(30\) 0 0
\(31\) −156.456 −0.906462 −0.453231 0.891393i \(-0.649729\pi\)
−0.453231 + 0.891393i \(0.649729\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 14.6004i 0.0770185i
\(34\) 14.6287 0.0737883
\(35\) 0 0
\(36\) 210.830 0.976065
\(37\) 293.173i 1.30263i 0.758807 + 0.651315i \(0.225782\pi\)
−0.758807 + 0.651315i \(0.774218\pi\)
\(38\) − 13.0748i − 0.0558159i
\(39\) 791.547 3.24997
\(40\) 0 0
\(41\) 74.3404 0.283171 0.141586 0.989926i \(-0.454780\pi\)
0.141586 + 0.989926i \(0.454780\pi\)
\(42\) − 420.547i − 1.54504i
\(43\) 468.081i 1.66004i 0.557733 + 0.830020i \(0.311671\pi\)
−0.557733 + 0.830020i \(0.688329\pi\)
\(44\) −6.54148 −0.0224129
\(45\) 0 0
\(46\) 46.0000 0.147442
\(47\) 393.971i 1.22269i 0.791363 + 0.611346i \(0.209372\pi\)
−0.791363 + 0.611346i \(0.790628\pi\)
\(48\) 142.846i 0.429544i
\(49\) −211.715 −0.617245
\(50\) 0 0
\(51\) −65.3018 −0.179296
\(52\) 354.639i 0.945762i
\(53\) 233.171i 0.604311i 0.953259 + 0.302155i \(0.0977061\pi\)
−0.953259 + 0.302155i \(0.902294\pi\)
\(54\) −459.028 −1.15677
\(55\) 0 0
\(56\) 188.419 0.449617
\(57\) 58.3651i 0.135625i
\(58\) 238.481i 0.539897i
\(59\) 766.648 1.69168 0.845840 0.533437i \(-0.179100\pi\)
0.845840 + 0.533437i \(0.179100\pi\)
\(60\) 0 0
\(61\) 178.365 0.374383 0.187191 0.982323i \(-0.440062\pi\)
0.187191 + 0.982323i \(0.440062\pi\)
\(62\) 312.912i 0.640965i
\(63\) 1241.39i 2.48254i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 29.2009 0.0544603
\(67\) − 246.904i − 0.450211i −0.974334 0.225105i \(-0.927727\pi\)
0.974334 0.225105i \(-0.0722727\pi\)
\(68\) − 29.2574i − 0.0521762i
\(69\) −205.342 −0.358265
\(70\) 0 0
\(71\) −650.678 −1.08762 −0.543812 0.839207i \(-0.683020\pi\)
−0.543812 + 0.839207i \(0.683020\pi\)
\(72\) − 421.660i − 0.690182i
\(73\) 695.444i 1.11501i 0.830174 + 0.557504i \(0.188241\pi\)
−0.830174 + 0.557504i \(0.811759\pi\)
\(74\) 586.346 0.921099
\(75\) 0 0
\(76\) −26.1495 −0.0394678
\(77\) − 38.5169i − 0.0570053i
\(78\) − 1583.09i − 2.29808i
\(79\) −660.717 −0.940967 −0.470484 0.882409i \(-0.655921\pi\)
−0.470484 + 0.882409i \(0.655921\pi\)
\(80\) 0 0
\(81\) 625.978 0.858681
\(82\) − 148.681i − 0.200232i
\(83\) − 1328.39i − 1.75674i −0.477977 0.878372i \(-0.658630\pi\)
0.477977 0.878372i \(-0.341370\pi\)
\(84\) −841.094 −1.09251
\(85\) 0 0
\(86\) 936.163 1.17383
\(87\) − 1064.57i − 1.31188i
\(88\) 13.0830i 0.0158483i
\(89\) 824.702 0.982227 0.491113 0.871096i \(-0.336590\pi\)
0.491113 + 0.871096i \(0.336590\pi\)
\(90\) 0 0
\(91\) −2088.15 −2.40547
\(92\) − 92.0000i − 0.104257i
\(93\) − 1396.82i − 1.55746i
\(94\) 787.942 0.864574
\(95\) 0 0
\(96\) 285.693 0.303734
\(97\) − 383.833i − 0.401776i −0.979614 0.200888i \(-0.935617\pi\)
0.979614 0.200888i \(-0.0643828\pi\)
\(98\) 423.430i 0.436458i
\(99\) −86.1963 −0.0875056
\(100\) 0 0
\(101\) −674.579 −0.664586 −0.332293 0.943176i \(-0.607822\pi\)
−0.332293 + 0.943176i \(0.607822\pi\)
\(102\) 130.604i 0.126781i
\(103\) 169.297i 0.161955i 0.996716 + 0.0809773i \(0.0258041\pi\)
−0.996716 + 0.0809773i \(0.974196\pi\)
\(104\) 709.279 0.668755
\(105\) 0 0
\(106\) 466.342 0.427312
\(107\) 1533.31i 1.38533i 0.721259 + 0.692665i \(0.243564\pi\)
−0.721259 + 0.692665i \(0.756436\pi\)
\(108\) 918.057i 0.817963i
\(109\) −1239.75 −1.08941 −0.544707 0.838626i \(-0.683359\pi\)
−0.544707 + 0.838626i \(0.683359\pi\)
\(110\) 0 0
\(111\) −2617.42 −2.23815
\(112\) − 376.838i − 0.317927i
\(113\) 2299.49i 1.91432i 0.289561 + 0.957159i \(0.406491\pi\)
−0.289561 + 0.957159i \(0.593509\pi\)
\(114\) 116.730 0.0959016
\(115\) 0 0
\(116\) 476.961 0.381765
\(117\) 4673.04i 3.69250i
\(118\) − 1533.30i − 1.19620i
\(119\) 172.270 0.132706
\(120\) 0 0
\(121\) −1328.33 −0.997991
\(122\) − 356.731i − 0.264729i
\(123\) 663.704i 0.486538i
\(124\) 625.824 0.453231
\(125\) 0 0
\(126\) 2482.78 1.75542
\(127\) 1177.82i 0.822948i 0.911422 + 0.411474i \(0.134986\pi\)
−0.911422 + 0.411474i \(0.865014\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −4178.99 −2.85224
\(130\) 0 0
\(131\) 2385.56 1.59105 0.795525 0.605921i \(-0.207195\pi\)
0.795525 + 0.605921i \(0.207195\pi\)
\(132\) − 58.4017i − 0.0385092i
\(133\) − 153.971i − 0.100383i
\(134\) −493.808 −0.318347
\(135\) 0 0
\(136\) −58.5148 −0.0368941
\(137\) − 1123.22i − 0.700460i −0.936664 0.350230i \(-0.886103\pi\)
0.936664 0.350230i \(-0.113897\pi\)
\(138\) 410.684i 0.253331i
\(139\) 1801.75 1.09944 0.549721 0.835348i \(-0.314734\pi\)
0.549721 + 0.835348i \(0.314734\pi\)
\(140\) 0 0
\(141\) −3517.33 −2.10080
\(142\) 1301.36i 0.769067i
\(143\) − 144.992i − 0.0847889i
\(144\) −843.320 −0.488032
\(145\) 0 0
\(146\) 1390.89 0.788429
\(147\) − 1890.17i − 1.06054i
\(148\) − 1172.69i − 0.651315i
\(149\) −663.138 −0.364607 −0.182303 0.983242i \(-0.558355\pi\)
−0.182303 + 0.983242i \(0.558355\pi\)
\(150\) 0 0
\(151\) 1617.66 0.871808 0.435904 0.899993i \(-0.356429\pi\)
0.435904 + 0.899993i \(0.356429\pi\)
\(152\) 52.2990i 0.0279080i
\(153\) − 385.521i − 0.203709i
\(154\) −77.0338 −0.0403088
\(155\) 0 0
\(156\) −3166.19 −1.62499
\(157\) − 875.080i − 0.444834i −0.974952 0.222417i \(-0.928605\pi\)
0.974952 0.222417i \(-0.0713946\pi\)
\(158\) 1321.43i 0.665364i
\(159\) −2081.73 −1.03831
\(160\) 0 0
\(161\) 541.705 0.265170
\(162\) − 1251.96i − 0.607179i
\(163\) 2532.39i 1.21689i 0.793597 + 0.608443i \(0.208206\pi\)
−0.793597 + 0.608443i \(0.791794\pi\)
\(164\) −297.361 −0.141586
\(165\) 0 0
\(166\) −2656.78 −1.24221
\(167\) 1131.65i 0.524371i 0.965017 + 0.262186i \(0.0844432\pi\)
−0.965017 + 0.262186i \(0.915557\pi\)
\(168\) 1682.19i 0.772522i
\(169\) −5663.57 −2.57786
\(170\) 0 0
\(171\) −344.569 −0.154093
\(172\) − 1872.33i − 0.830020i
\(173\) − 3186.23i − 1.40026i −0.714017 0.700128i \(-0.753126\pi\)
0.714017 0.700128i \(-0.246874\pi\)
\(174\) −2129.13 −0.927639
\(175\) 0 0
\(176\) 26.1659 0.0112064
\(177\) 6844.56i 2.90660i
\(178\) − 1649.40i − 0.694539i
\(179\) −1663.48 −0.694606 −0.347303 0.937753i \(-0.612902\pi\)
−0.347303 + 0.937753i \(0.612902\pi\)
\(180\) 0 0
\(181\) −3747.35 −1.53889 −0.769443 0.638716i \(-0.779466\pi\)
−0.769443 + 0.638716i \(0.779466\pi\)
\(182\) 4176.30i 1.70092i
\(183\) 1592.43i 0.643256i
\(184\) −184.000 −0.0737210
\(185\) 0 0
\(186\) −2793.65 −1.10129
\(187\) 11.9617i 0.00467767i
\(188\) − 1575.88i − 0.611346i
\(189\) −5405.61 −2.08042
\(190\) 0 0
\(191\) 2262.97 0.857291 0.428645 0.903473i \(-0.358991\pi\)
0.428645 + 0.903473i \(0.358991\pi\)
\(192\) − 571.386i − 0.214772i
\(193\) − 2001.25i − 0.746390i −0.927753 0.373195i \(-0.878262\pi\)
0.927753 0.373195i \(-0.121738\pi\)
\(194\) −767.665 −0.284099
\(195\) 0 0
\(196\) 846.860 0.308622
\(197\) 4804.08i 1.73744i 0.495300 + 0.868722i \(0.335058\pi\)
−0.495300 + 0.868722i \(0.664942\pi\)
\(198\) 172.393i 0.0618758i
\(199\) −3885.03 −1.38393 −0.691967 0.721929i \(-0.743256\pi\)
−0.691967 + 0.721929i \(0.743256\pi\)
\(200\) 0 0
\(201\) 2204.34 0.773542
\(202\) 1349.16i 0.469933i
\(203\) 2808.39i 0.970989i
\(204\) 261.207 0.0896479
\(205\) 0 0
\(206\) 338.594 0.114519
\(207\) − 1212.27i − 0.407047i
\(208\) − 1418.56i − 0.472881i
\(209\) 10.6910 0.00353835
\(210\) 0 0
\(211\) 4568.39 1.49052 0.745262 0.666772i \(-0.232324\pi\)
0.745262 + 0.666772i \(0.232324\pi\)
\(212\) − 932.683i − 0.302155i
\(213\) − 5809.20i − 1.86873i
\(214\) 3066.61 0.979576
\(215\) 0 0
\(216\) 1836.11 0.578387
\(217\) 3684.91i 1.15276i
\(218\) 2479.49i 0.770332i
\(219\) −6208.86 −1.91578
\(220\) 0 0
\(221\) 648.489 0.197385
\(222\) 5234.84i 1.58261i
\(223\) 3081.07i 0.925218i 0.886563 + 0.462609i \(0.153087\pi\)
−0.886563 + 0.462609i \(0.846913\pi\)
\(224\) −753.676 −0.224809
\(225\) 0 0
\(226\) 4598.98 1.35363
\(227\) − 678.971i − 0.198524i −0.995061 0.0992618i \(-0.968352\pi\)
0.995061 0.0992618i \(-0.0316481\pi\)
\(228\) − 233.460i − 0.0678127i
\(229\) −6399.27 −1.84662 −0.923310 0.384056i \(-0.874527\pi\)
−0.923310 + 0.384056i \(0.874527\pi\)
\(230\) 0 0
\(231\) 343.875 0.0979451
\(232\) − 953.923i − 0.269949i
\(233\) 6083.30i 1.71043i 0.518274 + 0.855215i \(0.326575\pi\)
−0.518274 + 0.855215i \(0.673425\pi\)
\(234\) 9346.08 2.61099
\(235\) 0 0
\(236\) −3066.59 −0.845840
\(237\) − 5898.82i − 1.61675i
\(238\) − 344.541i − 0.0938372i
\(239\) −438.313 −0.118628 −0.0593140 0.998239i \(-0.518891\pi\)
−0.0593140 + 0.998239i \(0.518891\pi\)
\(240\) 0 0
\(241\) 2854.41 0.762941 0.381471 0.924381i \(-0.375418\pi\)
0.381471 + 0.924381i \(0.375418\pi\)
\(242\) 2656.65i 0.705686i
\(243\) − 608.207i − 0.160562i
\(244\) −713.462 −0.187191
\(245\) 0 0
\(246\) 1327.41 0.344034
\(247\) − 579.603i − 0.149309i
\(248\) − 1251.65i − 0.320483i
\(249\) 11859.7 3.01840
\(250\) 0 0
\(251\) −2292.93 −0.576607 −0.288303 0.957539i \(-0.593091\pi\)
−0.288303 + 0.957539i \(0.593091\pi\)
\(252\) − 4965.55i − 1.24127i
\(253\) 37.6135i 0.00934681i
\(254\) 2355.63 0.581912
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 3547.59i − 0.861060i −0.902576 0.430530i \(-0.858327\pi\)
0.902576 0.430530i \(-0.141673\pi\)
\(258\) 8357.97i 2.01684i
\(259\) 6904.92 1.65657
\(260\) 0 0
\(261\) 6284.86 1.49051
\(262\) − 4771.12i − 1.12504i
\(263\) − 2278.35i − 0.534178i −0.963672 0.267089i \(-0.913938\pi\)
0.963672 0.267089i \(-0.0860618\pi\)
\(264\) −116.803 −0.0272301
\(265\) 0 0
\(266\) −307.942 −0.0709817
\(267\) 7362.86i 1.68764i
\(268\) 987.616i 0.225105i
\(269\) −3915.36 −0.887450 −0.443725 0.896163i \(-0.646343\pi\)
−0.443725 + 0.896163i \(0.646343\pi\)
\(270\) 0 0
\(271\) 6252.71 1.40157 0.700784 0.713374i \(-0.252834\pi\)
0.700784 + 0.713374i \(0.252834\pi\)
\(272\) 117.030i 0.0260881i
\(273\) − 18642.8i − 4.13302i
\(274\) −2246.44 −0.495300
\(275\) 0 0
\(276\) 821.367 0.179132
\(277\) 4700.53i 1.01959i 0.860295 + 0.509797i \(0.170279\pi\)
−0.860295 + 0.509797i \(0.829721\pi\)
\(278\) − 3603.50i − 0.777423i
\(279\) 8246.40 1.76953
\(280\) 0 0
\(281\) 5508.07 1.16934 0.584669 0.811272i \(-0.301224\pi\)
0.584669 + 0.811272i \(0.301224\pi\)
\(282\) 7034.67i 1.48549i
\(283\) 6639.20i 1.39456i 0.716801 + 0.697278i \(0.245606\pi\)
−0.716801 + 0.697278i \(0.754394\pi\)
\(284\) 2602.71 0.543812
\(285\) 0 0
\(286\) −289.983 −0.0599548
\(287\) − 1750.89i − 0.360111i
\(288\) 1686.64i 0.345091i
\(289\) 4859.50 0.989111
\(290\) 0 0
\(291\) 3426.82 0.690323
\(292\) − 2781.78i − 0.557504i
\(293\) − 2120.85i − 0.422872i −0.977392 0.211436i \(-0.932186\pi\)
0.977392 0.211436i \(-0.0678140\pi\)
\(294\) −3780.34 −0.749912
\(295\) 0 0
\(296\) −2345.38 −0.460550
\(297\) − 375.341i − 0.0733316i
\(298\) 1326.28i 0.257816i
\(299\) 2039.18 0.394410
\(300\) 0 0
\(301\) 11024.4 2.11109
\(302\) − 3235.31i − 0.616461i
\(303\) − 6022.58i − 1.14188i
\(304\) 104.598 0.0197339
\(305\) 0 0
\(306\) −771.042 −0.144044
\(307\) − 7422.87i − 1.37995i −0.723832 0.689977i \(-0.757621\pi\)
0.723832 0.689977i \(-0.242379\pi\)
\(308\) 154.068i 0.0285026i
\(309\) −1511.47 −0.278266
\(310\) 0 0
\(311\) −2563.97 −0.467490 −0.233745 0.972298i \(-0.575098\pi\)
−0.233745 + 0.972298i \(0.575098\pi\)
\(312\) 6332.37i 1.14904i
\(313\) 9403.53i 1.69814i 0.528277 + 0.849072i \(0.322838\pi\)
−0.528277 + 0.849072i \(0.677162\pi\)
\(314\) −1750.16 −0.314545
\(315\) 0 0
\(316\) 2642.87 0.470484
\(317\) − 407.110i − 0.0721312i −0.999349 0.0360656i \(-0.988517\pi\)
0.999349 0.0360656i \(-0.0114825\pi\)
\(318\) 4163.45i 0.734198i
\(319\) −195.002 −0.0342258
\(320\) 0 0
\(321\) −13689.2 −2.38024
\(322\) − 1083.41i − 0.187503i
\(323\) 47.8167i 0.00823713i
\(324\) −2503.91 −0.429340
\(325\) 0 0
\(326\) 5064.79 0.860469
\(327\) − 11068.3i − 1.87180i
\(328\) 594.723i 0.100116i
\(329\) 9278.95 1.55491
\(330\) 0 0
\(331\) −7122.33 −1.18272 −0.591358 0.806409i \(-0.701408\pi\)
−0.591358 + 0.806409i \(0.701408\pi\)
\(332\) 5313.56i 0.878372i
\(333\) − 15452.4i − 2.54290i
\(334\) 2263.31 0.370786
\(335\) 0 0
\(336\) 3364.38 0.546255
\(337\) 8267.78i 1.33642i 0.743971 + 0.668212i \(0.232940\pi\)
−0.743971 + 0.668212i \(0.767060\pi\)
\(338\) 11327.1i 1.82283i
\(339\) −20529.7 −3.28914
\(340\) 0 0
\(341\) −255.864 −0.0406328
\(342\) 689.138i 0.108960i
\(343\) − 3092.08i − 0.486753i
\(344\) −3744.65 −0.586913
\(345\) 0 0
\(346\) −6372.45 −0.990130
\(347\) − 1048.83i − 0.162260i −0.996704 0.0811302i \(-0.974147\pi\)
0.996704 0.0811302i \(-0.0258530\pi\)
\(348\) 4258.27i 0.655940i
\(349\) 9135.87 1.40124 0.700619 0.713535i \(-0.252907\pi\)
0.700619 + 0.713535i \(0.252907\pi\)
\(350\) 0 0
\(351\) −20348.7 −3.09440
\(352\) − 52.3319i − 0.00792414i
\(353\) 5253.06i 0.792046i 0.918240 + 0.396023i \(0.129610\pi\)
−0.918240 + 0.396023i \(0.870390\pi\)
\(354\) 13689.1 2.05528
\(355\) 0 0
\(356\) −3298.81 −0.491113
\(357\) 1538.01i 0.228012i
\(358\) 3326.96i 0.491160i
\(359\) 11269.7 1.65680 0.828400 0.560137i \(-0.189252\pi\)
0.828400 + 0.560137i \(0.189252\pi\)
\(360\) 0 0
\(361\) −6816.26 −0.993769
\(362\) 7494.70i 1.08816i
\(363\) − 11859.2i − 1.71472i
\(364\) 8352.60 1.20273
\(365\) 0 0
\(366\) 3184.86 0.454850
\(367\) 5675.46i 0.807238i 0.914927 + 0.403619i \(0.132248\pi\)
−0.914927 + 0.403619i \(0.867752\pi\)
\(368\) 368.000i 0.0521286i
\(369\) −3918.29 −0.552787
\(370\) 0 0
\(371\) 5491.73 0.768508
\(372\) 5587.30i 0.778731i
\(373\) 3662.20i 0.508369i 0.967156 + 0.254185i \(0.0818071\pi\)
−0.967156 + 0.254185i \(0.918193\pi\)
\(374\) 23.9233 0.00330761
\(375\) 0 0
\(376\) −3151.77 −0.432287
\(377\) 10571.8i 1.44424i
\(378\) 10811.2i 1.47108i
\(379\) −5520.89 −0.748256 −0.374128 0.927377i \(-0.622058\pi\)
−0.374128 + 0.927377i \(0.622058\pi\)
\(380\) 0 0
\(381\) −10515.4 −1.41397
\(382\) − 4525.93i − 0.606196i
\(383\) − 2309.13i − 0.308071i −0.988065 0.154036i \(-0.950773\pi\)
0.988065 0.154036i \(-0.0492271\pi\)
\(384\) −1142.77 −0.151867
\(385\) 0 0
\(386\) −4002.50 −0.527777
\(387\) − 24671.4i − 3.24061i
\(388\) 1535.33i 0.200888i
\(389\) 8194.51 1.06807 0.534034 0.845463i \(-0.320676\pi\)
0.534034 + 0.845463i \(0.320676\pi\)
\(390\) 0 0
\(391\) −168.230 −0.0217590
\(392\) − 1693.72i − 0.218229i
\(393\) 21298.1i 2.73370i
\(394\) 9608.16 1.22856
\(395\) 0 0
\(396\) 344.785 0.0437528
\(397\) − 7273.90i − 0.919564i −0.888032 0.459782i \(-0.847928\pi\)
0.888032 0.459782i \(-0.152072\pi\)
\(398\) 7770.07i 0.978589i
\(399\) 1374.64 0.172476
\(400\) 0 0
\(401\) −1835.81 −0.228618 −0.114309 0.993445i \(-0.536465\pi\)
−0.114309 + 0.993445i \(0.536465\pi\)
\(402\) − 4408.67i − 0.546977i
\(403\) 13871.4i 1.71460i
\(404\) 2698.32 0.332293
\(405\) 0 0
\(406\) 5616.79 0.686593
\(407\) 479.446i 0.0583914i
\(408\) − 522.415i − 0.0633906i
\(409\) 2865.80 0.346466 0.173233 0.984881i \(-0.444579\pi\)
0.173233 + 0.984881i \(0.444579\pi\)
\(410\) 0 0
\(411\) 10028.0 1.20351
\(412\) − 677.187i − 0.0809773i
\(413\) − 18056.4i − 2.15132i
\(414\) −2424.55 −0.287826
\(415\) 0 0
\(416\) −2837.12 −0.334377
\(417\) 16085.9i 1.88904i
\(418\) − 21.3821i − 0.00250199i
\(419\) −11044.0 −1.28767 −0.643836 0.765164i \(-0.722658\pi\)
−0.643836 + 0.765164i \(0.722658\pi\)
\(420\) 0 0
\(421\) 6343.24 0.734324 0.367162 0.930157i \(-0.380329\pi\)
0.367162 + 0.930157i \(0.380329\pi\)
\(422\) − 9136.77i − 1.05396i
\(423\) − 20765.2i − 2.38685i
\(424\) −1865.37 −0.213656
\(425\) 0 0
\(426\) −11618.4 −1.32139
\(427\) − 4200.93i − 0.476106i
\(428\) − 6133.23i − 0.692665i
\(429\) 1294.47 0.145682
\(430\) 0 0
\(431\) −4117.01 −0.460115 −0.230058 0.973177i \(-0.573891\pi\)
−0.230058 + 0.973177i \(0.573891\pi\)
\(432\) − 3672.23i − 0.408982i
\(433\) − 758.791i − 0.0842151i −0.999113 0.0421076i \(-0.986593\pi\)
0.999113 0.0421076i \(-0.0134072\pi\)
\(434\) 7369.82 0.815122
\(435\) 0 0
\(436\) 4958.98 0.544707
\(437\) 150.360i 0.0164592i
\(438\) 12417.7i 1.35466i
\(439\) −4150.10 −0.451193 −0.225596 0.974221i \(-0.572433\pi\)
−0.225596 + 0.974221i \(0.572433\pi\)
\(440\) 0 0
\(441\) 11159.0 1.20494
\(442\) − 1296.98i − 0.139572i
\(443\) − 4597.24i − 0.493051i −0.969136 0.246525i \(-0.920711\pi\)
0.969136 0.246525i \(-0.0792889\pi\)
\(444\) 10469.7 1.11907
\(445\) 0 0
\(446\) 6162.13 0.654228
\(447\) − 5920.43i − 0.626458i
\(448\) 1507.35i 0.158964i
\(449\) −6402.58 −0.672954 −0.336477 0.941692i \(-0.609235\pi\)
−0.336477 + 0.941692i \(0.609235\pi\)
\(450\) 0 0
\(451\) 121.574 0.0126933
\(452\) − 9197.97i − 0.957159i
\(453\) 14442.3i 1.49792i
\(454\) −1357.94 −0.140377
\(455\) 0 0
\(456\) −466.921 −0.0479508
\(457\) − 551.499i − 0.0564508i −0.999602 0.0282254i \(-0.991014\pi\)
0.999602 0.0282254i \(-0.00898562\pi\)
\(458\) 12798.5i 1.30576i
\(459\) 1678.75 0.170713
\(460\) 0 0
\(461\) −3901.96 −0.394213 −0.197107 0.980382i \(-0.563154\pi\)
−0.197107 + 0.980382i \(0.563154\pi\)
\(462\) − 687.750i − 0.0692577i
\(463\) 4828.15i 0.484628i 0.970198 + 0.242314i \(0.0779065\pi\)
−0.970198 + 0.242314i \(0.922094\pi\)
\(464\) −1907.85 −0.190883
\(465\) 0 0
\(466\) 12166.6 1.20946
\(467\) 14136.3i 1.40075i 0.713775 + 0.700375i \(0.246984\pi\)
−0.713775 + 0.700375i \(0.753016\pi\)
\(468\) − 18692.2i − 1.84625i
\(469\) −5815.18 −0.572538
\(470\) 0 0
\(471\) 7812.63 0.764303
\(472\) 6133.19i 0.598099i
\(473\) 765.487i 0.0744125i
\(474\) −11797.6 −1.14321
\(475\) 0 0
\(476\) −689.082 −0.0663530
\(477\) − 12289.8i − 1.17969i
\(478\) 876.626i 0.0838827i
\(479\) −15246.1 −1.45430 −0.727152 0.686476i \(-0.759157\pi\)
−0.727152 + 0.686476i \(0.759157\pi\)
\(480\) 0 0
\(481\) 25992.7 2.46396
\(482\) − 5708.83i − 0.539481i
\(483\) 4836.29i 0.455608i
\(484\) 5313.30 0.498995
\(485\) 0 0
\(486\) −1216.41 −0.113534
\(487\) − 3876.39i − 0.360690i −0.983603 0.180345i \(-0.942279\pi\)
0.983603 0.180345i \(-0.0577214\pi\)
\(488\) 1426.92i 0.132364i
\(489\) −22609.0 −2.09083
\(490\) 0 0
\(491\) −5027.14 −0.462061 −0.231030 0.972947i \(-0.574210\pi\)
−0.231030 + 0.972947i \(0.574210\pi\)
\(492\) − 2654.82i − 0.243269i
\(493\) − 872.166i − 0.0796762i
\(494\) −1159.21 −0.105577
\(495\) 0 0
\(496\) −2503.30 −0.226616
\(497\) 15325.0i 1.38314i
\(498\) − 23719.5i − 2.13433i
\(499\) −7178.10 −0.643960 −0.321980 0.946747i \(-0.604348\pi\)
−0.321980 + 0.946747i \(0.604348\pi\)
\(500\) 0 0
\(501\) −10103.3 −0.900962
\(502\) 4585.86i 0.407723i
\(503\) − 18169.6i − 1.61063i −0.592850 0.805313i \(-0.701997\pi\)
0.592850 0.805313i \(-0.298003\pi\)
\(504\) −9931.10 −0.877711
\(505\) 0 0
\(506\) 75.2271 0.00660919
\(507\) − 50563.8i − 4.42923i
\(508\) − 4711.27i − 0.411474i
\(509\) −2296.14 −0.199950 −0.0999750 0.994990i \(-0.531876\pi\)
−0.0999750 + 0.994990i \(0.531876\pi\)
\(510\) 0 0
\(511\) 16379.4 1.41797
\(512\) − 512.000i − 0.0441942i
\(513\) − 1500.42i − 0.129133i
\(514\) −7095.18 −0.608862
\(515\) 0 0
\(516\) 16715.9 1.42612
\(517\) 644.288i 0.0548081i
\(518\) − 13809.8i − 1.17137i
\(519\) 28446.3 2.40589
\(520\) 0 0
\(521\) 12945.5 1.08859 0.544293 0.838895i \(-0.316798\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(522\) − 12569.7i − 1.05395i
\(523\) − 16093.6i − 1.34555i −0.739847 0.672775i \(-0.765102\pi\)
0.739847 0.672775i \(-0.234898\pi\)
\(524\) −9542.25 −0.795525
\(525\) 0 0
\(526\) −4556.69 −0.377721
\(527\) − 1144.37i − 0.0945915i
\(528\) 233.607i 0.0192546i
\(529\) −529.000 −0.0434783
\(530\) 0 0
\(531\) −40408.1 −3.30238
\(532\) 615.884i 0.0501916i
\(533\) − 6591.01i − 0.535625i
\(534\) 14725.7 1.19334
\(535\) 0 0
\(536\) 1975.23 0.159174
\(537\) − 14851.4i − 1.19346i
\(538\) 7830.73i 0.627522i
\(539\) −346.232 −0.0276684
\(540\) 0 0
\(541\) −15424.7 −1.22580 −0.612900 0.790161i \(-0.709997\pi\)
−0.612900 + 0.790161i \(0.709997\pi\)
\(542\) − 12505.4i − 0.991058i
\(543\) − 33456.0i − 2.64408i
\(544\) 234.059 0.0184471
\(545\) 0 0
\(546\) −37285.6 −2.92249
\(547\) − 5307.37i − 0.414857i −0.978250 0.207428i \(-0.933491\pi\)
0.978250 0.207428i \(-0.0665094\pi\)
\(548\) 4492.87i 0.350230i
\(549\) −9401.20 −0.730844
\(550\) 0 0
\(551\) −779.519 −0.0602698
\(552\) − 1642.73i − 0.126666i
\(553\) 15561.5i 1.19664i
\(554\) 9401.06 0.720961
\(555\) 0 0
\(556\) −7207.00 −0.549721
\(557\) 13530.9i 1.02930i 0.857400 + 0.514651i \(0.172079\pi\)
−0.857400 + 0.514651i \(0.827921\pi\)
\(558\) − 16492.8i − 1.25125i
\(559\) 41500.0 3.14001
\(560\) 0 0
\(561\) −106.793 −0.00803706
\(562\) − 11016.1i − 0.826847i
\(563\) − 18109.0i − 1.35560i −0.735248 0.677799i \(-0.762934\pi\)
0.735248 0.677799i \(-0.237066\pi\)
\(564\) 14069.3 1.05040
\(565\) 0 0
\(566\) 13278.4 0.986100
\(567\) − 14743.3i − 1.09199i
\(568\) − 5205.43i − 0.384533i
\(569\) 908.991 0.0669717 0.0334858 0.999439i \(-0.489339\pi\)
0.0334858 + 0.999439i \(0.489339\pi\)
\(570\) 0 0
\(571\) −8894.71 −0.651895 −0.325948 0.945388i \(-0.605683\pi\)
−0.325948 + 0.945388i \(0.605683\pi\)
\(572\) 579.967i 0.0423945i
\(573\) 20203.6i 1.47298i
\(574\) −3501.79 −0.254637
\(575\) 0 0
\(576\) 3373.28 0.244016
\(577\) 12947.3i 0.934148i 0.884218 + 0.467074i \(0.154692\pi\)
−0.884218 + 0.467074i \(0.845308\pi\)
\(578\) − 9719.00i − 0.699407i
\(579\) 17867.0 1.28243
\(580\) 0 0
\(581\) −31286.8 −2.23407
\(582\) − 6853.65i − 0.488132i
\(583\) 381.321i 0.0270887i
\(584\) −5563.55 −0.394215
\(585\) 0 0
\(586\) −4241.71 −0.299016
\(587\) 19404.1i 1.36438i 0.731175 + 0.682190i \(0.238972\pi\)
−0.731175 + 0.682190i \(0.761028\pi\)
\(588\) 7560.69i 0.530268i
\(589\) −1022.81 −0.0715522
\(590\) 0 0
\(591\) −42890.4 −2.98524
\(592\) 4690.77i 0.325658i
\(593\) − 13633.9i − 0.944141i −0.881561 0.472070i \(-0.843507\pi\)
0.881561 0.472070i \(-0.156493\pi\)
\(594\) −750.682 −0.0518533
\(595\) 0 0
\(596\) 2652.55 0.182303
\(597\) − 34685.2i − 2.37784i
\(598\) − 4078.35i − 0.278890i
\(599\) −11276.5 −0.769191 −0.384595 0.923085i \(-0.625659\pi\)
−0.384595 + 0.923085i \(0.625659\pi\)
\(600\) 0 0
\(601\) −380.766 −0.0258432 −0.0129216 0.999917i \(-0.504113\pi\)
−0.0129216 + 0.999917i \(0.504113\pi\)
\(602\) − 22048.9i − 1.49277i
\(603\) 13013.7i 0.878870i
\(604\) −6470.63 −0.435904
\(605\) 0 0
\(606\) −12045.2 −0.807428
\(607\) 21669.2i 1.44897i 0.689290 + 0.724485i \(0.257923\pi\)
−0.689290 + 0.724485i \(0.742077\pi\)
\(608\) − 209.196i − 0.0139540i
\(609\) −25073.1 −1.66833
\(610\) 0 0
\(611\) 34929.4 2.31275
\(612\) 1542.08i 0.101855i
\(613\) − 936.980i − 0.0617362i −0.999523 0.0308681i \(-0.990173\pi\)
0.999523 0.0308681i \(-0.00982718\pi\)
\(614\) −14845.7 −0.975774
\(615\) 0 0
\(616\) 308.135 0.0201544
\(617\) 17539.2i 1.14441i 0.820111 + 0.572205i \(0.193912\pi\)
−0.820111 + 0.572205i \(0.806088\pi\)
\(618\) 3022.93i 0.196764i
\(619\) 4740.20 0.307794 0.153897 0.988087i \(-0.450818\pi\)
0.153897 + 0.988087i \(0.450818\pi\)
\(620\) 0 0
\(621\) 5278.83 0.341114
\(622\) 5127.94i 0.330565i
\(623\) − 19423.7i − 1.24911i
\(624\) 12664.7 0.812493
\(625\) 0 0
\(626\) 18807.1 1.20077
\(627\) 95.4486i 0.00607950i
\(628\) 3500.32i 0.222417i
\(629\) −2144.37 −0.135933
\(630\) 0 0
\(631\) −18505.6 −1.16751 −0.583754 0.811930i \(-0.698417\pi\)
−0.583754 + 0.811930i \(0.698417\pi\)
\(632\) − 5285.73i − 0.332682i
\(633\) 40786.1i 2.56098i
\(634\) −814.221 −0.0510045
\(635\) 0 0
\(636\) 8326.91 0.519156
\(637\) 18770.6i 1.16753i
\(638\) 390.004i 0.0242013i
\(639\) 34295.6 2.12318
\(640\) 0 0
\(641\) 10163.6 0.626266 0.313133 0.949709i \(-0.398621\pi\)
0.313133 + 0.949709i \(0.398621\pi\)
\(642\) 27378.4i 1.68308i
\(643\) 7132.33i 0.437436i 0.975788 + 0.218718i \(0.0701875\pi\)
−0.975788 + 0.218718i \(0.929812\pi\)
\(644\) −2166.82 −0.132585
\(645\) 0 0
\(646\) 95.6334 0.00582453
\(647\) − 14536.9i − 0.883315i −0.897184 0.441657i \(-0.854391\pi\)
0.897184 0.441657i \(-0.145609\pi\)
\(648\) 5007.83i 0.303590i
\(649\) 1253.75 0.0758307
\(650\) 0 0
\(651\) −32898.5 −1.98064
\(652\) − 10129.6i − 0.608443i
\(653\) 3318.33i 0.198861i 0.995045 + 0.0994305i \(0.0317021\pi\)
−0.995045 + 0.0994305i \(0.968298\pi\)
\(654\) −22136.7 −1.32357
\(655\) 0 0
\(656\) 1189.45 0.0707928
\(657\) − 36655.1i − 2.17664i
\(658\) − 18557.9i − 1.09949i
\(659\) −3088.17 −0.182546 −0.0912730 0.995826i \(-0.529094\pi\)
−0.0912730 + 0.995826i \(0.529094\pi\)
\(660\) 0 0
\(661\) 27602.0 1.62420 0.812098 0.583521i \(-0.198325\pi\)
0.812098 + 0.583521i \(0.198325\pi\)
\(662\) 14244.7i 0.836306i
\(663\) 5789.65i 0.339142i
\(664\) 10627.1 0.621103
\(665\) 0 0
\(666\) −30904.8 −1.79810
\(667\) − 2742.53i − 0.159207i
\(668\) − 4526.61i − 0.262186i
\(669\) −27507.5 −1.58969
\(670\) 0 0
\(671\) 291.694 0.0167820
\(672\) − 6728.75i − 0.386261i
\(673\) 8091.33i 0.463444i 0.972782 + 0.231722i \(0.0744360\pi\)
−0.972782 + 0.231722i \(0.925564\pi\)
\(674\) 16535.6 0.944994
\(675\) 0 0
\(676\) 22654.3 1.28893
\(677\) 9515.37i 0.540185i 0.962834 + 0.270093i \(0.0870543\pi\)
−0.962834 + 0.270093i \(0.912946\pi\)
\(678\) 41059.3i 2.32577i
\(679\) −9040.18 −0.510943
\(680\) 0 0
\(681\) 6061.79 0.341099
\(682\) 511.727i 0.0287317i
\(683\) − 630.346i − 0.0353141i −0.999844 0.0176570i \(-0.994379\pi\)
0.999844 0.0176570i \(-0.00562070\pi\)
\(684\) 1378.28 0.0770463
\(685\) 0 0
\(686\) −6184.15 −0.344187
\(687\) − 57132.1i − 3.17282i
\(688\) 7489.30i 0.415010i
\(689\) 20672.9 1.14307
\(690\) 0 0
\(691\) −6515.92 −0.358723 −0.179361 0.983783i \(-0.557403\pi\)
−0.179361 + 0.983783i \(0.557403\pi\)
\(692\) 12744.9i 0.700128i
\(693\) 2030.13i 0.111282i
\(694\) −2097.67 −0.114735
\(695\) 0 0
\(696\) 8516.53 0.463819
\(697\) 543.751i 0.0295496i
\(698\) − 18271.7i − 0.990825i
\(699\) −54311.1 −2.93882
\(700\) 0 0
\(701\) −32850.2 −1.76995 −0.884975 0.465638i \(-0.845825\pi\)
−0.884975 + 0.465638i \(0.845825\pi\)
\(702\) 40697.4i 2.18807i
\(703\) 1916.58i 0.102824i
\(704\) −104.664 −0.00560321
\(705\) 0 0
\(706\) 10506.1 0.560061
\(707\) 15888.0i 0.845160i
\(708\) − 27378.3i − 1.45330i
\(709\) 21841.2 1.15693 0.578466 0.815707i \(-0.303652\pi\)
0.578466 + 0.815707i \(0.303652\pi\)
\(710\) 0 0
\(711\) 34824.7 1.83689
\(712\) 6597.61i 0.347270i
\(713\) − 3598.49i − 0.189010i
\(714\) 3076.03 0.161229
\(715\) 0 0
\(716\) 6653.93 0.347303
\(717\) − 3913.22i − 0.203824i
\(718\) − 22539.4i − 1.17153i
\(719\) −25807.3 −1.33859 −0.669296 0.742996i \(-0.733404\pi\)
−0.669296 + 0.742996i \(0.733404\pi\)
\(720\) 0 0
\(721\) 3987.34 0.205959
\(722\) 13632.5i 0.702701i
\(723\) 25483.9i 1.31087i
\(724\) 14989.4 0.769443
\(725\) 0 0
\(726\) −23718.3 −1.21249
\(727\) − 14264.0i − 0.727679i −0.931462 0.363839i \(-0.881466\pi\)
0.931462 0.363839i \(-0.118534\pi\)
\(728\) − 16705.2i − 0.850462i
\(729\) 22331.4 1.13455
\(730\) 0 0
\(731\) −3423.71 −0.173229
\(732\) − 6369.72i − 0.321628i
\(733\) 811.706i 0.0409018i 0.999791 + 0.0204509i \(0.00651018\pi\)
−0.999791 + 0.0204509i \(0.993490\pi\)
\(734\) 11350.9 0.570804
\(735\) 0 0
\(736\) 736.000 0.0368605
\(737\) − 403.780i − 0.0201810i
\(738\) 7836.59i 0.390879i
\(739\) 30696.9 1.52802 0.764008 0.645207i \(-0.223229\pi\)
0.764008 + 0.645207i \(0.223229\pi\)
\(740\) 0 0
\(741\) 5174.64 0.256539
\(742\) − 10983.5i − 0.543417i
\(743\) − 26935.6i − 1.32998i −0.746854 0.664988i \(-0.768437\pi\)
0.746854 0.664988i \(-0.231563\pi\)
\(744\) 11174.6 0.550646
\(745\) 0 0
\(746\) 7324.40 0.359471
\(747\) 70016.2i 3.42939i
\(748\) − 47.8467i − 0.00233883i
\(749\) 36113.0 1.76174
\(750\) 0 0
\(751\) 22371.2 1.08700 0.543501 0.839409i \(-0.317098\pi\)
0.543501 + 0.839409i \(0.317098\pi\)
\(752\) 6303.53i 0.305673i
\(753\) − 20471.0i − 0.990712i
\(754\) 21143.7 1.02123
\(755\) 0 0
\(756\) 21622.4 1.04021
\(757\) − 697.182i − 0.0334736i −0.999860 0.0167368i \(-0.994672\pi\)
0.999860 0.0167368i \(-0.00532774\pi\)
\(758\) 11041.8i 0.529097i
\(759\) −335.810 −0.0160595
\(760\) 0 0
\(761\) 39756.9 1.89380 0.946902 0.321522i \(-0.104194\pi\)
0.946902 + 0.321522i \(0.104194\pi\)
\(762\) 21030.9i 0.999827i
\(763\) 29199.0i 1.38542i
\(764\) −9051.87 −0.428645
\(765\) 0 0
\(766\) −4618.27 −0.217839
\(767\) − 67970.9i − 3.19985i
\(768\) 2285.54i 0.107386i
\(769\) 12574.8 0.589673 0.294836 0.955548i \(-0.404735\pi\)
0.294836 + 0.955548i \(0.404735\pi\)
\(770\) 0 0
\(771\) 31672.5 1.47945
\(772\) 8005.00i 0.373195i
\(773\) 2478.65i 0.115331i 0.998336 + 0.0576654i \(0.0183656\pi\)
−0.998336 + 0.0576654i \(0.981634\pi\)
\(774\) −49342.8 −2.29146
\(775\) 0 0
\(776\) 3070.66 0.142049
\(777\) 61646.5i 2.84628i
\(778\) − 16389.0i − 0.755238i
\(779\) 485.991 0.0223523
\(780\) 0 0
\(781\) −1064.10 −0.0487535
\(782\) 336.460i 0.0153859i
\(783\) 27367.3i 1.24908i
\(784\) −3387.44 −0.154311
\(785\) 0 0
\(786\) 42596.1 1.93302
\(787\) 7716.40i 0.349504i 0.984612 + 0.174752i \(0.0559124\pi\)
−0.984612 + 0.174752i \(0.944088\pi\)
\(788\) − 19216.3i − 0.868722i
\(789\) 20340.9 0.917812
\(790\) 0 0
\(791\) 54158.5 2.43446
\(792\) − 689.570i − 0.0309379i
\(793\) − 15813.9i − 0.708154i
\(794\) −14547.8 −0.650230
\(795\) 0 0
\(796\) 15540.1 0.691967
\(797\) 26798.1i 1.19101i 0.803350 + 0.595507i \(0.203049\pi\)
−0.803350 + 0.595507i \(0.796951\pi\)
\(798\) − 2749.28i − 0.121959i
\(799\) −2881.64 −0.127591
\(800\) 0 0
\(801\) −43468.0 −1.91743
\(802\) 3671.61i 0.161657i
\(803\) 1137.31i 0.0499810i
\(804\) −8817.35 −0.386771
\(805\) 0 0
\(806\) 27742.7 1.21240
\(807\) − 34956.0i − 1.52479i
\(808\) − 5396.63i − 0.234967i
\(809\) −45278.0 −1.96772 −0.983862 0.178927i \(-0.942738\pi\)
−0.983862 + 0.178927i \(0.942738\pi\)
\(810\) 0 0
\(811\) −24889.6 −1.07767 −0.538836 0.842411i \(-0.681136\pi\)
−0.538836 + 0.842411i \(0.681136\pi\)
\(812\) − 11233.6i − 0.485494i
\(813\) 55823.6i 2.40814i
\(814\) 958.893 0.0412889
\(815\) 0 0
\(816\) −1044.83 −0.0448239
\(817\) 3060.03i 0.131036i
\(818\) − 5731.60i − 0.244989i
\(819\) 110061. 4.69579
\(820\) 0 0
\(821\) 19274.0 0.819326 0.409663 0.912237i \(-0.365646\pi\)
0.409663 + 0.912237i \(0.365646\pi\)
\(822\) − 20056.0i − 0.851013i
\(823\) − 21620.8i − 0.915740i −0.889019 0.457870i \(-0.848613\pi\)
0.889019 0.457870i \(-0.151387\pi\)
\(824\) −1354.37 −0.0572596
\(825\) 0 0
\(826\) −36112.8 −1.52122
\(827\) 9012.81i 0.378967i 0.981884 + 0.189484i \(0.0606814\pi\)
−0.981884 + 0.189484i \(0.939319\pi\)
\(828\) 4849.09i 0.203524i
\(829\) −26574.7 −1.11336 −0.556682 0.830726i \(-0.687926\pi\)
−0.556682 + 0.830726i \(0.687926\pi\)
\(830\) 0 0
\(831\) −41965.9 −1.75184
\(832\) 5674.23i 0.236441i
\(833\) − 1548.56i − 0.0644110i
\(834\) 32171.7 1.33575
\(835\) 0 0
\(836\) −42.7642 −0.00176917
\(837\) 35908.9i 1.48291i
\(838\) 22088.0i 0.910521i
\(839\) 1261.30 0.0519009 0.0259504 0.999663i \(-0.491739\pi\)
0.0259504 + 0.999663i \(0.491739\pi\)
\(840\) 0 0
\(841\) −10170.7 −0.417022
\(842\) − 12686.5i − 0.519245i
\(843\) 49175.6i 2.00913i
\(844\) −18273.5 −0.745262
\(845\) 0 0
\(846\) −41530.4 −1.68776
\(847\) 31285.2i 1.26915i
\(848\) 3730.73i 0.151078i
\(849\) −59274.1 −2.39609
\(850\) 0 0
\(851\) −6742.98 −0.271617
\(852\) 23236.8i 0.934365i
\(853\) 32765.1i 1.31519i 0.753373 + 0.657594i \(0.228426\pi\)
−0.753373 + 0.657594i \(0.771574\pi\)
\(854\) −8401.86 −0.336658
\(855\) 0 0
\(856\) −12266.5 −0.489788
\(857\) − 722.029i − 0.0287795i −0.999896 0.0143898i \(-0.995419\pi\)
0.999896 0.0143898i \(-0.00458056\pi\)
\(858\) − 2588.94i − 0.103013i
\(859\) 36626.9 1.45482 0.727411 0.686202i \(-0.240723\pi\)
0.727411 + 0.686202i \(0.240723\pi\)
\(860\) 0 0
\(861\) 15631.8 0.618735
\(862\) 8234.03i 0.325351i
\(863\) − 33207.9i − 1.30986i −0.755688 0.654931i \(-0.772698\pi\)
0.755688 0.654931i \(-0.227302\pi\)
\(864\) −7344.45 −0.289194
\(865\) 0 0
\(866\) −1517.58 −0.0595491
\(867\) 43385.2i 1.69947i
\(868\) − 14739.6i − 0.576378i
\(869\) −1080.52 −0.0421795
\(870\) 0 0
\(871\) −21890.5 −0.851585
\(872\) − 9917.97i − 0.385166i
\(873\) 20230.9i 0.784320i
\(874\) 300.719 0.0116384
\(875\) 0 0
\(876\) 24835.4 0.957890
\(877\) 39507.6i 1.52118i 0.649230 + 0.760592i \(0.275091\pi\)
−0.649230 + 0.760592i \(0.724909\pi\)
\(878\) 8300.21i 0.319041i
\(879\) 18934.8 0.726569
\(880\) 0 0
\(881\) 47928.6 1.83287 0.916434 0.400187i \(-0.131055\pi\)
0.916434 + 0.400187i \(0.131055\pi\)
\(882\) − 22317.9i − 0.852023i
\(883\) 48176.2i 1.83608i 0.396488 + 0.918040i \(0.370229\pi\)
−0.396488 + 0.918040i \(0.629771\pi\)
\(884\) −2593.96 −0.0986925
\(885\) 0 0
\(886\) −9194.48 −0.348640
\(887\) − 31421.7i − 1.18944i −0.803932 0.594722i \(-0.797262\pi\)
0.803932 0.594722i \(-0.202738\pi\)
\(888\) − 20939.4i − 0.791305i
\(889\) 27740.4 1.04655
\(890\) 0 0
\(891\) 1023.71 0.0384910
\(892\) − 12324.3i − 0.462609i
\(893\) 2575.54i 0.0965141i
\(894\) −11840.9 −0.442973
\(895\) 0 0
\(896\) 3014.71 0.112404
\(897\) 18205.6i 0.677666i
\(898\) 12805.2i 0.475851i
\(899\) 18655.9 0.692111
\(900\) 0 0
\(901\) −1705.49 −0.0630613
\(902\) − 243.148i − 0.00897555i
\(903\) 98425.1i 3.62722i
\(904\) −18395.9 −0.676814
\(905\) 0 0
\(906\) 28884.6 1.05919
\(907\) − 27694.1i − 1.01385i −0.861989 0.506927i \(-0.830781\pi\)
0.861989 0.506927i \(-0.169219\pi\)
\(908\) 2715.88i 0.0992618i
\(909\) 35555.4 1.29736
\(910\) 0 0
\(911\) −27325.1 −0.993764 −0.496882 0.867818i \(-0.665522\pi\)
−0.496882 + 0.867818i \(0.665522\pi\)
\(912\) 933.842i 0.0339063i
\(913\) − 2172.41i − 0.0787473i
\(914\) −1103.00 −0.0399168
\(915\) 0 0
\(916\) 25597.1 0.923310
\(917\) − 56185.7i − 2.02335i
\(918\) − 3357.49i − 0.120712i
\(919\) −28135.6 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(920\) 0 0
\(921\) 66270.7 2.37100
\(922\) 7803.91i 0.278751i
\(923\) 57689.1i 2.05727i
\(924\) −1375.50 −0.0489726
\(925\) 0 0
\(926\) 9656.29 0.342684
\(927\) − 8923.21i − 0.316156i
\(928\) 3815.69i 0.134974i
\(929\) −32497.6 −1.14770 −0.573850 0.818961i \(-0.694551\pi\)
−0.573850 + 0.818961i \(0.694551\pi\)
\(930\) 0 0
\(931\) −1384.06 −0.0487226
\(932\) − 24333.2i − 0.855215i
\(933\) − 22890.9i − 0.803230i
\(934\) 28272.6 0.990479
\(935\) 0 0
\(936\) −37384.3 −1.30550
\(937\) 12209.3i 0.425678i 0.977087 + 0.212839i \(0.0682710\pi\)
−0.977087 + 0.212839i \(0.931729\pi\)
\(938\) 11630.4i 0.404845i
\(939\) −83953.8 −2.91771
\(940\) 0 0
\(941\) −1317.78 −0.0456518 −0.0228259 0.999739i \(-0.507266\pi\)
−0.0228259 + 0.999739i \(0.507266\pi\)
\(942\) − 15625.3i − 0.540444i
\(943\) 1709.83i 0.0590453i
\(944\) 12266.4 0.422920
\(945\) 0 0
\(946\) 1530.97 0.0526176
\(947\) 11954.8i 0.410219i 0.978739 + 0.205110i \(0.0657551\pi\)
−0.978739 + 0.205110i \(0.934245\pi\)
\(948\) 23595.3i 0.808374i
\(949\) 61657.9 2.10906
\(950\) 0 0
\(951\) 3634.64 0.123934
\(952\) 1378.16i 0.0469186i
\(953\) − 19658.8i − 0.668216i −0.942535 0.334108i \(-0.891565\pi\)
0.942535 0.334108i \(-0.108435\pi\)
\(954\) −24579.7 −0.834169
\(955\) 0 0
\(956\) 1753.25 0.0593140
\(957\) − 1740.96i − 0.0588059i
\(958\) 30492.2i 1.02835i
\(959\) −26454.5 −0.890782
\(960\) 0 0
\(961\) −5312.52 −0.178326
\(962\) − 51985.3i − 1.74228i
\(963\) − 80816.8i − 2.70434i
\(964\) −11417.7 −0.381471
\(965\) 0 0
\(966\) 9672.58 0.322164
\(967\) 7604.58i 0.252892i 0.991973 + 0.126446i \(0.0403571\pi\)
−0.991973 + 0.126446i \(0.959643\pi\)
\(968\) − 10626.6i − 0.352843i
\(969\) −426.903 −0.0141528
\(970\) 0 0
\(971\) −14731.2 −0.486866 −0.243433 0.969918i \(-0.578274\pi\)
−0.243433 + 0.969918i \(0.578274\pi\)
\(972\) 2432.83i 0.0802809i
\(973\) − 42435.5i − 1.39817i
\(974\) −7752.77 −0.255046
\(975\) 0 0
\(976\) 2853.85 0.0935957
\(977\) 50584.6i 1.65644i 0.560400 + 0.828222i \(0.310647\pi\)
−0.560400 + 0.828222i \(0.689353\pi\)
\(978\) 45218.0i 1.47844i
\(979\) 1348.69 0.0440290
\(980\) 0 0
\(981\) 65343.9 2.12668
\(982\) 10054.3i 0.326726i
\(983\) 15625.9i 0.507007i 0.967334 + 0.253503i \(0.0815829\pi\)
−0.967334 + 0.253503i \(0.918417\pi\)
\(984\) −5309.63 −0.172017
\(985\) 0 0
\(986\) −1744.33 −0.0563396
\(987\) 82841.6i 2.67161i
\(988\) 2318.41i 0.0746544i
\(989\) −10765.9 −0.346142
\(990\) 0 0
\(991\) 18267.8 0.585567 0.292783 0.956179i \(-0.405419\pi\)
0.292783 + 0.956179i \(0.405419\pi\)
\(992\) 5006.59i 0.160241i
\(993\) − 63587.5i − 2.03211i
\(994\) 30650.1 0.978029
\(995\) 0 0
\(996\) −47439.0 −1.50920
\(997\) − 21580.5i − 0.685519i −0.939423 0.342760i \(-0.888638\pi\)
0.939423 0.342760i \(-0.111362\pi\)
\(998\) 14356.2i 0.455348i
\(999\) 67287.3 2.13101
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1150.4.b.m.599.4 8
5.2 odd 4 230.4.a.i.1.4 4
5.3 odd 4 1150.4.a.o.1.1 4
5.4 even 2 inner 1150.4.b.m.599.5 8
15.2 even 4 2070.4.a.bi.1.3 4
20.7 even 4 1840.4.a.l.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
230.4.a.i.1.4 4 5.2 odd 4
1150.4.a.o.1.1 4 5.3 odd 4
1150.4.b.m.599.4 8 1.1 even 1 trivial
1150.4.b.m.599.5 8 5.4 even 2 inner
1840.4.a.l.1.1 4 20.7 even 4
2070.4.a.bi.1.3 4 15.2 even 4